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Abstract
Interaction with the world around us requires extracting meaningful signals
to guide behavior. Each of the six mammalian senses (olfaction, vision,
somatosensation, hearing, balance, and taste) has a unique primary map
that extracts sense-specific information. Sensory systems in the periphery
and their target neurons in the central nervous system develop
independently and must develop specific connections for proper sensory
processing. In addition, the regulation of sensory map formation is
independent of and prior to central target neuronal development in several
maps. This review provides an overview of the current level of
understanding of primary map formation of the six mammalian senses. Cell
cycle exit, combined with incompletely understood molecules and their
regulation, provides chemoaffinity-mediated primary maps that are further
refined by activity. The interplay between cell cycle exit, molecular
guidance, and activity-mediated refinement is the basis of dominance
stripes after redundant organ transplantations in the visual and balance
system. A more advanced level of understanding of primary map formation
could benefit ongoing restoration attempts of impaired senses by guiding
proper functional connection formations of restored sensory organs with
their central nervous system targets.
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Introduction
Sensory organs are the windows of the brain to the environ-
ment, permitting behavioral interactions with conspecifics, prey, 
and predators. Finding an appropriate mate, being able to avoid  
being eaten, and finding food are essential features for survival 
and propagation. Sensory organs filter out the appropriate  
information for these tasks and relay it to the brain to elicit  
adequate motor responses1–3. Sensory map features depend on 
the specific sensory modality and the relevant information to be 
extracted. For example, somatotopic maps project a topographic 
array of sensors to reflect the sensor distribution, density, and 
activity of the skin to the brain4–6. Similarly, the retinotopic map 
projects distinct areas of the retina and the corresponding visual 
field as a two-dimensional (2D) map to the target brain area7,8, 
whereas the cochlea map projects a unidimensional map of  
distinct frequencies to specific areas of the cochlear nuclei9 and  
auditory cortex10,11. Beyond primary sensory maps, central map 
formation underlies binocular vision and depth perception12,13. 
Likewise, the auditory space map is generated through binaural 
interactions14–16 whereas the mechanosensory lateral line17 and 
the electrosensory space map18 are generated through integra-
tion of distributed sensors across the body. In contrast to these  
emerging centrally synthesized maps and continuous primary 
maps, discrete olfactory maps project unique properties of the 
odorant stimuli perceived by distributed olfactory neurosen-
sory cells convergently onto specific glomeruli10,19,20. A variation 
of the latter theme is the incomplete segregation of movement 
detection in the vestibular system, where angular movements 
always cause concomitant linear acceleration. This causes partial 
convergence of afferents from organs dedicated to either linear 
or angular acceleration perception21,22. Even more difficult to 
understand are maps where a given stimulus and its intensity are  
differentially coded as the tastants for the yet-to-be-fully-defined 
taste map23–26.

During the last century, specific properties of a given sensory 
map and basic rules how to form them, such as the chem-
oaffinity theory27 and activity-mediated synaptic plasticity  
theory28,29, have been worked out for some primary maps.  
Understanding the molecular cues that guide primary map  
development, the plasticity of primary map development medi-
ated by activity to sharpen the map in neonates and adults30–33,  
and the translation of primary sensory afferent map formation  
into cortical and midbrain maps for multisensory integration2,6,34,35 
will be the defining achievements of the 21st century. Toward 
this end, we provide here an overview of various primary sensory  
maps of mammals, characterized by continuous and discrete  
map properties33. All primary maps require that a peripheral  
sense be wired to independently developing central target  
neurons by molecular cues in the target and matching cues  
expressed in the neurons as they navigate toward their target. Our 
aim is to turn primary sensory map formation into a neuronal  
pathfinding problem that combines with cell cycle exit to  
generate an embryonic primary map for each sense. Uncovering  
regulatory aspects of map formation across senses will facilitate 
sensory restoration badly needed for sensory repair of seniors in  
our rapidly aging societies.

Primary sensory maps compared
The six primary sensory maps of mammals have unique features 
and seemingly use distinct molecular cues, cell cycle exit, and  
activity combinations during development, regeneration, and  
plasticity. We will start with the best molecularly understood map 
formations followed by the less well understood map formations 
in the hindbrain, ending with the least understood map for taste  
that has recently seen dramatic revisions from past insights24,36.

Molecular odorant map
Adult map organization
Since the cloning of genes encoding a family of odorant receptor 
(OR) nearly 30 years ago37, the understanding of olfactory map 
formation has leapfrogged to be perhaps the best molecularly  
understood sensory map. The basic principle is that a given  
olfactory sensory neuron (OSN), coding for a given OR, projects 
its axon to a molecularly specified olfactory glomerulus in the 
olfactory bulb (OB), where it converges with axons of other OSNs  
coding for the same OR20,38–40. Thus, OSNs coding for the same  
OR converge to the same glomerulus (Figure 1A). In the mouse, 
this results in a discrete expression of one of about 1100 ORs in a  
given OSN whose axon converges onto one or few of the roughly 
3600 glomeruli. OR expression is not completely random but 
splits the olfactory epithelium into major divisions along the  
dorso-ventral axis, each with medio-lateral bands of randomly 
distributed OSNs that project to dorso-ventrally distinct sets of  
olfactory glomeruli38,39,41. Specific odorant information is thus  
perceived by OSNs within certain zones that are, however, nearly 
randomly distributed within these zones. This is particularly 
obvious in mammals with a reduced complement of olfactory  
receptor genes that form glomeruli only in the ventral part of 
the OB42. Odor information is encoded in the odorant-specific  
glomeruli and not in the topology of OSNs in the olfactory  
epithelium. This organizational principle allows OSNs to be 
continuously replaced43 without any change in the important  
central information storage1,34. The brain learns and recognizes  
patterns of glomerular activity elicited by different odors44.

