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Abstract
Neuronal circuits can be modelled in detail allowing us to predict the effects
of stimulation on individual neurons. Electrical stimulation of neuronal
circuits   and   excites a range of neurons within the tissue andin vitro in vivo
measurements of neural activity, e.g the local field potential (LFP), are
again an aggregate of a large pool of cells. The previous version of our
Virtual Electrode Recording Tool for EXtracellular Potentials (VERTEX)
allowed for the simulation of the LFP generated by a patch of brain tissue.
Here, we extend VERTEX to simulate the effect of electrical stimulation
through a focal electric field. We observe both direct changes in neural
activity and changes in synaptic plasticity. Testing our software in a model
of a rat neocortical slice, we determine the currents contributing to the LFP,
the effects of paired pulse stimulation to induce short term plasticity (STP),
and the effect of theta burst stimulation (TBS) to induce long term
potentiation (LTP).
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Introduction
As an investigatory tool, electric field stimulation has facili-
tated many important experiments in neurophysiology and is still 
widely used. It is often used to provoke a population of neurons 
to fire simultaneously, producing a synaptic response measured 
in the local field potential (LFP). Alternatively, electrical stimu-
lation can be used as a tool for neuromodulation using open- 
or closed-loop feedback to change the dynamics of neuronal  
circuits1. However, interpreting this response potential is made 
difficult by the large number of possible synaptic sources, as 
well as by the diverse way in which the field stimulation recruits 
neurons of various morphologies. This extension to the VER-
TEX simulator2 aims to combine our current knowledge of the 
neocortical microcircuit (neuron morphologies, patterns of con-
nectivity, and synaptic properties) with a biophysical model of 
extracellular electrical stimulation and LFP generation to make 
a well informed prediction of the synaptic sources contributing 
to the electrically evoked LFP. As field stimulation experi-
ments often seek to measure or manipulate synaptic efficacy, we 
include both short term plasticity (STP) and spike time depend-
ent plasticity (STDP) in this release. We begin by describing how 
we incorporate the effect of an electric field on the membrane 
potential of the neuron compartments in our model. This follows 
the work of Frank Rattay3–6 and the implementation of the extra-
cellular mechanism in the Neuron simulator7. We then look at the 
two models of short term synaptic plasticity8,9 and spike timing 
dependent plasticity10 previously described by others but included 
in this release, as well as details on their implementation. To 
illustrate how one may use our tool we look at the overall work-
flow involved in setting up a simulation including a stimulating 
electrode and synaptic plasticity and then describe an example 
simulation of stimulation in rat neocortex. We describe how we 
calculate the electric potential produced by a bipolar electrode 
equivalent to those typically used in in vitro experiments. This 
stimulation is then applied to the ongoing dynamics of a typical 
VERTEX simulation. In this case, we outline a model of rat neo-
cortex based on the anatomy and physiology detailed at the Neo-
cortical Collaborative Portal11. We show how VERTEX12 can be 
used to isolate the synaptic and non-synaptic changes that contrib-
ute to the change in response LFP during paired pulse stimulation 
and how theta burst stimulation causes STDP mediated changes 
in synaptic strength.

Methods
Simulating the effect of electric fields on neuronal fibers
Simulating electric field stimulation involves two steps: the first 
is to calculate the electric potential caused by the field we are 
interested in modelling, the second is to calculate how this affects 
the neuronal activity. The first step can be done analytically for 
simple electrode-tissue geometries, but for more complicated 
geometries must be solved numerically. We have provided an 
interface to models constructed using using the MATLAB Par-
tial Differential Equation toolbox13. These can be built to model 
a wide range of electrode-tissue setups, from bipolar penetrating 
electrodes used in vitro to non-invasive setups that include the skull 
and cerebrospinal fluid. VERTEX allows users to easily link to 
a model created using the PDE toolbox or to define an electrode 
setup analytically, by specifying an electrode location and 

equation to use. From these, an electric potential is calculated at 
the mid-point of each neuron compartment which is then used in 
the second step of the process. When modelling neurons using the 
multicompartmental approach first outlined by 14, the second 
step involves considering this extracellular electric potential  
when calculating the neuron membrane potential change of  
each compartment using the cable equation shown in Equation 1.
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Where V
i,n

 is the intracellular potential at compartment n, V
e,n

 
is the extracellular potential caused by the stimulating electrode 
at the mid-point of compartment n. Rn is the resistance between 
compartment n and its neighbour, C

m,n
 is the membrane capaci-

tance at n, and I
ion,n

 is the synaptic currents or other ion channel 
currents. The cable equation describes the flow of charge from 
one compartment to the other when their membrane potential 
differs. It is derived from Kirchhoff’s current law which states 
that current flowing into a particular node in a circuit must equal 
the current flowing out of that node. Normally when solving this 
we consider the extracellular potential to be constant across all 
compartments allowing us to ignore it. When it is not constant, 
it can be considered to contribute to the change in membrane 
potential. To do this we follow previous work6 by introducing 
a reduced membrane potential V = V

i
 − V

e
 − V

rest
 , to take into 

consideration the non-zero extracellular potential. Substituting 
this into Equation 1 and rearranging, we get Equation 2.
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Synaptic plasticity models
The efficacy of synaptic connections vary over time. Often 
these changes can be attributed to use-dependent plasticity—where 
the activity of the synapse and its constituent neurons determines 
the change. In VERTEX we take the synaptic efficacy to be 
the magnitude of the conductance or current depending on the 
synapse model type. So synaptic plasticity concerns the activ-
ity dependent changes in the conductance or current applied by a 
synapse.

Short term plasticity (STP): Short term plasticity has two 
components, facilitation (a short term increase in the efficacy 
of the synapse) and depression (a short term decrease). Both com-
ponents are often present on the same synapse but the strength of 
one may mask the other15. Short term depression occurs when the 
rate of replenishment of transmitter quanta is less than the rate 
of release; when a neuron endures sustained activation the replen-
ishment of the transmitter-containing vesicles cannot keep up with 
their release, there is then less transmitter released and the post-
synaptic response decreases16. Short term facilitation has been 
attributed to an increase in the release probability caused by a build 
up of calcium ions in the presynaptic terminal17, which then posi-
tively modulates local calcium channels18. This release of VER-
TEX contains two commonly used short term plasticity models. 
One, which we refer to as the Abbott model, has been previously 
described and extensively used8,19,20. It is a phenomenological 
model and unlike more detailed models of STP, it does not directly 
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follow any biological mechanisms. However, it does reproduce 
key aspects of STP observed in the neocortex, can be parametrized 
by widely available measures, and can be implemented to run 
efficiently. The model contains two variables: F (the facilitation 
effect) and D (the depression effect) and four parameters: f the 
facilitation rate, d the depression rate, tF the facilitation decay 
rate, and tD the depression decay rate. F and D are both initially 
set to one, f should be greater than zero, and d should be between 
zero and one. When the presynaptic neuron generates an action 
potential each variable is updated according to the following rules:

F F f→ + (3)

D D d→ ⋅ (4)

The facilitation effect is increased by the facilitation rate  
(Equation 3), and the depression effect is multiplied by the 
depression rate (Equation 4). Like others8,19 we add rather than  
multiply the facilitation rate to avoid unrealistic facilitation dur-
ing high frequency activity. At each time step, F and D are both  
subject to exponential decay (Equation 5 and Equation 6).

