
fgene-10-00282 March 29, 2019 Time: 18:51 # 1

TECHNOLOGY REPORT
published: 02 April 2019

doi: 10.3389/fgene.2019.00282

Edited by:
Marko Djordjevic,

University of Belgrade, Serbia

Reviewed by:
Dusanka Savic Pavicevic,

University of Belgrade, Serbia
Martin Taylor,

The University of Edinburgh,
United Kingdom
Philipp Bucher,

École Polytechnique Fédérale
de Lausanne, Switzerland

*Correspondence:
Junbai Wang

junbai.wang@rr-research.no

Specialty section:
This article was submitted to

Bioinformatics and Computational
Biology,

a section of the journal
Frontiers in Genetics

Received: 15 October 2018
Accepted: 15 March 2019

Published: 02 April 2019

Citation:
Batmanov K, Delabie J and

Wang J (2019) BayesPI-BAR2: A New
Python Package for Predicting

Functional Non-coding Mutations
in Cancer Patient Cohorts.

Front. Genet. 10:282.
doi: 10.3389/fgene.2019.00282

BayesPI-BAR2: A New Python
Package for Predicting Functional
Non-coding Mutations in Cancer
Patient Cohorts
Kirill Batmanov1, Jan Delabie2 and Junbai Wang1*

1 Department of Pathology, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway, 2 Department of Pathology,
University Health Network, Toronto, ON, Canada

Most of somatic mutations in cancer occur outside of gene coding regions. These
mutations may disrupt the gene regulation by affecting protein-DNA interaction. A study
of these disruptions is important in understanding tumorigenesis. However, current
computational tools process DNA sequence variants individually, when predicting the
effect on protein-DNA binding. Thus, it is a daunting task to identify functional regulatory
disturbances among thousands of mutations in a patient. Previously, we have reported
and validated a pipeline for identifying functional non-coding somatic mutations in
cancer patient cohorts, by integrating diverse information such as gene expression,
spatial distribution of the mutations, and a biophysical model for estimating protein
binding affinity. Here, we present a new user-friendly Python package BayesPI-BAR2
based on the proposed pipeline for integrative whole-genome sequence analysis. This
may be the first prediction package that considers information from both multiple
mutations and multiple patients. It is evaluated in follicular lymphoma and skin cancer
patients, by focusing on sequence variants in gene promoter regions. BayesPI-BAR2 is a
useful tool for predicting functional non-coding mutations in whole genome sequencing
data: it allows identification of novel transcription factors (TFs) whose binding is altered
by non-coding mutations in cancer. BayesPI-BAR2 program can analyze multiple
datasets of genome-wide mutations at once and generate concise, easily interpretable
reports for potentially affected gene regulatory sites. The package is freely available at
http://folk.uio.no/junbaiw/BayesPI-BAR2/.

Keywords: gene regulation, transcription factors, cancer, bioinformatics, non-coding mutations

INTRODUCTION

Somatic mutations are the primary cause of cancer. Although most studies of cancer genomes to
date have focused on mutations occurring within exons, recent efforts have made whole genome
sequences of paired tumor and normal samples widely available, facilitating the analysis of non-
coding variants in cancer. In many cases, such variants have been shown to affect gene expression

Abbreviations: BayesPI-BAR, Bayesian modeling of Protein-DNA Interaction and Binding Affinity Ranking; FL, follicular
lymphoma; PWM, position weight matrix; SNV, single nucleotide variant; TF, transcription factor.
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and to promote tumorigenesis (Khurana et al., 2016). One
mechanism by which non-coding variants can affect gene
expression is the alteration of TF binding to mutated DNA
sequences. For example, a mutation may disrupt a TF binding
site, preventing the TF from recognizing its target sequence,
or a new binding site may be created by a mutation. Several
computational tools are available to predict such effects, e.g.,
GERV (Zeng et al., 2016), atSNP (Zuo et al., 2015), BayesPI-
BAR (Wang and Batmanov, 2015), among others. All these
tools have the same mode of operation: given a mutation,
typically a SNV, and a set of TF-DNA binding models, they
produce a list of TFs whose binding is possibly affected by
the SNV, ordered by the effect size and/or certainty. However,
the predicted list may contain dozens of TFs for every SNV.
Adding to the complexity of issue, each cancer sample may have
thousands of SNVs, which makes it difficult to interpret the
results. Importantly, there is no software package available today
to perform such analysis for a patient cohort based on genome-
wide sequencing data, considering recurring effects of mutations
among several patients.