Development
The main and accessory (vomeronasal) olfactory epithelium 
develops from the olfactory placode that also gives rise to a set 
of gonadotrophin-releasing hormone (GnRH)-positive neurons  
migrating into the hypothalamus45–48. This allows the olfactory 
system to interconnect with the retina in some species49. A  
sequence of basic helix-loop-helix (bHLH) genes, in combina-
tion with other transcription factors, guides the transformation 
of the olfactory placode cells into OSNs50,51. Dorso-ventral zones 
of ORs are expressed in selective OSNs and each OSN projects  
specific odorant molecule information to a given glomerulus52. 
Matching gradients of OR expression define the pathfinding 
properties of OSNs to select a given band of glomeruli and a  
specific glomerulus within that band (Figure 1 and Figure 2). 
Misexpression of a given OR in another set of OSNs results in  
misdirection to a different glomerulus. This supports the idea 
that both the selection of a given OR and the level of gene  
expression bestow on an OSN an identity that allows the 
OSN growth cone to navigate to a specific glomerulus. The 
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Figure 1. Development of three distinct mammalian sensory maps. Molecular cues (A, B) and spatio-temporal cues (C) are shown for the 
nearly non-spatial olfactory map (A), the two-dimensional (2D) retino-tectal map (B), and the unidimensional auditory map (C). (A) The olfactory 
map defines different olfactory receptor molecules in the dorsal and ventral zone of the olfactory epithelium. Receptor cells displaying distinct 
olfactory receptors (A–D) project their axons to the dorsal and ventral domain of the olfactory bulb where they converge and initiate olfactory 
glomeruli formation. Note that olfactory fibers sort before they reach the olfactory bulb and that some ventral zone receptors are expressed 
in the dorsal zone but afferents sort to the ventral domain. Different opposing gradients of receptors facilitate further the sorting of olfactory 
afferents. Within this limited topology, the distribution of specific olfactory receptor–expressing receptor cells is fairly random. (B) The retino-
tectal system maps a 2D surface (the retina ganglion cells) onto another 2D surface (the midbrain roof or tectum opticum) via highly ordered 
optic nerve/tract fiber pathways. Within the midbrain, the presorted fibers are further guided by molecular gradients matching retinal gradients 
of ligand/receptor distributions. (C) The auditory map is unidimensional, projecting a species-specific frequency range from the mammalian 
hearing organ, the organ of Corti via orderly distributed spiral ganglion neurons (SGNs), and their fibers in the auditory (cochlear) nerve onto 
the ventral cochlear nucleus complex. Both SGNs and cochlear nucleus neurons show a matching temporal progression of cell cycle exit 
followed by matching differentiation that could be assisted by spatio-temporal expression changes of receptors and ligands (shown here are 
the putative Wnt/Fzd combinations) that further support the fiber sorting. Note that this map projects a single frequency of an inner hair cell 
of the organ of Corti via a set of SGNs onto longitudinal columns of cochlear nucleus neurons in a cell-to-band projection and thus is not a 
point-to-point map as the olfactory and visual map. Moreover, afferents innervating multiple outer hair cells (OHCs) generate a band-to-band 
projection centrally. A, anterior; D, dorsal; L, lateral; M, medial; N, nasal; P, posterior; T, temporal; V, ventral. Modified after 12,41,53–58.

G protein–coupled ORs define expression levels of adenylate  
cyclases such as Ac333. Knockouts of Ac3 lead to disorganized 
OR projections. This appears to be related to Ac3-mediated  
activation of downstream guidance cues via cAMP/CREB/
PKA, such as neuropilin 1 (Nrp1). Gradients of Nrp1 code for 
anterior-posterior patterning53 in combination with matching  
expression of semaphorins59–61. However, detailed tests ques-
tion the proposed model of Nrp1 guidance by showing more 
complicated outcomes inconsistent with the simple Nrp1 gradi-
ent model54. Since G-coupled ORs are found on the growth cone 
of OSNs, those ORs could locally interact with the environment 
to guide confined responses via the cAMP/PKA intracellular  
signal cascades. Though clearly important, a gradation of G pro-
tein/cAMP alone is not the only cue, and Robo/Slit is used for  