(1 )F
F F dt

tF
−

→ + ⋅ (5)

(1 )D
D D dt

tD
−

→ + ⋅ (6)

The facilitation and depression effects multiply the synaptic 
weight as it is applied (Equation 7, where W

baseline
 is the weight 

defined for the synapse by the user). This allows synapse weights 
to depress to zero or to increase indefinitely under sustained 
firing and with the right conditions. D should always be one or 
less and decay back to one. F should always be one or more and 
decay back to one. The efficacy of the synapse at any given time 
is the original synaptic weight (a fixed conductance or current) mul-
tiplied by F and D (Equation 7). F could be said to represent the 
level of calcium in the presynaptic terminal and D could represent 
the available quanta.

appliedW → ⋅ ⋅ baselineF D W (7)

The second model is known as the Markram and Tsodyks 
model9,21. It uses four variables. x, y, and z represent the fraction 
of resources available in recovered, active, and inactive states, 
with the resources available in the active state (y) determining the 
instantaneous strength of the synapses when a spike occurs. The 
fourth variable, u, represents the proportion of resources that will 
actually be used during an event (the proportion of resources 
moving from x to y). The variables update at each timestep 
according to Equation 8 to Equation 11. These are parametrised 
by τ (the time constant of the post synaptic current), τ

rec
 (the time 

constant for recovery from synaptic depression), and τ
fac

 (the time 
constant for facilitation).

                                       τrec

z
x x dt→ + ⋅

                                  
(8)

                                       τI

y
y y dt→ − ⋅

                                    
(9)

                                  
( )
τ τrecI

y z
z z dt→ + − ⋅

                         (10)

                                        τfac

u
u u dt→ − ⋅

                               (11)

As in the Abbott model there are also instantaneous updates 
that occur after a presynaptic spike. These are described in 
Equation 12 to Equation 14, with Equation 15 describing the 
synaptic weight applied. This weight will either be a conductance 
of a current depending on the model type.

(1 )u u U u→ + ⋅ − (12)

y y u x→ + ⋅ (13)

x x u x→ − ⋅ (14)

applied baselineW y W→ ⋅ (15)

Spike timing dependent plasticity (STDP): The STDP 
implemented here is intended to model the NMDA receptor medi-
ated plasticity that occurs on excitatory synapses. We use the 
classical pair-based exponential model previously described10. 
According to this model, the change in efficacy of a synapse 
is a function of the relative arrival time of a presynaptic action 
potential at the synaptic terminal, and the generation of an action 
potential in the postsynaptic cell. When the presynaptic cell fires 
before the postsynaptic, the synapse strengthens, when the oppo-
site occurs it weakens. Each synapse is specified by a pair of time 
constants, one for the postsynaptic neuron firing—that defines 
the decay of a potential weight decrease given a subsequent 
presynaptic spike— and one for the presynaptic neuron firing—that 
defines the decay of a potential weight increase given a subse-
quent postsynaptic spike. These potential weight changes can be 
seen as traces, and are stored as variables for each synapse, 
referred to as A

pre
 and A

post
 in the following equations. Equation 16 

and Equation 17 are applied at each time step and show how A
pre

 
and A

post
 decay according to their respective decay rates, τ

Pre
 and 

τ
Post

.

                                     τ
pre

pre pre
pre

A
A A dt→ − ⋅

                         
(16)

                                   τ
post

post post
post

A
A A dt→ − ⋅

                       
(17)

As shown in Equation 18, the potential for negative weight 
change A

post
 is increased instantaneously by a fixed amount 

(rate
post

 - a parameter specified by the user for each synapse  
model) when a postsynaptic spike occurs. The synaptic weight 
is also updated at this point by applying the addition of A

pre
, 

as shown in Equation 19.

post post postA A rate→ + (18)

prew w A→ + (19)
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Mirroring that for the post-synaptic spike, when a pre-synaptic 
spike occurs, the potential for positive weight change A

post
 is 

increased instantaneously by a fixed amount rate
pre

 when a 
postsynaptic spike occurs. The synaptic weight is then updated 
by the addition of A

post
, as shown in Equation 21. A

pre
 is typically 

made positive by specifying a positive rate
pre

 and A
post

 made 
negative by specifying a negative rate

post
.

pre pre preA A rate→ + (20)

postw w A→ + (21)

Implementation
VERTEX is built using MATLAB, and makes use of the 
object-orientated and parallel programming support it provides. 
The core VERTEX program has been described previously2, 
the changes made to VERTEX for this release comprise the 
addition of a mechanism to incorporate an extracellular stimulat-
ing field, and various forms of synaptic plasticity. This section will 
describe the various data structures used to store the properties 
and variables of the synapses and neurons, as well as the methods 
used to update the synaptic variables and weights during the main 
simulation loop.

Class hierarchy: Neuron and synapse types are described 
using inheritance to avoid the duplication of functionality. The 
abstract NeuronModel class describes the functionality provided 
by all multi-compartment neurons. It contains the membrane 
potential, external potential, and axial current (the currents that 
flow between compartments as a result of the difference between 
their membrane potentials) properties, as well as the functional-
ity required to integrate these. The integration of Equation 2 is 
included as an additional step during the calculation of the axial 
currents and is performed at each time step when the stimula-
tion is turned on. It is part of the core functionality of the abstract 
Neuron class. Classes with specific mechanisms then inherit from 
this, e.g. the NeuronModel_passive class provides a simple wrap-
per on top to allow a neuron with no active channels. The Neu-
ronModel_adex adds the adaptive exponential integrate and fire 
mechanism to the soma, allowing the cell to generate action poten-
tials. Here each instance of a class would represent a group of 
neurons in the same layer and of the same type. This allows us to 
ultilise MATLAB’s vectorised operations when updating variables 
so that for example: the membrane potential variable (v_m) holds 
the membrane potentials of all neurons in this group as a matrix. 
This also allows us to utilise the object oriented design advantages 
without the overhead that would come from storing each neuron 
or synapse as its own object. The integration of the axial current 
involves a loop over all possible neighbouring compartments 
with an operation vectorised for each compartment. The class 
hierarchy relevant to conductance based exponential synapses 
(SynapseModel_g_exp) is shown in Figure 1. Here, we have used 
multiple inheritance to allow us to efficiently define many com-
binations of synapse types. Synapse models have a base synapse 
type (defining how the synapse operates without plasticity, e.g. 
g_exp will be a conductance based exponential synapse), it can 
then also have short term plasticity (ab for the Abbott model or mt 
for the Markram and Tsodyks), spike timing dependent plasticity 

(stdp), or both. The plasticity models are defined as separate 
classes from which the synapse model can inherit from.