The BayesPI-BAR2 package presented here aims to solve these
problems. It ranks TFs affected by SNV through a new BayesPI-
BAR algorithm (Batmanov et al., 2017), augmented with a set of
tools to find mutation hotspots among patients and mutations
linked to differentially expressed genes. The pipeline collects
information about SNVs of all patients in the mutation hotspot
regions, and then evaluates the significance of predicted effects
against randomly generated background mutation models. The
methodology behind BayesPI-BAR2 package and the robustness
of predictions were validated in a previous study (Batmanov
et al., 2017). Now, a user-friendly Python package is developed
based on the proposed pipeline. The package is evaluated in
both FL and skin cancer patients, by using mutations called
from the whole genome sequencing experiments. BayesPI-BAR2
may reveal novel regulatory sites that are disrupted by mutations
in cancer or other diseases, by using genome-wide sequencing
data, which is similar to the findings in Weinhold et al. (2014).
Additionally, it can identify novel TFs whose binding is altered
by non-coding mutations in the genome (Batmanov et al., 2017).
It is useful not only for regulatory mutation study in cancer, but
also for similar research in other diseases.

MATERIALS AND METHODS

Overview of BayesPI-BAR2
Python Package
The operation of the BayesPI-BAR2 pipeline is illustrated
in Figure 1. It is motivated by works in Batmanov et al.
(2017) where novel mutations affecting gene regulation were
discovered in FL patients, by considering diverse genome
information. The original analysis pipeline comprised of various
scripts that were implemented in different programming
languages. Here, a completely new Python package was built
with enhanced functionality and user-friendly command line
options. Particularly, the old BayesPI-BAR (Wang and Batmanov,
2015) program (a combination of R and Perl programs) was

reimplemented in Python with a more efficient algorithm
and flexible parallelization. This computationally demanding
task can be automatically parallelized now either on a single
multi-core machine, or on a cluster supporting the SLURM
job queue manager.

BayesPI-BAR2 Python package first finds DNA regions with
high mutation density and close to differentially expressed genes,
then predicts TF affinity changes in these regions using the new
BayesPI-BAR, and finally tests the significance of these predicted
changes against a background model. All analysis is carried out
by a set of command line tools written in Python 2. The package
also includes binary files of the new BayesPI program (Wang
and Morigen, 2009) which can infer new TF binding affinity
models PWMs such as dinucleotide interdependence (Wang,
2014), DNA shape-restricted dinucleotide models (Batmanov
and Wang, 2017), and compute TF-DNA differential binding
affinity (dbA) scores (Wang et al., 2015). There is also a demo
script in the package that shows a full pipeline execution.
BayesPI-BAR2 Python package is a useful tool for identifying
functional regulatory mutations in cancers or diseases, based
on whole genome sequencing experiments. For a more detailed
description of the package, please refer to following sections and
(Batmanov et al., 2017).