larger-scale dorso-ventral patterning40,62. In addition, two different  
classes of OSNs have been identified and their axons sort out 
as they extend toward the OB, leading to a complete segrega-
tion of axons of dorsal but not ventral OSNs40. This fiber sorting  
(Figure 1A and Figure 2A) happens prior to and even in the absence 
of OBs, establishing a topographic order of OSN axons as they 
approach the OB53. Further refinement of the olfactory mapping 
is achieved through differential expression and activity-regulated 
levels of ephrinA ligands and Eph-A5 receptors as well as the  
molecularly related Kirrel2/3 (Figure 1A). In a given glomerulus, 
there is an opposing gradient of either the Kirrel2/3 pair dorsal 
or ephrinA/EphA5 ventral. This expression defines a dorsal and a  
ventral domain of glomeruli (Figure 1A) matching to the dorso- 
ventral zones of OR expressing OSNs in the olfactory epithelium. 
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Figure 2. Distribution of sensory maps and the development of hindbrain sensory maps. (A) Schematic presentation of the main 
features of the six cranial senses projected onto an embryonic mouse brain. (Pale yellow, left) Distributed olfactory sensory neurons of the 
olfactory epithelia coalesce their axons before reaching a specific olfactory glomerulus in the olfactory bulb (OB). (Pale lavender) Axons of 
retina ganglion neurons leave the eye orderly to project via the optic nerve to the optic chiasm (OC). Crossed contralateral axons form the 
orderly optic tract that distributes axons within the midbrain using matching gradients of several factors. (Gray) The trigeminal ganglion has 
three distinct branches and matching sensory neuron populations that reach different areas of the face. The central axons form in a temporal 
progression resulting in an inverted presentation of the face. (Pale pink) Taste buds of the tongue and pharynx are innervated by three cranial 
nerves that form a somewhat orotopic central projection to the solitary tract. (Light blue) The five vestibular sensory organs are innervated 
by somewhat orderly distributed sensory neurons that project via the vestibular nerve. Within the brain, vestibular afferents from different ear 
organs are partially segregated and partially overlapping in the various vestibular nuclei as well as the posterior lobes of the cerebellum. (Pale 
green) The organ of Corti of the cochlea is innervated by a temporally generated longitudinal array of spiral ganglion neurons that project in 
an orderly organization to dorso-ventral distinct regions of the cochlear nucleus complex, projecting a one-dimensional frequency array along 
the cochlea onto a matching frequency array of afferents in the cochlear nuclei. (B) (Left) In the axolotl, there is a timing factor of afferent 
ingrowth such that the most ventral trigeminal projection reaches the hindbrain first (V at stage 32) whereas the most dorsal projection from 
the electroreceptive (lateral line) ampullary organs reaches the most dorsal part of the hindbrain last (ELL, stage 38). The inner ear vestibular 
ganglia (VG, stage 34) and mechanosensory lateral line ganglia (LL, stage 36) are reaching the alar plate between those extremes. (Right) 
In the mouse, the dorso-ventral patterning of the hindbrain is driven by countergradients of Wnt/BMP and Shh to regulate expression of 
transcription factors defining various nuclei. How these gradients define the positon of central nuclei and afferents is not completely clear. A 
temporal gradient of afferent development and projection development has thus far been demonstrated only for the spiral ganglion, taste and 
trigeminal system where the first neurons to form are the first to project to the most ventral part of their respective tract. Note that the auditory 
nuclei show an apparent inversion such that the most ventral projection from the basal spiral ganglion ends up in the more dorso-medial part 
of the cochlear nuclei because of the morphogenetic changes in cochlear nucleus neuron position. A, anterior; AC, anterior crista; Ascl1/
Mash1, achaete-scute family basic helix-loop-helix transcription factor 1; Atoh7, atonal basic helix-loop-helix transcription factor 7; AVCN, 
antero-ventral cochlear nucleus; BMP, bone morphogenic protein; C, cochlea; CB, cerebellum; CN V, VII, IX, X, cranial nerve V, VII, IX, X; CP, 
choroid plexus of IV ventricle; D, dorsal; DCN, dorsal cochlear nucleus; dV, descending trigeminal tract; ELL, electroreceptive (ampullary 
organ) lateral line; GG, geniculate ganglion; HC, horizontal crista; L, lateral; LL, (mechanosensory) lateral line; M, medial; N, nasal; Neurog1/2, 
Neurogenin 1/2; NG, nodose ganglion; OB, olfactory bulb; OC, optic chiasm; OE, olfactory epithelium; P, posterior; PC, posterior crista; 
PG, petrosal ganglion; pV, principal trigeminal nucleus; r1, rhombomere 1; r2, rhombomere 2; S, saccule; SG, spiral ganglion; Shh, sonic 
hedgehog; ST, solitary tract; T, temporal; TIx3, T-cell leukemia homeobox 3; U, utricle; V, ventral; V1, ophthalmic branch of trigeminal nerve; 
V2, maxillary branch; V3, mandibular branch; VG, vestibular ganglion; VN, vestibular nucleus complex. Modified after 5,12,17,33,36,54,56, 
63–66.

Page 5 of 15

F1000Research 2019, 8(F1000 Faculty Rev):345 Last updated: 17 JUL 2019



Thus, although the dorso-ventral patterning of bands of OSNs to 
project to bands of olfactory glomeruli seems to be settled, the 
details of antero-posterior patterning remain less clear and seem-
ingly are less precise54.

Olfactory epithelium manipulation
Past work has established that ingrowing OSN axons of trans-
planted olfactory epithelia can generate glomeruli wherever they  
project to in the forebrain or midbrain45 but are unable to form 
glomeruli in the hindbrain67. These placode transplantation  
experiments suggest that perhaps OSNs play a role in sculpt-
ing their own target area in the forebrain and midbrain. OB  
formation depends on ingrowing OSN axons, and no OB forms 
in mammals without an olfactory epithelium42,68. This indicates a  
self-organizational principle of OSNs beyond fiber fasciculation53 
that requires additional molecular exploration to help restore  
smelling to anosmic people.