Data structures for synapse variables: Synapse models are 
required to provide a current to be applied to each neuron in the 
postsynaptic group. As such they store variables relevant to this 
calculation as vectors with an entry for each postsynaptic neu-
ron. As STP model variables are dependent on the presynaptic 
firing we store these as vectors with an entry for each presynatpic 
neuron. This allows operations to be vectorised over all presyn-
aptic neurons. In the STDP model A

pre
 is a vector with an entry 

for each presynaptic neuron, and A
post

 with an entry for each 
post synaptic cell, operations on these can be vectorised over 
all pre and post synaptic neurons respectively. Weight updates 
(Equation 19 and Equation 21) can also be vectorised across either 
the postsynaptic or presynaptic neurons.

Delays: When modelling STDP it is important to consider delays 
- between the presynaptic neuron firing and the action poten-
tial reaching the synapse (axonal delay), and between the post 
synaptic neuron firing and the backpropagating action potential 
reaching the relevant part of the dendrite (dendritic delay)22. As 
there is no vectorised solution to introduce dendritic delays, and 
as the axonal delay will dominate in most scenarios23, we consider 
only the axonal delay. To incorporate this, we introduce a delay 
into the update rules for the weight change (Equations 19 and 
21 become 22 and 23), Equation 20 and Equation 18 remain the 
same.

( ) ( ) ( )post post pre postw t w t A t d→ + − (22)

( ) ( ) ( )pre pre post prew t d w t d A t d+ → + + + (23)

Where t
post

 is the time of the postsynaptic spike and t
pre

 is the time 
of the presynaptic spike. To implement 22 we require access 
to past values of A

pre
, and so A

pre
 becomes a two-dimensional 

array, so that each entry for each presynaptic neuron contains a 
circular array which stores a trace of A

pre
 values. This is illus-

trated in Figure 2. Equation 23 cannot be vectorised over all post-
synaptic neurons because the delay is inhomogeneous. Instead, 
we record a snapshot of activated synapses in a circular array. A 
buffer count points to the current location and the pre and post IDs 
of the activated synapse are placed into the array at t

pre
 + delay. 

We can then vectorise the operation over all postsynaptic neurons 
that are receiving a spike at each time step. As including delays 
requires additional resources and is not always required we 
incorporate it in an additional STDP_delays class.

Stimulation workflow: To include electric field stimulation 
VERTEX, one must provide a model of the electric field. Essen-
tially this must be able to describe the electric potential at the 
compartments of each neuron in the model. This can be achieved 
for fields which can be described analytically by passing the name 
of a function. This user defined function should be able to take 
a set of 3D coordinates and return a value for each of them 
describing the electric potential at that point. Another option 
is to use 3D modelling software such as Blender to build a 3D 
model of the tissue and electrode. This can then be imported into 
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Figure 2. The data structure storing the Apre variable for the STDP model with delays. The first dimension of the array has an entry for each 
presynaptic neuron (N1 to Nn) the entry points to a unique circular array (buffer) with an entry for each delay step (S1 to the max delay steps, 
specified as a parameter). This stores the value of Apre for present and past time points. There is a buffer count that points to the location in 
the buffer that corresponds to the present.

Figure 1. Using multiple inheritance to represent multiple types of synapse. The hierarchy of classes representing single exponential 
conductance based synapses, with and without spike timing dependant plasticity and short term plasticity. Other base synapse models 
(current based exponential, alpha, etc) are not shown here but fit in exactly as the SynapseModel_g_exp does.
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MATLAB as an STL (STereoLithography) file. The MATLAB 
PDE toolbox can then be used to calculate the electric field and 
potential across the tissue using geometry provided, and user 
input regarding the boundary conditions and volume conductor 
equation.

The solution provided can then be passed to VERTEX as a Sta-
tionarySolution object (part of the PDE toolbox) for static 
electric fields or a TimeDependentSolution object for time vary-
ing fields. However, other more powerful and flexible software 
solutions for constructing finite element models of electric fields 
exist, such as ANSYS24 or COMSOL25. Interface to these can 
be achieved by the user defined function described above, or by 
providing a grid of pre-calculated electric potentials at suffi-
cient resolution so that MATLAB can interpolate from this to the 
midpoints of each neuron compartment. Ideally, users wishing 
to import from external tools should investigate the possibility 
of interfacing between their tool and MATLAB to allow their tool 
to calculate the values precisely at the compartment midpoints. 
Figure 3 shows the workflow involved in creating a VERTEX 
simulation with electric field stimulation. When the field has been 
calculated, VERTEX will calculate the electric potential at the 
midpoint of the compartment of each neuron. Users must also 
specify when the stimulation field is turned on and off, by speci-
fying a StimulationOn and StimulationOff field in the TissuePar-
ams struct, as seen in Figure 4. For stationary fields, they will 
be applied for the duration of their on-time. Time-varying fields 
will be applied by looping through their time series at the same 
rate as the rest of the simulation, so that if they reach the end 
of their time course before they have been turned off they will 
continue again. This may save users time and memory as 

oscillating fields need only to be calculated for a one full 
cycle.

Specifying synaptic parameters: When building a simulation 
users will specify which synapse model to instantiate by provid-
ing the postfix of the class name (e.g. g_exp_mt). They will then 
also have to provide the parameters for the model. These can be 
specified either as a single value, or as a distribution. A single 
value will result in each synapse of this synapse group object hav-
ing the same value, specifying a distribution will result in each 
synapse having a unique value drawn at random from the distri-
bution. The distribution name should correspond to one of the 
names specified in the documentation of MATLAB’s makedist 
function (part of the Statistics and Machine Learning Toolbox). 
The user will also need to provide properties for the distribution 
such as mean and standard deviation for a normal distribution, 
which will also be found here. This allows a network to be com-
piled taking into consideration the natural variance found in these 
properties on a cell to cell basis. An example of how to set up and 
synaptic connection is shown in Figure 5, where we see how one 
specifies the distribution for each parameter, or in the case of τ, a 
single value.

Requirements: Stimulation using a model built with the PDE 
toolbox will require MATLAB 2016b or later, and the PDE 
toolbox. If users wish to execute code in parallel then MATLAB’s 
parallel computing toolbox is required. Hardware requirements 
depend on the size of simulation. Desktop computers can run 
simulations at the scale of a cortical column (<20K neurons), 
but a high performance computing node would be required for 
simulations of a full cortical slice (>100K neurons).