Identification of Mutation Hot Regions
and Patient-Specific Mutation Blocks
In the first step of the BayesPI-BAR2 pipeline, highly mutated
DNA sequence (mutation hotspot) regions are identified by a
method described in Batmanov et al. (2017), which considers
mutations from several patients to define a set of regions. In
default setting, BayesPI-BAR2 searches for putative mutation
hotspot regions near the transcription start sites (TSS) of
differentially expressed genes, because important regulatory
sequences (e.g., functional regulatory mutations) are often
located in the promoters. To have a robust mutation calling
(Alioto et al., 2015) in the promoter region, a minimum
sequencing depth of 30 is recommended at this point. The
significance of the differential expressions is tested by two-sample
Kolmogorov–Smirnov test, where reads per kilobase of exon
model per million mapped reads (RPKM) values of RNA-seq data
of patients are compared to that of the normal samples (e.g.,
P < 0.05). Since RPKM-based differential expression tests may
be affected by experimental biases (Bullard et al., 2010) and result
in imprecise prediction, a multiple testing correction of P-values
is not recommended. Nevertheless, by changing the threshold
value of the pipeline, it is easy to apply the Bonferroni correction
on the P-values. Alternatively, user can apply external software
to perform the differential gene expression analysis, and directly
input the gene list into BayesPI-BAR2 package.

Subsequently, MuSSD (Mutation filtering based on the Space
and Sample Distribution) algorithm (Batmanov et al., 2017)
is applied on the promoter regions of differentially expressed
genes. Based on the identified mutation hotspot regions from
MuSSD, patient specific mutation blocks are built: the reference
sequence is taken from the reference genome assembly according
to the region covered by the mutation hotspot (possibly including
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FIGURE 1 | Overview of the BayesPI-BAR2 operation. Using patients’ mutation and the corresponding gene expression data, BayesPI-BAR2 finds mutation
hotspots and patient-specific mutation blocks. Then, using a given set of PWMs for TFs of interest, it produces a list of significant TFs whose binding is potentially
affected at mutation block. The predictions consider all available mutation data among patient samples, to which strict statistical tests are applied to determine the
significance of predicted effects. As a result, the number of predicted effects is small enough for performing follow-up wet lab validation.

patient germline variants), and the alternate sequence contains all
mutations from the same patient in the region. In BayesPI-BAR2
package, the computational predictions of both the mutation
hotspot regions and the patient-specific mutational blocks are
implemented in Python, with a more efficient algorithm than the
original MATLAB script (Batmanov et al., 2017).

BayesPI TF-DNA Binding Affinity Model
The basic biophysical model for computing TF-DNA binding
affinity, named BayesPI, was first reported in Wang and Morigen
(2009). The TF-DNA binding probability is derived from the
statistical mechanical theory of TF-DNA interactions (Djordjevic
et al., 2003; Foat et al., 2006), which can be shown as

P (S, w, µ) =

N−M∑
i=0

1
1+ eEindep(Si:i+M,w)−µ

where Si,a = 1 if the DNA sequence has nucleotide a (one of A,
C, G, T) at position i and Si,a = 1 otherwise, N is the sequence
length, M is the length of the binding motif, µ is the chemical
potential of the TF or its concentration in the nucleus. The
selection of µ (e.g., µ = 0,−10,−13,−15,−18,−20) is based on a
previous study (Wang and Batmanov, 2015) of the effect of DNA
sequence variants on TF binding affinity changes, where verified

regulatory mutations in human genome were used to infer the
dynamical range of chemical potentials.

Eindep (S, w) =

M−1∑
j=0

4∑
a=1

wj,aSj,a

Eindep (S, w) is the TF binding energy to a short DNA
fragment with length M bp. This model assumes that nucleotides
at each binding position contribute to the binding energy
independently. The matrix w ∈ R(M× 4), called position-specific
affinity matrix (PSAM), where wj,a is the binding energy of
nucleotide a at position j of the DNA fragment. In BayesPI-BAR2
Python package, a collection of PSAMs derived from a previous
published work (Kheradpour and Kellis, 2014) is included, and
several new BayesPI features are also added [e.g., PSAM with
dinucleotide interdependence (Wang, 2014), and DNA shape-
restricted dinucleotide models (Batmanov and Wang, 2017)].