Retinotopic map
Adult organization
Retinal ganglion neurons (RGNs) in a given position are driven by 
local spontaneous or induced activities in their specific receptive 
field of visual stimuli. RGNs send this information through their 
terminals onto a matching position of the roof of the midbrain, 
known as the non-mammalian optic tectum or mammalian supe-
rior colliculus (Figure 1B and Figure 2A). Sperry’s27,69 experiments 
on frogs showed that a severed optic nerve re-establishes a func-
tional map. However, rotating the eye before RGNs re-establish  
midbrain connections results in mismapping of the visual field  
that cannot be corrected for by activity. Sperry therefore  
proposed a chemoaffinity map that guides neurites from  
specific areas of the visual field/retina to matching positions 
of the midbrain. This basic idea led to a mathematical model of  
molecular countergradients70. Sperry’s experiments and Gierer’s  
model stimulated the discovery of an orthogonal diffu-
sion gradient of ephrin ligands and receptors in the retina and  
matching expression in the midbrain13,33. These gradients ensure 
that a given ganglion cell projects to a matching area of the  
midbrain (Figure 1B). The retinotopic map projects a continu-
ous topographic set of visual field information encoded by RGNs  
from one surface (the retina) point-to-point onto another  
surface (the midbrain) for further processing of the 2D topo-
logical information. This helps, for example, direct attention to  
specific objects, in particular moving objects, as is obvious after 
visual cortex lesions, known as “blindsight”71,72.

Development
The retina develops as an evagination of the diencephalon that 
interacts with the lens placode for normal eye development46,73. 
Blocking retina evagination results in cellular transformation 
of the diencephalic wall with distinct retinal receptors and  
various retinal neuron layers74. In contrast to the olfactory  
epithelium and its continuous renewal of OSNs, all retina  
neurons and sensory cells develop once in a concentric progres-
sion75 through clonal expansion out of proliferative precursors using 
a series of transcription factors that define, in combination, specific  
retinal cell types76. RGNs require the bHLH factor Atoh7 and 
other factors for their differentiation77–79 to form the roughly  
30 recognizable RGN types80. How Atoh7 and downstream  

transcription factors regulate the molecular guidance cues that 
allow a given RGN to exit the retina80, sort along the optic nerve81, 
and grow through the optic chiasm82 to project, via the orderly 
optic tract83, to a discrete region of the contralateral midbrain80  
remains incompletely understood12. Graded expression of  
several molecules and receptors redundantly defines how the 
surface of the retina is mapped via targeted projection of RGNs 
onto the midbrain12,33. Ephrin-A/EphA has naso-temporal and  
ephrin-B/EphB dorso-ventral concentration-dependent attrac-
tive and repellent effects that define a narrow region in which  
terminal arbors of a given RGN can form. Eliminating multiple 
ligand/receptor pairs causes broad distribution of RGN axons; 
however, some very crude topology remains even after the main 
ligand/receptor pairing has been deleted13. Multigene knockouts 
combined with removal of activity result in diffuse and broad  
innervation8,80. Additional molecular gradients are provided by 
a Wnt3 gradient that defines, redundant to the ephrin-B/EphB  
gradient, the medio-lateral slope in the midbrain for dorso-ven-
tral RGN axonal sorting33,84. The midbrain Wnt3 gradient is trans-
lated into differential projections using Ryk gradients on RGN 
axons to modify, via repellent actions, the attraction mediated by  
Fzd receptor activity. Additional redundancy is provided by other 
secreted factors like En-285,86. Activity of axons is not needed  
to define the overall projection87,88, but axonal arbors in the  
midbrain become less confined without activity. If both  
molecular map and activity are disrupted in combined mutants, 
the resulting maps of individual RGNs can cover large areas 
of the midbrain89. This demonstrates that neuronal activity  
combines with molecular specificity to sharpen the retinoto-
pic map7 and provides the basis for ocular stripe formation in  
three-eyed frogs90,91.

Eye manipulation
Molecular cue interactions with activity-mediated refinement 
result in “ocular dominance” column formation after additional 
eye transplantations91. Differential eye activity is needed for 
the formation of these “ocular dominance” stripes29,90. “Ocular 
dominance” stripes also form after crushing an optic nerve 
results in misguided regeneration. Such stripes are maintained 
only if the contralateral nerve is either eliminated or also  
regenerates92,93. In line with the role of patterned activity in 
these processes is the absence of RGN axon segregation in the  
bilaterally projecting retino-midbrain systems found in fosso-
rial vertebrates94. How activity relates to neurotrophic release 
and thus long-term sustenance of regenerated RGNs remains  
debated33,80. Beyond three-eyed frogs and optic nerve crush- 
mediated “ocular dominance” stripe formation, some transplan-
tation studies claim successful regrowth of RGN axons from 
the spinal cord to the midbrain95 and RGN axons apparently can  
innervate the olfactory cortex96,97 or can restore visual guidance 
even after transplantations to unusual positions on a tadpole98,99, 
indicating alternative ways for visual information flow to the 
brain. How far such effects in amphibians can be translated to  
mammalian optic nerve regeneration80 remains to be seen.