Figure 3. Workflow for including stimulating electrode in simulation. The user first specifies a stimulation field, this can be done by 
building a 3D model of the electrode and slice in blender, then using the MATLAB PDE toolbox to model an electric field across this. An 
analytic function describing a field is also an option, as well as models built using external tools such as ANSYS. The user then must also 
specify start and stop times for the stimulation, these are specified as a pair of lists containing times to start and stop, allowing multiple blocks 
of stimulation. VERTEX will then store the extracellular potential at the mid point of each neuronal compartment, and apply this during the 
simulation between the times specified. 
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Figure 4. Code for assigning the stimulation on and off times. Applies two pulses each 2 ms long, one at 500 ms and one at 900 ms. This 
is part of a typical tutorial to run a simple network simulation in VERTEX.

Figure 5. Shows the code required to add a synaptic connection from group 1 to group 2 with conductance based synapses with the 
Markram and Tsodyks model.

Results
Here we illustrate the use of electric field stimulation in  
VERTEX with an example model of a bipolar stimulating elec-
trode in a rat neocortical brain slice26. We describe in detail the 
immediately evoked activity as well as the synaptic dynamics that 
result from repetitive stimulation, both in the short term (short 
term plasticity) and long term (spike-timing dependent plasticity). 
In doing so, we illustrate how one can create and incorporate a 
finite element model of the electric field created by a bipolar 
stimulating electrode into the VERTEX simulator to produce 
simulations of two experimental paradigms. We also seek to 
show the utility of the tool in revealing, based on anatomical and 
physiological data already obtained, the multiple currents contrib-
uting to the response, and how synaptic and neuronal dynamics 
may alter these under repeated stimulation.

Generating the network
We build the network used in our simulation using knowledge of 
the local cortical microcircuit. Local circuit connectivity can be 
defined in terms of the cell-type and layer specific connection prob-
abilities. These patterns influence the nature of spontaneous and 
evoked activity. Several studies have sought to reveal the local 
circuit connectivity by using anatomical or electrophysiological 
measures to create a map of connectivity probabilities between 

cell types and layers11,27,28. These maps allow simulations of 
cortical dynamics to be embedded in an estimation of the anatomy 
of the cortical circuit. The implications that this measured anat-
omy has for the simulated dynamics can be seen in the activity  
within in each layer and each cell-type. For example, it has been 
shown that the experimentally measured anatomy of cat and rat 
neocortex27,28 implies the same flow of activity through cortex 
as that measured in vivo after transient thalamic stimulation29.  
In vitro results have also been replicated, showing similarities  
in the properties of their model of gamma oscillations in macaque 
neocortex when compared with those measured in neocortical  
slices bathed in kainate to induce gamma oscillations2.

We construct our model of rat neocortex in VERTEX using the 
data from the the Neocortical Microcircuit Collaborative Por-
tal (NMCP)11. From here we take the neuron density, the neuron 
group types present and their proportions, the number of connec-
tions between the neuron groups, and their synaptic properties— 
synaptic strength and rates of facilitation or depression. The syn-
aptic parameters for each neuron are randomly selected from a 
Gaussian distribution during the building of the model to account 
for the natural variation. In our model we refer to the plane adja-
cent to the white matter as the horizontal (X dimension), the slice 
thickness as the depth (Y dimension), and the plane from the white 
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matter to the cortical surface as the vertical (Z dimension). We 
model a typical in vitro neocortical slice preparation measuring 
2000 µm horizontally, 2082 µm vertically x 400 µm deep. It con-
tains layers 1–6 but with layer one containing no neurons and layers 
2 and 3 combined. The full slice model has a density of 103730 
cells per mm3 giving a total of 172773 neurons in the simulation. 
Figure 6 shows the layout of the slice, with sample geometries 
and the soma positions of 5% of neurons. Twenty-nine neuron 
types are included, defined by their layer of location, morphology, 
intrinsic dynamics, and connectivity. Table 1 shows the propor-
tion of each neuron type within the model. Exponential, con-
ductance based, synapses are used with the short term plasticity 
model from Markram and Tsodyks and spike timing dependent 
plasticity, the time constants used to parameterise these are  
shown in Figure 7.

The number of connections between neuron groups is shown 
in Figure 8A, we can see the strong connectivity from layer 2/3 
pyramidal cells to all cells in layers 2 to 5. We can also see that 
other neuron types tend to preferentially synapse onto and receive 
synapses from neurons in their own layer. Like 2 and 30 we use a 
2D Gaussian spatial profile to calculate the probability of connec-
tion with increasing distance from the presynaptic neuron in the X 
and Z planes. In the Y plane, the connection probability is constant. 
The mean and standard deviation are set using estimates of the 
axonal arbourisation adapted from 31. Figure 8B shows the 
response of a selection of neuron types to current injections. We can 
see regular-spiking pyramidal cells (L23 PY, L5 TTPC), low 
threshold-firing Martinotti cells (MC), and fast-firing basket 
cells (LBC).

The stimulation model
We model a bipolar electrode with 10 x 10 µm shafts 25 µm apart 
(Figure 9). We import this model into MATLAB’s PDE Toolbox 
and use this to construct a finite element model of the electric 
potential in the slice as a result of a potential difference between 
the electrodes. Following 32 we model our system as a direct cur-
rent between two dipoles in a conductive media. We use the Pois-
son equation for our volume conductor equation, where σ, the 
conductivity, is the only parameter and set at 0.3 S/m. Neumann 
boundary conditions are used to model the boundary of the tissue/ 
extracellular fluid with the air or recording chamber. This implies 
that no current will flow across this boundary. The Dirichlet 
boundary condition is used for the electrode-tissue boundary, 
where the potential is set to the stimulation amplitude on one 
electrode and the negation of this on the other.

                                          ( ) 0s−∇⋅ ∇ =Vσ( ) 0s−∇⋅ ∇ =V                                (24)

                                              σ
 

0s ∇ ⋅V n =                                   (25)

We set the amplitude to 750 mV on one electrode and -750 mV on 
the other. We can then get the current that this corresponds to by 
calculating the spatial integral of the current density at the boundary 
of one of the electrodes. In this case we get a current of 54 µA.

Response to stimulation
Before considering the response to repeat stimulations we first 
look at the response to a single stimulation. Here we can focus on 
revealing the neuron populations that generate the LFP response 
(those neurons whose membrane potential change contributes 

Figure 6. The structure of the neocortical slice model. The layer boundaries are shown as the dashed lines with the distance from the 
white matter given in µm on the left. The rat somatosensory cortex has 6 layers, layer 1 contains no neurons and layers 2 and 3 have been 
combined. The position in the x and z planes of each neuron soma is shown, pink signifies inhibitory cells, grey signifies excitatory. The 
triangles are various types of pyramidal cell, stars are spiny stellate cells, circles are basket cells, and squares Martinotti cells. The full 
geometry of a selection of cell types are also shown.
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Table 1. The 29 neuron types present in the model, along with their layer, their 
synaptic reversal potential (RP) indicating whether they are excitatory or 
inhibitory, and the proportion of the model they compose.