BayesPI-BAR Approach
Bayesian modeling of Protein-DNA Interaction and Binding
Affinity Ranking (Wang and Batmanov, 2015) method is used to
evaluate the significance of TF binding affinity changes caused by
DNA sequence variants. It is based on an idea for distinguishing
direct versus indirect TF binding in Wang et al. (2015). A new
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quantity, dbA, is introduced to measure the binding strength
above background level. BayesPI-BAR Python code computes
the shifted differential binding affinity (δdbA), for each sequence
variant and TF:

δdbA (Sref, Salt) = dbA (Salt)− dbA (Sref)

Sref, Salt represent the reference and alternate sequences,
respectively. δdbA is the measure of the affinity change used by
BayesPI-BAR. More details about the BayesPI-BAR approach are
available in the supplementary and (Batmanov et al., 2017).

Significance Testing for TF Binding
Affinity Changes
To test the significance of disruption of TF-DNA binding by
patient SNVs, patient-specific δdbA values of a given regulatory
mutation block are compared to that of the randomly generated
background mutation blocks, using the two-sided Rank-sum
test. BayesPI-BAR2 has three alternative mutation models to
generate the background: a tumor-derived mutation model, a
k-mer mutation signature such as those available from COSMIC
(Tate et al., 2018), and a uniform mutation model. A list of TF
binding effects which are significantly stronger than estimated by
the background model is exported by BayesPI-BAR2.

Since patient mutation blocks are pre-filtered by MuSSD
algorithm based on the space and sample distribution of
mutations, there are several constraints on the background
mutation blocks: (a) both the size and the mutation counts of
the background mutation blocks are kept same as that of patient
ones. (b) DNA sequence is selected randomly from the same
regions as the patient mutation block. (c) distributions of the
mutation positions and the nucleotide changes are based on
specific mutation signature such as tumor-derived mutations.
To evaluate the relationship between the number of background
blocks and the precision of background δdbA model, a few
simulations are displayed in Figure 2. It shows the fraction of
significant TFs reaches a plateau when there are more than 1000
blocks used. The significance test for TF-DNA binding affinity
changes proceeds in following three steps:

(1) Background mutation blocks are extracted randomly
from regions of interest, with the same sequence length
as patient block. Reference sequence of a background
mutation block is taken from the reference genome. The
alternate sequence is generated by random alteration of
nucleotides in reference sequence, using either the tumor-
derived mutations or the given k-mer mutation probability
distribution (the mutation signature).

(2) For each given TF, BayesPI-BAR computes δdbA of a
patient regulatory mutation block. Then, it computes δdbA
values for about 2000 background blocks that represent the
background distribution of δdbA scores.

(3) Wilcoxon rank-sum test is used to compare the
distribution of δdbA values between the patients’ and
the background mutation blocks. Bonferroni correction of
P-values is applied.

FIGURE 2 | Estimation of sufficient background samples for BayesPI-BAR2
package. The plot displays the dependency of significant TF discovery on the
number of background samples used. Significant TFs in the mutation blocks
from two different datasets are considered: (1) two BCL2 blocks from FL
dataset with 14 patients affected, blue line; (2) and the TERT block from skin
cancer dataset with 58 patients affected, green line. On the X-axis, we plot
the number of background mutation blocks taken. On the Y-axis, we plot the
number of significant TFs found when using X background mutation blocks,
which are also significant when using the full set of 10000 background blocks.
Y is normalized by the number of significant TFs discovered using the full
background set. Therefore, Y = 1 corresponds to the same result as using the
full background set.