Somatosensory map
Adult organization
The cortical somatosensory map is the prototypical surface-to-surface  
map whereby dermatomes are mapped onto the cortex100, and 
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local variations101 reflect various sensor densities and functional 
differences102,103. The somatosensory map thus is a 2D surface-to- 
surface projection comparable to the retinotopic map. However, 
in contrast to the simple retina surface projecting onto the tectal 
surface, closer examination reveals a complicated relationship  
between primary somatosensory afferent input and the forma-
tion of distorted, continuous surface map in the spinal cord 
and brainstem and the somatosensory map in layer IV of the  
somatosensory cortex6,104. Manipulating the periphery affects 
the central map, but the details of how phantom sensations are  
generated or how maps are altered after peripheral manipulations 
remain somewhat obscure6,105,106.

Development
For simplicity, we concentrate here on the trigeminal soma-
tosensory system and exclude the spinal cord somatosensory 
map formation. The trigeminal sensory system is composed of  
ganglion neurons with three distinct embryonic origins: the  
trigeminal ganglion derived from both trigeminal placode and 
neural crest5 and the mesencephalic sensory neurons of the 
mesencephalic trigeminal nucleus (MesV) derived from the  
brain107. Loss of Npr2 results in lack of bifurcation, blocking  
MesV branches from leaving the brain and thus depriving the 
brain of proprioceptor input108. Topology of trigeminal ganglion  
neurons is defined by diffusible factors (Wnt, Fgf8, and Bmp4) 
and localized expression of various transcription factors (Tbx1,  
Onecut, and Hmx1) as well as differential expression of neu-
rotrophins Ntf3 and Bdnf5 that enable innervation of distinct  
regions of the facial skin. Projections into the hindbrain develop 
before peripheral processes reach the skin target (Table 1),  
indicating that trigeminal central processes are guided independ-
ently of their peripheral targets. The trigeminal nucleus target 
neurons in the terminal nuclei depend on Mash1/Acsl1 that is  
directed in its expression within the hindbrain dorso-ventral  
patterning mediated by BMP/Wnt/Shh gradients, as in the  
spinal cord109. Gradients of these factors may also play a role 
in afferent guidance110–112 but details remain to be worked out.  

Trigeminal ganglion afferents entering rhombomere 2 bifurcate 
to form a short ascending branch, ending at the rhombomere 
1/2 boundary (Figure 2A), and a long descending branch to the  
upper cervical levels of the spinal cord5. The dorso-ventral  
pattern reflects the initial inverted mandibular-maxillary- 
ophthalmic projection (Figure 2A,B), whereas the antero-posterior  
facial fields covered by each trigeminal branch are mapped  
lateral (posterior) to medial (anterior5,103). As fibers extend along 
the hindbrain, second-order trigeminal neurons differentiate 
and may provide instruction to form a secondary axis along the  
lateral-medial plane5. These features are particularly obvious 
in mutant mice with a doubling of the whisker-related barrel  
field102. How the whisker afferents generate the respec-
tive “barrelettes” in the brainstem113 is not yet understood in  
molecular detail5,102, but it is clear that activity mediated by  
N-methyl-d-aspartate (NMDA) receptors sharpens the map5,103.

Extirpation and transplantation of whiskers
Physical manipulation of the whiskers plays a role in the matu-
ration of the “barrelettes” in the brainstem as well as cortical  
barrels101. Transplantation of supernumerary whiskers causes for-
mation of barrelettes in the trigeminal nucleus and barrel fields 
in the cortex, whereas blockade of activity prevents barrelette  
formation103 without disrupting overall sensory projection  
patterns. How relative activity results in gene expression and  
altered cortical map configuration in the somatosensory system is  
currently being investigated106.

Vestibular maps for linear and angular acceleration 
detection
Adult organization
Vestibular afferents to different end organs originate from  
overlapping populations of vestibular neurons within the  
vestibular ganglion114,115. Central projections from distinct end 
organs show that the two types of vestibular receptors—the 
canals for angular acceleration and the otoconia bearing linear  
acceleration organs—have both discrete and overlapping  

Table 1. Timing of mouse sensory neurogenesis and map projection.

Sense Sensory neuron 
“birthdate”

Sensory cell 
“birthdate”

Second-order 
neuronal “birthdate”

Afferents reach 
central target

Afferents reach 
peripheral target

References

Olfaction OSN, continuous OSN, continuous E11-postnatal Continuous NA 116

Vision
E10.5–E13 
central-
peripheral

E11–15 E15–P0 E16–P0 NA 75

Somato-
sensation E8.25–9 NA, mostly free 

nerve endings E10.5–15.5 E9.5–10 E12.5–15.5 5,98

Balance E9.5–E13.5 E10.5 postnatal E9.5–15.5 E10.5 E10.5–E18.5 22,117–119

Hearing E10.5–12.5  
base-apex

E12.5–14.5 
apex-base E10.5–14.5 E12.5–14.5 E14.5–19.5 57,58,117,120,121

Taste E8.5–10.5 Continuous E10.5–14.5 E10.5 E13.5–14.5 64,117,122

Cell cycle exit gradients are clearly documented only in the retina (central to peripheral progression) and hearing (base to apex for spiral ganglion 
neurons, apex to base for hair cells, and high frequency to low frequency in anterior cochlear nuclei). NA, not applicable; OSN, olfactory sensory 
neuron that is also the sensory cell.
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projections21,123, possibly reflecting that all angular acceleration 
prompts additional linear stimulation. Each of the segregated 
and common signals is related to rhombomere-specific nuclei 
with different outputs17,63. An added complexity, shared with the  
lateral line system of mechanosensors, is the opposing polarity of 
hair cells in linear but not angular acceleration sensors124,125.