Neuron Group Neuron Type Layer RP (mV) Proportion

L23PC Pyramidal Cell 2/3 0 0.1849

L23NBC Nest Basket Cell 2/3 -70 0.0084

L23LBC Large Basket Cell 2/3 -70 0.0143

L23SBC Small Basket Cell 2/3 -70 0.0052

L23MC Martinotti Cell 2/3 -70 0.0105

L4SS Spiny Stellate 4 0 0.0128

L4SP Star Pyramid 4 0 0.0345

L4PY Pyramidal Cell 4 0 0.0841

L4NBC Nest Basket Cell 4 -70 0.0030

L4LBC Large Basket Cell 4 -70 0.0038

L4SBC Small Basket Cell 4 -70 0.0019

L4MC Martinotti Cell 4 -70 0.0037

L5TTPC1 Thick Tufted Pyramidal Cell 5 0 0.0630

L5TTPC2 Thick Tufted Pyramidal Cell 5 0 0.0765

L5UTPC Untufted Pyramidal Cell 5 0 0.0108

L5STPC Slender Tufted Pyramidal Cell 5 0 0.0630

L5NBC Nest Basket Cell 5 -70 0.0063

L5LBC Large Basket Cell 5 -70 0.0066

L5SBC Small Basket Cell 5 -70 0.0007

L5MC Martinotti Cell 5 -70 0.0124

L6TPC_L1 Tufted Pyramidal To Layer 1 6 0 0.0515

L6TPC_L4 Tufted Pyramidal To Layer 4 6 0 0.0453

L6UTPC Untufted Pyramidal Cell 6 0 0.0546

L6IPC Inverted Pyramidal Cell 6 0 0.1094

L6BPC Bitufted Pyramidal Cell 6 0 0.0999

L6NBC Nest Basket Cell 6 -70 0.0062

L6LBC Large Basket Cell 6 -70 0.0146

L6SBC Small Basket Cell 6 -70 0.0021

L6MC Martinotti Cell 6 -70 0.0106

most significantly to the LFP), and then we can identify those 
neuron groups whose synapses produce this change. We stimu-
late using the model outlined above, with a 500 µs pulse applied 
1500 ms into the simulation. As the generation of the synaptic 
parameters in our network is stochastic, we generate 5 networks, 
and apply the stimulation to each. Figure 10A and B illustrate 
the recruitment of cells during a representative single run,  
Figure 10C and D show the mean and standard deviation of the  
5 runs. From 10 A, we can see that cells may be recruited by stimu-
lation 300 µm from the stimulating electrode in the vertical dimen-
sion, or 150 µm in the horizontal dimension. From Figure 10B  
we can see that neurons from layers 4 and 5 are well recruited, 
with between 1 % and 10 % recruited above the baseline. We see 

that interneuons in layer 4 are particularly receptive - this may 
be a result of them having a lower threshold for firing as their 
smaller dendritic structure lends them to be less affected by stimu-
lation in terms of membrane potential change. From Figure 10D 
we can see that, even when the recording electrode is placed in 
layer 2/3, the neuron groups contributing most heavily to the LFP 
are those in layers 4, 5, and even 6, with the thick tufted layer 5 
pyramidal cells contributing over 55% of the total signal. They 
are a large group (14% of the entire model), they receive a large 
number of synapses from those groups recruited by the stimula-
tion (see connectivity matrix), and they also extend their api-
cal dendrites well into layer 2/3, allowing them to influence the  
LFP recorded there. Having identified L5TTPCs as a significant  
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Figure 7. Time constants for facilitation and depression in rat neocortex, used for our model and taken from the Neocortical 
Microcircuit Collaborative Portal (NMCP)11.

Figure 8. (A) The expected number of connections from the population of presynaptic neurons in the presynaptic group to a single neuron in 
the postsynaptic group. (B) The response of a selection of neuron types to current injection. The amplitudes of injected current were: 500 pA 
for the L23 PY, 400 for the LBC, 1000 pA for the L5 TTPC, and 400 for the MC. The adaptive exponential integrate and fire model resets at a 
given threshold Vt, we have extended the trace to 30 mV for illustrative purposes.

source of the LFP, we can then investigate the presynaptic origins 
of the currents that contribute to the LFP they generate. This will 
allow us to bridge the gap between what we know of the direct 
recruitment (Figure 10A–C) and the local field potential recorded 
at a particular point - Figure 10D. Figure 11 illustrates the aver-
age currents flowing across the 50 L5TTPC1 cells nearest to 
the recording electrode. The local field potential contributed by 

these cells is shown in A, with the stimulation artefact removed. 
Below this we can see the synaptic currents received, coloured 
according to their presynaptic neuron group. This shows a sharp 
spike of excitatory current from those L4 and L5 pyramidal 
and spiny stellate cells (L4SPC, L5TTPC1, L5TTPC2, L4SS, 
L4PC) directly recruited by stimulation. This is followed by an 
inhibitory current from the soma-targeting basket cells (LBC) and 
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Figure 9. Modelling the field potential generated by a bipolar electrode. (A) The 3D mesh. The initial geometry was built using Blender 
(essentially a cuboid representing the tissue with the two cuboidal electrodes cut out). The geometry is then meshed using the PDE toolbox. 
(B) The potential field calculated using the PDE toolbox. The Poisson equation is used as the volume conductor equation, Neumann boundary 
condition (no current flowing) has been used for the boundary of the tissue/extracellular fluid with the air or recording chamber. The Dirichlet 
boundary condition has been used for the electrodes. Where V = A, where A is the amplitude of the stimulation in mV and will be positive at 
one electrode and negative at the other.

Figure 10. The response to stimulation. (A) Shows the spatial extent of the cells directly recruited by stimulation in a simulation run (black 
cells excitatory, pink cells inhibitory), the relative positions of the stimulating electrode - the red circle, and recording electrodes - the black 
circles (the one filled with blue is used for subsequent figures). (B) Shows the extent to which each neuron group is recruited directly by 
stimulation, showing mean and standard deviation for 5 runs. (C) A spike raster showing the result of a single simulation, the time of stimulation 
is shown by the arrow on the x axis. (D, left) The LFP recorded at the blue electrode in shown in (A) decomposed into the traces of the 5 
neuron groups that contribute most. (D, right) The contribution of each group as a percentage of the total LFP.
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Figure 11. The currents contributing to the LFP generated by the L5TTPC1 neuron group as a result of stimulation. (A) The mean 
LFP generated by 50 L5TTPC1 neurons near to the recording electrode. (B) The mean synaptic current received by these neurons coloured 
according to the presynaptic neuron group. (C) The mean synaptic current received by each section of the neuron. Colours correspond to 
the diagram illustrating the anatomy of the neuron type. (D) The total transmembrane current for each section. (E) The LFP contribution of 
each section, with the total LFP contributed (dashed line).
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dendrite-targeting Martinotti cells (MC). When we look to the 
synaptic current flowing across the various sections of the neuron 
(Figure 11C) we see a strong and sharp initial excitatory current 
at the dendrites. This is followed by an inhibitory current at the 
soma (mediated by the soma targeting LBCs), and a lower net 
excitatory current at the dendrites—a result of the initial excita-
tory barrage decaying combined with indirectly recruited dendrite 
targeting interneurons (MCs) and indirectly recruited excitatory 
cells. To arrive at the LFP (shown in Figure 11E) we must calcu-
late the total transmembrane current for each section (shown in 
Figure 11D), and then apply to this a function of the distance 
from the section to the recording electrode. More detail on how 
VERTEX calculates LFPs is available in previously published 
work2. Now we can see the tuft contributing significantly to the 
initial inflection in the LFP (as a result of its proximity to the 
recording electrode, and mediated through axial currents them-
selves a result of excitatory currents received at apical dendrites). 
The apical dendrites then make a significant contribution to the 
secondary deflection as can be seen by following the purple 

trace in Figure 10D and E. We can see from 10C that the exci-
tatory synaptic current arriving at the apical dendrites is not 
enough to account for this on its own, and that the axial current 
produced by the strong polarisation of the soma also makes a 
large contribution.

Paired pulse stimulation
Having uncovered the main currents contributing to the LFP, we 
can now consider the contributions to changes in these currents 
after repeated stimulation. Although short term synaptic plasticity 
plays a major role in paired pulse depression or facilitation we 
must also consider factors unrelated to synaptic plasticity. One 
such important factor is residual inhibition, which increases the 
threshold required for stimulation in some neurons, reducing 
recruitment. In Figure 12A and B we can see that for short inter-
vals the response to the second pulse is significantly weakened, 
but that it recovers as the interval increases. Figure 12C shows 
us that the number of L5TTPC cells directly recruited by 
stimulation is more than halved for short intervals but that by 

Figure 12. Paired pulse stimulation with an inter-pulse interval of 50 ms, 100 ms, 150 ms, 200 ms, 250 ms. In all cases we show 
the mean and standard deviation of 5 networks. (A) Shows the local field potential with stimulation artefact included for each inter-pulse 
interval. Stimulus times are indicated by the arrows. Solid line shows mean, shading indicates standard deviation. (B) Shows the difference in 
amplitude (second pulse - first pulse) of each component of the response for each interval. (C) Shows the number of L5TTPC cells recruited 
during stimulation for the initial pulse and for the second pulse for each interval. (D) Shows the mean strength of inhibitory current received 
by the 50 L5TTPC cells nearest the stimulating electrode at the point of stimulation for the first pulse and then the second pulse for each 
interval.
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Figure 13. The contribution of short term plasticity to the depression in the response to paired pulse stimulation with an interval of 
150 ms. (Top) Shows the synaptic resource available (the resource in the recovered state (x)) that would be applied if there were to be a 
spike (x uU (1−u)) relative to the baseline, for 100 L5TTPC cells nearest the stimulating electrode. The blue line indicates synaptic resources 
to other L5TTPCs, red to MCs. (Middle) Synaptic current received by each section of the L5TTPC neuron, average for 50 neurons nearest the 
recording electrode. (Bottom) Average LFP contribution of each section of the 50 L5TTPC neurons nearest the recording electrode.

250 ms it has recovered to near 100% of that of the initial pulse. 
Figure 12D shows us that the residual inhibition follows a simi-
lar pattern, with strong residual inhibition at an interval of 50 
ms decaying to around baseline after 250 ms. This indicates that 
residual inhibition plays a significant role for short intervals, but as 
the number of neurons recruited recovers to around baseline after 
200 ms, if we still see significant paired pulse depression on the 
initial peak and facilitation on the subsequent trough, we can 
look also to the role of short term plasticity. In Figure 13 we can 
see the average synaptic resource available on synapses from 
L5TTPCs to other L5TTPCs (mediating excitatory dendritic 
currents) and to MCs (mediating inhibitory dendritic currents). 
We see that the synaptic resource available for excitatory cells is 
decreased for the second pulse, while for the inhibitory cells it is 
increased. This is then reflected in the synaptic currents received 
on various sections of L5TTPCs near the recording electrode, 
with the net current arriving at the dendrites much reduced or even 
negative for some sections. This results in the LFP losing most 
of its initial peak and its subsequent trough being deeper than 
before.

Theta burst stimulation
Repetitive stimulation is often used to invoke various forms of 
long term synaptic plasticity such as LTP (long term potentia-
tion) and LTD (long term depression). The order and timing of 
input has been shown to be of critical importance when inducing 
LTP in a particular connection. The connection must be activated 
within a time window (usually around 20 ms) before the postsyn-
aptic site has been activated. Long term depression (LTD) occurs 
when the connection is activated after the postsynaptic site and  
manifests as a decrease in synaptic efficacy. Although it does not 
capture all processes that lead to LTP or LTD33, it is thought that 
the spike-timing dependent plasticity rule described above does 
capture some of the conditions which lead to long term synap-
tic changes34. The tetanic stimulation used to induce LTP varies; 
however, theta burst stimulation (TBS) has been shown to induce 
LTP in hippocampus and neocortex35. Its mechanism of action 
in the hippocampus has been thoroughly characterised36. In 
neocortex it has been shown to produce LTP when applied to the 
connection from layer 4 to layer 2/3; however, this protocol is not 
utilised as often as others due to the difficulty in interpreting the 
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results35. Here we model TBS induced LTP in neocortex, apply-
ing stimulation to layer 4 using the bipolar electrode. We ensure 
that spike timing dependant plasticity is present on excitatory 
synapses, using the SynapseModel_g_exp_mt_stdp, which extends 
the SynapseModel_g_exp, STPModel_mt, and STDPModel. 
The parameters used are shown in Table 2, we use a rate of 
0.05 nS, chosen as a biologically plausible rate of a similar order 
of magnitude to that used by 10,37. Values for τ

pre
 and τ

post
 reflect 

estimates taken from 38. We apply an initial pulse to sample the 
baseline response to stimulation, then apply the TBS, before 
sampling the response again. The TBS consists of 6 bursts of 
pulses, each 150 ms apart. Each burst consists of 5 pulses, with 
a pulse width of 0.5 ms, and a pulse interval of 10 ms. We can 
see the pattern of stimulation artefacts in Figure 14, the rhyth-
mic nature is reflective of the hippocampal theta rhythm, from 
where it is derived. From the spike raster we see that the majority 
of the cells recruited by stimulation, both directly and indirectly 

are in layers 4 and 5, with the effect on layer 2/3 being a 
suppression of activity as a result of inhibitory neuron recruitment. 
As for the paired pulse and single pulse experiments, we gener-
ate 5 networks and run the stimulation on each. The averaged 
responses (before and after TBS) can be seen in Figure 15A. TBS 
produces a slight depression of the initial peak, but a strong poten-
tiation of the subsequent trough. Our analysis of the synaptic 
source of the trough tells us that this could be caused by the 
dendrite targeting inhibitory MCs dominating the excitatory syn-
aptic current. From Figure 15C we can see that cells that are well 
recruited by stimulation show large synaptic changes (compare 
this to Figure 10A). When we look at the broad changes in synap-
tic strength that occur (Figure 15D) we can see that the strength 
of connection from the primary cells recruited by stimulation 
(L4SPC L4PC, L5TTPC) to the MCs is well strengthened. This 
strengthened connection contributes to greater recruitment of 
MCs and so to a greater inhibitory current onto the apical 

Table 2. The STDP parameters used during the theta burst stimulation 
simulation.