Development
Beyond descriptive analysis of development of central  
projections22, no molecular analysis exists that could explain the 
partial and incomplete segregation of vestibular sensory neurons 
projecting to different end organs and the partially segre-
gated and partially overlapping central projection. Afferents  
innervating hair cells with different polarities project centrally 
to different rostro-caudal targets, such as the cerebellum and  
caudal hindbrain126. Nrp2 plays a role in regulating bifurcation127,  
but how a lack of bifurcation translates into a differential pat-
tern of central and peripheral targets has not been revealed. 
Neural crest–derived Schwann cells provide some peripheral  
guidance128 but seem to have no effect on central projections129. 
Neither developing targets nor neurotrophic support from targets 
is needed to guide growing vestibular afferents to the correct 
ear organ130,131, but stop signals are needed to confine growing  
peripheral fibers to specific sensory organs132. In the related  
system of lateral line mechanosensors, cell cycle exit of sensory 
neurons defines their central target, distinguishing between 
primary sensory cells connecting to the Mauthner cell and  
secondary sensory cells that lack such connections124. How much 
of this development in fish plays a role in vestibular develop-
ment in mammals remains speculative125. More data on possible  
ErbB128,133 and Eph134,135 involvement in vestibular afferent  
ordering are warranted.

Ear manipulations
Transplantation of developing ears136 has established that  
guidance cues are highly conserved between vertebrates136,137. The 
ability to form functional connections with the hindbrain does not 
depend on the entry point of vestibular ganglion processes into 
the hindbrain. Functional rerouting to the vestibular nucleus of  
afferents from transplanted ears that entered into the spinal  
cord has been demonstrated138. Transplantation and rotation 
of a third ear to generate non-matching stimulation relative to 
the native ear’s sensory epithelia result in “vestibular domi-
nance columns”139. These “vestibular dominance columns” may 
reflect a compromise between molecular guidance cues and their  
activity-related refinement that was first identified in the visual  
system33,90. More information on molecular and activity- 
mediated vestibular projection ordering is needed to guide  
restoration of vestibular function through neuronal transplan-
tation to prevent falls of the growing number of seniors with  
vestibular neurosensory loss140.

Tonotopic map
Adult organization
The auditory system segregates sounds of high to low frequen-
cies along the base-to-apex length of the cochlea and projects 
this unidimensional frequency information via topographically  
restricted spiral ganglion neurons to discrete isofrequency bands 
within the cochlear nucleus complex9, generating a single inner hair 

cell–to–projection band topology (Figure 1C and Figure 2A,B). 
Second-order neurons project an isofrequency map onto third-
order neurons141 that use time and intensity differences to extract  
sound direction by comparing the identical frequency of the 
two ears16 to generate a sound space map15. Although cortical  
neurons can be excited by specific frequencies, the granularity 
and response properties of cortical neurons differ from those of  
brainstem neurons10. The idea that the cortical tonotopic map 
is continuous at the microscale was recently questioned by 
using more sophisticated techniques: adjacent cortical response  
properties vary by up to three octaves, indicating a discontinuous 
microscale frequency map104.

Development
Of all maps, the cochleotopic map is the simplest in terms of  
projecting just one dimension (Figure 1C), the linear arrangement 
of spiral ganglion neurons onto a matching linear projection in 
the cochlear nuclei55. Despite this apparent simplicity relative to  
olfactory and optic maps, surprisingly little is known about the 
molecular basis of this primary map formation56. Spiral ganglion 
neurons exit the cell cycle in a base-to-apex progression57,120 and 
project to their central targets within 48 hours after exiting the 
cell cycle121 in an orderly arrangement of afferent fibers within 
the cochlear nerve56. A sequence of transcription factors defines 
the neuronal precursors and their development142,143. Evidence on 
two of these transcription factors—Neurod1 and Gata3—suggests  
their involvement in both peripheral and central process naviga-
tion by expressing yet-to-be-determined downstream factors in  
developing spiral ganglion neurons56,144,145. How exactly these 
transcription factors regulate the essential interactions with  
Schwann cells to keep spiral ganglion neurons within the right 
position129 or with various substrate information to navigate to  
distinct types of hair cells146,147 remains to be shown. For the first 
time in any primary sensory map, mouse mutants now exist with 
molecularly induced peripheral and central misguidance that  
cannot be corrected for by near-normal auditory activity56.  
Consistent with developmental data in the somatosensory5 and 
olfactory53 system, neither peripheral nor central target cells 
are needed to develop an orderly projection148 and partial loss 
of central targets has no obvious effect on the primary central  
segregation of spiral ganglion afferents149. Primary afferents give 
rise to secondary branches to project a refined topographic map 
along the cochlear nuclei. Likely candidates for the molecular 
guidance of organized second-order fiber projection are Wnts  
released from the rhombic lip150. Defects in mapping are promi-
nent in mice mutant for Prickle1, a downstream effector of the  
Wnt/Fzd pathway151. Furthermore, Neurod1 is known to regulate 
Fzd receptors152. In analogy to the retino-midbrain projection75, 
Wnts may generate a gradient (or gradients) within which spiral 
ganglion afferents orient using a combination of Fzd and Ryk,  
both regulated by Neurod1152. Other factors with limited effects 
are Hox genes, Nrp2 and Eph/ephrins56,134,153 and possibly  
neuropilins and semaphorins132,147.