Presynaptic Group Synapse Type Rate (nS) τpre (ms) τpost (ms)

Superficial Excitatory (L2-4) g_exp_mt_stdp 0.05 25 75

Deep Excitatory (L5-6) g_exp_mt_stdp 0.05 25 25

Inhibitory g_exp_mt NA NA NA

Figure 14. (Top) The effects of TBS on the LFP. (Bottom) The effect of TBS on neuronal activity in terms of neuron spiking. Shows the activity 
in layers 2/3, 4, and 5 over the course of the protocol. Black dots indicate excitatory neuron spike pink dots indicate inhibitory neuron spike.
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dendrites of the large layer 5 pyramidal cells. This larger inhibi-
tory current results in the larger trough seen in the response. The 
stronger connection also results in faster recruitment of the MCs, 
shortening the initial peak.

Discussion
Comparison with other tools
Several simulation packages offer similar capabilities to  
VERTEX. The Brian simulator offers an easy to use and  
adaptable simulation package written in Python39. In particular it 
has good support for synaptic plasticity, both short term plastic-
ity models and spike timing dependent plasticity models. It is pri-
marily designed for simulating point neurons, and does not have 
good support for including morphology. This rules out explicit 

support for any form of electrical stimulation based on the neuron 
morphology, although electrical stimulation in the form of current 
injection can be easily incorporated. It also rules out a biophysi-
cal model of the LFP based on synaptic currents, as this is also 
dependent on a morphological neuron.

The Neuron simulator40 is designed to be used for modelling the 
neuron morphology, channels, and synapses in detail. As such it 
supports electrical stimulation through its extracellular mechanism, 
and LFP simulation through the LFPy tool41. It also supports a 
wide variety of synapse types including short term plasticity and 
spike timing dependent plasticity. However, the Neuron simula-
tor is not considered easy to use—it is designed for simulating 
single neurons or small networks in detail and it can become 

Figure 15. TBS causes a potentiation of the connection between excitatory cells and Martinotti cells. (A) The LFP response recorded in 
layer 2/3 before TBS (blue) and after TBS (red), showing a potentiation of trough. Lines show the mean, shading shows the standard deviation, 
from 5 networks. (B) Potentiation of a single L5TTPC to L5MC connection as a result of spike timing dependent plasticity. Shows the increase 
in synaptic strength (Bottom) brought about by the stimulus recruiting the pyramidal cell (Top) which then causes the Martinotti cell to fire 
(Middle). (C) The spatial extent of synaptic change brought about by stimulation in a single network. Colour represents the magnitude of 
synaptic change for each neuron. The red dot shows the location of the stimulating electrode. (D) The change in synaptic weight per group 
to group connection in a single network. We can see that the change is predominantly an increase in the strength of excitatory to inhibitory 
connections.
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cumbersome for those wishing to simulate large multi-layered 
networks. VERTEX fulfills the need for an easy to use neural 
simulation environment focussing on modelling multi-layered 
structures such as neocortex, LFP generation, synaptic plasticity, 
and electric field stimulation.

Comparison with experimental data
We make a prediction of the LFP response measured in layer 
2/3 when a stimulus is applied to layer 4 of rat neocortex. We 
reveal that the main sources of this signal are synaptic currents 
applied to large layer 5 pyramidal cells, which produce a short 
peak in LFP coinciding with excitatory synaptic currents, and a 
subsequent trough coinciding with a drop in excitatory current 
along with strong inhibitory dendritic currents. This contradicts 
previous experimental results and established wisdom regard-
ing this paradigm. Previous experimental work tends to assume a 
purely monosynaptic event with excitatory current contributing 
to a short peak or trough (of a similar width to our initial peak) 
in the LFP response35. It is also assumed that synapses onto 
pyramidal cells in layers 2 and 3 make the greatest contribu-
tion, while our model predicts that the apical dendrites of layer 5 
pyramidal cells will make the greatest contribution. The signifi-
cant secondary recruitment of inhibitory neurons in our model 
results in the large trough that differentiates our results from 
those of experimentalists35. A possible explanation for this is 
that our model has been parametrised to more readily recruit the 
surrounding inhibitory neuron population - a stronger synaptic 
connection or lower threshold to firing are both possible. The 
dominance of layer 5 neurons in the generation of the LFP can 
also partly be explained by this large inhibitory recruitment— 
inhibitory neurons do not tend to project outside of their layer and 
pyramidal cells from the layers stimulated will receive the largest 
currents from them. When we look only at the excitatory compo-
nent of the LFP, the contribution of the layer 2/3 pyramidal cells 
is of a similar magnitude to that of the layer 5 pyramidal cells. 
A further contribution to this discrepancy may be the lack of 
axonal segments in our model—stimulation in layer 4 is thought 
to recruit many of the axons projecting into layer 2/3 without 
recruiting the soma. This would result in a preference for acti-
vating excitatory connections onto layer 2/3 pyramidal cells. 
Discrepancies between our simulated output and that measured 
experimentally can be fed back into the model building proc-
ess to produce more accurate connectivity maps. The construc-
tion of maps of the neocortical microcircuit is an ongoing field 
of study11,27–29,42. Constructing accurate maps is seen as a vital 
step towards facilitating in silico research in a variety of areas of 
neocortex research. From understanding the information process-
ing abilities of healthy neocortex, to understanding its role in 
various neurological disorders. Discrepancies do not neces-
sarily invalidate the map, as we have mentioned there are 
other possible sources error. However, simulations built using  
VERTEX could aid in validation of microcircuit maps by 
describing the functioning of the network in a specific context 
with inputs (electrical stimulation) and outputs (LFP) directly 
comparable with experimental data. This and its ease of use 
may also make constructing comparison simulations more  
appealing to experimentalists.