Experimental manipulations
Auditory refinement has been investigated by sound manipula-
tion and surgical or molecular deletion of some parts of the adult 
or developing cochlea. Surviving spiral ganglion neurons remap 
remaining central afferents after either neurotrophin-mediated 
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deletion154 or various lesions of the auditory periphery155–157. This 
plasticity of the auditory system158,159 is likely governed by the 
Hebbian principle28. Further studies on the recently described  
primary tonotopy-disrupted viable mice56 could shed light onto 
limitations of such plastic reorganization. Such information is  
required for replacements of spiral ganglion neurons to improve 
hearing in the elderly with sound-induced neuropathy160 or to 
improve cochlear implants140 or replace ears137.

Primary taste maps challenge past taste concepts
Adult organization
Many medical textbooks claim that different tastants are per-
ceived by different taste buds and projected to distinct rostro-cau-
dal subdivisions of the solitary tract24. Further, it was thought that  
distinct information was gathered by different taste buds (fungi-
form, foliate, circumvallate papilla, and pharyngeal taste buds) 
and these tastants were carried by a separate cranial nerve inner-
vating the different taste buds (Figure 2A,B). Recent findings have  
radically changed this belief. A taste bud consists of 50 to 100 
taste receptor cells36, and all taste buds perceive all five tastants  
(sweet, sour, bitter, salty, and umami), each binding to a molec-
ularly distinct receptor48,161. The graded taste information23 is  
projected via three cranial nerves (VII, IX, X; Figure 2) to a  
dorso-ventral and rostro-caudal overlapping afferent dis-
tribution in the solitary tract that retains a rough orotopic  
organization26,36,162. Highly conserved second-order neurons163 
project taste information to be combined with tongue-related 
somatosensation and olfaction into an integrated experience  
related to food intake1,36.

Development
Taste neurons are generated by epibranchial placodes using 
unique sets of transcription factors164. Peripheral processes of taste  
neurons are not needed for mammalian taste bud induction64,165 
but rather for maintenance of taste buds166,167. How taste afferents  
navigate to reach the right peripheral target to interact with the 
developing taste buds is unclear but is apparently not depend-
ent on the neurotrophin Bdnf168,169. Autonomy of central afferent  
navigation is achieved in mice mutants that owing to null  
mutation for Tlx3 have no solitary nucleus development, but 
taste afferents seem to innervate adjacent nuclei in the absence 
of their specific target neurons170. The expression of the solitary 
nucleus specifying transcription factor Tlx3 is directed by BMP  
gradients111. Owing to the early death of these mutants, it is  
unclear how long afferents can be maintained in the absence 
of their central target. Notably, taste ganglion neurons express  
neurotrophins to be self-supporting in the absence of a peripheral 
or central target168. Because all taste buds perceive all tastants with 
various thresholds23, it remains unclear what specific information 
the rough orotopic projection of afferents extracts and how the 
differential activity of each taste bud to various concentrations 
of tastants23 can be used to sharpen the taste map. Clearly, the  
orotopic organization is lost in higher-order projections, making  
the need of the orotopic primary map even more fuzzy26.

Experimental manipulations
Crafting of tongues to foreign areas such as orbit and liver has  
long established the independence of taste bud development171,172. 

More experimental data are needed on the molecular guidance 
of taste afferents, the functional significance of orotopic organi-
zation, inter-solitary nucleus connections25,173, and higher-order  
interactions174. Importantly, no data exist showing how the  
orotopic projection develops in the absence of taste buds165 and  
where afferents end long term in the absence of a central  
target170. Such information will be crucial to establish proper  
taste after complex orofacial surgery related to cancer or complex 
head trauma175,176.

Overview of brainstem maps
Olfactory and retinotopic maps differ from brainstem maps as the 
former either involve the only mammalian sensory neuron/cell  
(the OSN) with its own axon that is continuously replaced or deal 
with a region of the brain transformed into the retina, generating 
the “optic nerve” out of an intracerebral tract. In addition, both 
of the above-described maps provide a point-to-point connection 
that either projects one surface (the retina) onto another surface 
(the midbrain8) in two dimensions or ensures that a given odor  
binding to distributed OSNs converges on the same glomerulus 
(olfactory map33). No such point-to-point map is obvious in the 
hindbrain (Figure 1C and Figure 2A) where a given periph-
eral connection (such as a specific area of the facial skin or the 
cochlea) is innervated by a neuron residing in a given ganglion 
with a distinct molecular (Neurog1 versus Neurog2122,177) and  
developmental (epibranchial placode, otic placode, trigeminal  
placode, and neural crest46,73,164) origin. Instead of a point-to-
point connection, each of the hindbrain targeting sensory neurons 
forms an extended longitudinal track along the alar plate of the  
hindbrain (Figure 1C and Figure 2A). As a first approximation, 
the hindbrain alar plate can be regarded as a highly transformed 
part of the spinal cord that has developed rhombomere-specific  
nuclei, which receive hindbrain-specific innervation63,109,178,179. 
Within each of the longitudinal hindbrain tracks, rhombomere-
specific nuclei can be identified5,17,178,180–182, and each has its own 
higher-order projection. How the well-known cortical maps 
such as for somatosensation5,6 are exactly derived from the  
organizational principle of primary afferents102,103 is only in the case 
of the auditory and somatosensory system partially clarified5,10,11. 
An emerging principle of hindbrain and visual map formation, 
likely not shared with the olfactory map because of its continuous 
replacement, is the role of cell cycle exit.