Using VERTEX to determine the source of paired pulse 
depression
Paired pulse depression, as commonly observed in neocortex, is 
a product of at least two processes: the residual inhibition present 
after the first stimulus suppressing the recruitment during the 
second43; and the activity dependent plasticity present at the syn-
apses of those cells recruited by stimulation20. These overlapping 
processes can make interpretation of the results of paired pulse 
experiments difficult, as in many cases one may want to attribute 
the response suppression to a single mechanism. One way to 
overcome this when studying short term plasticity, is to stimulate 
a single neuron and record intracellularly from another neuron 
onto which the first synapses. This can reliably tell us the relation-
ship between presynaptic activity and synapse strength, with this 
type of technique used to generate the data on the NMCP11. How-
ever, these experiments are difficult and time consuming to per-
form, and the variability between individual synapses can be 
high requiring many repeats. Field stimulation on the other hand, 
allows one to sample many synapses at once, either on to a sin-
gle neuron by recording the postsynaptic current intracellularly 
or onto a population of neurons by recording the LFP response. 
If one can reliably interpret the results this can make for a more 
robust technique for those seeking to study the short term plastic-
ity on a specific connection. VERTEX can assist in this by syn-
thesising our knowledge of the underlying circuits to predict 
which connections are generating the LFP response and what 
any expected synaptic change would look like. Those look-
ing at the response in a single cell can use VERTEX to predict 
and then dissect out the presynaptic source of the currents 
measured.

Conclusions
We have described the implementation of an extension to the 
VERTEX simulator2. It now includes the option to use elec-
tric field stimulation and synaptic plasticity (both short term 
and spike timing dependent), making it ideal for simulating full 
scale models of an in vitro cortical slice displaying phenom-
ena such as paired pulse depression or long term potentiation. 
However, it also opens up the opportunity to model non-inva-
sive brain stimulation in the future. We have described the data 
structures required to implement this, as well as the workflow 
involved in building the simulations. We have described an exam-
ple simulation of rat neocortex, applying electric field stimula-
tion to layer 4 and measuring the response in layer 2/3. We use 
this to illustrate how the tool can be used to unveil the currents 
contributing to the field potential response to electrical stimula-
tion. To illustrate the utility of the tool in experiments involving 
synaptic plasticity and field stimulation, we then have applied two 
common stimulation paradigms. Applying paired pulse stimula-
tion, we show how the tool can be used to unveil how short term 
plasticity and residual inhibition affect the response to a second 
pulse. Applying theta burst stimulation, we show how the tool can 
be used to estimate the specific connections that will be strength-
ened during long term potentiation. It is hoped that VERTEX and 
this model of stimulation in rat neocortex can assist other 
researchers in investigating the precise synaptic contributions 
to response field potentials.
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Data availability
The data used to generate the simulations is stored in the ratSo-
matosensoryCortex folder on the source code repository: https://
github.com/haeste/Vertex_2

The simulation results used to generate the figures in the report 
can be found at: https://doi.org/10.5281/zenodo.2539398

License: https://creativecommons.org/licenses/by/4.0/ 
legalcodeCC-BY4.0

Software availability
Source code available from: https://github.com/haeste/Vertex_2.

Archived source code at time of publcation: https://doi.
org/10.5281/zenodo.254339912.

License: https://github.com/haeste/Vertex_2/blob/master/license.
txt.
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The paper of Thornton   presents a second version of the tool VERTEX (version 2.0). The first versionet al.
of VERTEX focused on the generation of LFP signals from a patch of brain tissue. In this new version the
tool has been extended to include the possibility to model (i) electrical stimulation in a slice and (ii)
synaptic plasticity effects (both short-term plasticity and spike-timing dependent plasticity (STDP). As
tools like VERTEX will be important to link network models to experimental observations, I think it could
be of great value to the community. As the tool also seems technically sound, I support the indexing of this
paper.

There are still some quirks in the presentation could be improved, I think. In particular:
In Figure 3 the formula describing the electrical potential (not field) around a point source is
incomplete (a slash is missing). 
Page 9, right column: How are dendrites that accidentally end up inside the bipolar electrode
treated?
Page 9, right column: What is the boundary condition for V at the slice boundary?
Page 9, right column: What is the size of the individual electrode contacts?
Figure 6 shows stick neurons, while reconstructed neurons are used in the example calculations?
Page 10, left column: “…that neurons are well-recruited”. Specify what “recruited” means here.
Figure 9: Maybe describe in the figure caption where the electrode is and where the two (?)
contacts are?
Figure 10A: Here I couldn’t locate any red circles.
Figure 10D: How is the LFP response in the right panel measured?
Figure 11A: What does “neurons near to the recording electrode” mean precisely?

To improve the presentation further, I suggest the authors go through the entire manuscript one more time
with the eye to increase the precision and clarity of the text.

It seems to me that the “Comparison with the experimental data” section could be expanded further, for
example, by comparing findings with results from other similar modeling projects such as Reimann  ,et al.
2013 ; Markram  , 2015 ; and Hagen  , 2016 . It would also be interesting to see the findingset al. et al.
compared with the combined experimental and modeling study on rodent barrel cortex of Einevoll  ,et al.
2007 .
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2007 .
 
Finally, the present reference to LFPy is incomplete (author names are missing). More importantly, a
reference to the most recent version of LFPy (LFPy2.0), that is, Hagen  , 2018  should be added.et al.
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Yes
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This paper describes an extension of a previously published software package for simulating extracellular
potentials generated by networks of neurons, which makes it possible to model the effects of electrical
stimulation. Neurons are based on integrate and fire models, and morphologies are modelled by the
compartmentalised cable equation. Synapses are modelled through conductances, and short term and
spike timing dependent plasticity are included. The effects of electrical stimulation are then modelled by
computing the field generated by a given electrode configuration in each compartment, and included as a
current to the membrane equation. Simulations then show how the simulator can be used to assess
protocols such as paired pulse or tetanus stimulation.

The paper is easy to follow, and gives a good summary of the software. However I would like to make a
few suggestions:

I suppose this model was specifically built for scale, to enable the simulation of large networks.
This, of course, required some simplifications. One issue that would, I think, be relevant to discuss,
are the potential effects of stimulation on voltage-gated channels, which cannot be accounted for
by the model. Do you have an intuition what difference this may make? I expect it to be more
pronounced during high frequency stimulation. 
 
The model assumes a homogeneous medium to compute the effect of stimulation. I think it is, at
best, controversial that this is a good assumption (see e.g. Bédard   2004 ). Do you think thiset al.,
is relevant for the stimulation model? Is there perhaps an experiment that could be suggested
based on simulations that address this?
  
It would be useful to get a better feel for the computational performance of the simulator. Could you
include run times of the simulations mentioned under 'Requirements'?
 
The writing is good and clear, but another pass would remove a few rough edges, e.g.:  
page 5, top left: "object-orientated" -> "object-oriented".
page 18, left: "from those of experimentalists" -> "experimental results".
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Is the rationale for developing the new software tool clearly explained?
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Is the description of the software tool technically sound?
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Are sufficient details of the code, methods and analysis (if applicable) provided to allow
replication of the software development and its use by others?
Yes

Is sufficient information provided to allow interpretation of the expected output datasets and
any results generated using the tool?
Yes

Are the conclusions about the tool and its performance adequately supported by the findings
presented in the article?
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