Cell cycle exit influences topology
Developmental features that play no role in olfactory or only a  
modulatory role in the retinotopic map formation75, such as  
timing of cell cycle exit and axonal projection, seem to play an 
underexplored part in overall brainstem map formation65,183. 
Neurons of the alar plate and cranial ganglia have distinct,  
partially overlapping cell cycle exits117,184–186. Migration within 
the alar plate, as in the spinal cord179, suggests that more sophis-
ticated pulse-chase experiments with modern EdU/BrdU double  
labeling are needed to resolve temporal maps. Indeed, a very  
recent article showed that the anterior parts of the cochlear  
nucleus complex show a coordinated cell cycle exit matching 
that of spiral ganglion neurons58. The temporal progression of  
spiral ganglion cell cycle exit57,120 and progressive development 
of spiral ganglion neurons and their central projections121 imply a  
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birth-dating bias toward map formation (Figure 1C and Figure 2B).  
In addition to “birth-dating” map of secondary neurons of the 
alar plate, the cell cycle exit varies among peripheral neurons  
(Table 1), most obviously in the auditory system57,120. The  
epibranchial derived neurons innervating the taste buds of 
the tongue project early in development to the solitary tract  
(Table 1), long recognized as the first tract to form in the  
mammalian hindbrain63,170. First-born and projecting neurons 
of a given ganglion form the most ventral projection in the alar  
plate and within a given alar plate nucleus65,183. In amphibians 
and fish, afferents of different senses developing at different 
times project in a ventral-to-dorsal progression (Figure 2B) to 
the hindbrain65,183 and form distinct aspects of some lateral line  
sensory maps124. Beyond the birth-date related primary affer-
ent fiber organization, the formation of alar plate nuclei and side 
branches of primary afferents makes it difficult to extract primary 
map formation and to derive general organizational principles5 in  
mammals without more refined analysis as recently conducted 
in the visual system75 and auditory system58. In addition to cell  
cycle exit of alar plate and sensory neurons, there is a rostro- 
caudal progression in maturation leading to a rhombomere- 
specific second-order neuron cell cycle exit, matching the 
arrival and formation of secondary branches of primary sensory  
afferents17,103. These data suggest that more refined analysis of  
temporal progression of molecular guidance cues is warranted  
for the brainstem and visual projection development.

Summary
Primary sensory maps mirror the unique properties of a given 
sensory modality. Maps can reflect (a) local receptor density 
and activity (somatosensory), (b) convergence of distributed  
receptors (olfactory), (c) continuous one-dimensional (tonoto-
pic) or (d) 2D (retinotopic and somatotopic) maps, or (e) conver-
gence and segregation of information gathered by distinct sensory  
organs (vestibulotopic and orotopic) maps. An emerging  
principle of several maps is the role of cell cycle exit that allows 
distinct inputs to interact specifically with matching cell cycle– 
exited second-order neurons. This is particularly obvious in the 
temporal progression of afferent projections from various sen-
sory systems in amphibians and bony fish, the temporal and  
maturational progression of spiral ganglion, and cochlear nucleus 
cell cycle exit, and it plays a role in RGN type specifications.  
Afferent fiber sorting prior to the target is an obvious common 
feature in all sensory systems and may reflect both fiber–fiber 
molecular interactions and cell cycle exit. As a consequence 
of fiber sorting, a crude topology of processes arises before 
a target is innervated and even in the absence of a target as  
demonstrated in the olfactory and auditory systems. Once the 
specific map has been established by various non-activity-related 
means, a common feature is that activity sharpens the map.  
To the best of our knowledge, there is only one developing  
sensory system currently known where a single deletion in a  

viable mutant results in near-random distribution of peripheral  
and central processes that cannot be corrected by physiological 
activity. Such mutants can test the limits of activity-mediated refine-
ment of distorted primary maps.

Combinations of classic embryologic manipulations, such 
as transplantations, rotations, or partial deletions, have been  
extremely helpful to formulate basic principles such as the  
chemoaffinity theory. Whereas the topographical information 
coded in such diffusible gradients may be uniform across all  
sensory maps, the molecular nature of specific guidance cues used 
certainly is not. However, it is noteworthy that several maps have 
a dorso-ventral axis that could reflect known countergradients  
of diffusible molecules needed to define different dorso-ventral 
nuclei, such as Bmp4, Wnt3, and Shh. Going forward, combin-
ing heterochronic and heterotopic transplantations with molecu-
lar perturbation of map formation and with the evaluation of the 
role of activity to sharpen such distorted maps will reveal how  
best to use such information to enhance sensory organ replace-
ments for functional recovery to cure anosmia, blindness, vestib-
ular, and auditory dysfunction. Whole face or tongue transplants  
could also benefit from an understanding of such detailed map 
formation. Clearly, cortical maps will plastically respond to  
peripheral manipulations, but meaningful integration of various  
sensory information requires that each primary map be appro-
priately organized to allow a multisensory cortical or subcortical 
integration of relevant information extracted out of primary  
maps.
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