The significance testing considers both the strength of TF
binding affinity change and the recurrence of δdbA values
across samples, using the Bonferroni correction for the number
of TFs tested. A stronger P-value correction procedure may
not be suitable here. For example, Benjamini–Hochberg (BH)
false discovery rate requires the P-values to be independent
(or have limited dependencies) (Benjamini and Hochberg,
1995; Benjamini and Yekutieli, 2001), but there are strong
dependencies among P-values of the significance testing for
TF binding affinity changes. Often, P-values of very similar
PWMs are close to each other, which may result in unreliable
correction by the BH procedure. Bonferroni correction has no
assumptions about the process used to generate the P-values
which is suited in the current study. At least 10 samples are
needed to perform proper statistical test in BayesPI-BAR2. If the
sample size is too small, there will be a problem in achieving the
statistical significance by Rank-sum test, even if the effects are
large (Wild and Seber, 2011).

Algorithm Efficiency and
Parallel Computation
Computation of scores is the most time-consuming task that is
needed for both the patient and the background mutation blocks.
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The old R program (Wang and Batmanov, 2015) was designed to
evaluate TF binding affinity changes in a single mutation and was
unable to process multiple mutations simultaneously. In the new
Python package, a parallel computation paradigm is developed
by using more efficient data processing library. Additionally, the
efficiency of BayesPI code was improved by applying a new sub-
expression for TF binding probability (please refer to BayesPI TF-
DNA binding affinity model section):

e

M−1∑
j=0

4∑
a=1

wj,aSj,a−µ

= e−µ
M−1∏
j=0

4∏
a=1

(
ewj,a

)Sj,a

Where the terms ewj,a and e−µ in the right side of the formula
are precomputed and stored in order to avoid computing the
exponent term in every sliding window. The new implementation
reduces the computational time by about 90%. In addition, in
BayesPI-BAR2 Python package, all calculations are parallelized
across either multiple local CPUs or multiple nodes on a cluster
using the SLURM workload manager. For instance, it takes about
5 h to process all mutation blocks in the skin cancer dataset (263
patients; ∼100000 mutations), by using 8 nodes of 8 CPUs in
each. The overall waiting time can be further reduced if more
parallel processes are used or few mutation blocks are selected for
testing. User guide and package architecture of BayesPI-BAR2 are
available in the Supplementary Section.

RESULTS

Validating New Python Code in Verified
Regulatory Mutations
The precision of the new BayesPI-BAR Python program, which
is the basis of BayesPI-BAR2 package, was first assessed by
a benchmark dataset of 67 SNVs with experimentally verified
effects of TF binding. The results match the previous study
(Wang and Batmanov, 2015).

Evaluating the New BayesPI-BAR2
Package in Follicular Lymphoma
A previous analysis of regulatory mutations in FL cancer
patients was performed by running various scripts manually.
The new BayesPI-BAR2 Python package is applied on the
same FL patients, by considering only the gene promoter
regions (e.g., TSS ± 1000 bp with 795 called SNVs) as were
investigated before (Batmanov et al., 2017). Putative mutation
hot blocks near BCL6, BCL2, and HIST1H2BM genes are detected
automatically, where containing 34, 40, and 2 SNVs, respectively.
The results match with the earlier report (Batmanov et al.,
2017). Also, the mutation effects on TF binding at the promoter
of two important FL genes (BCL6 and BCL2) (Pasqualucci
et al., 2014) were recovered: for example, regulatory activities
of two TFs (FOXD2 and FOXD3) on BCL6 and BCL2 were
confirmed previously by knockdown experiments in SUDHL4
lymphoma cell (Batmanov et al., 2017). The new BayesPI-
BAR2 Python package can reproduce the previous results

(Batmanov et al., 2017) and is robust in predicting functional
regulatory mutations.

Applying BayesPI-BAR2 on
Genome-Wide Sequencing Data of
Skin Cancer
The somatic mutations and RNA-Seq counts for the skin
cancer evaluation were downloaded from the public DCC data
release 23 at the International Cancer Genome Consortium
(ICGC) data portal, from the MELA-AU, SKCA-BR, and
SKCM-US projects. The dataset contains 23 million mutations
called from whole genome sequence analysis of 263 patients.
Melanoma or skin cancer has the highest prevalence of somatic
mutations across human cancer types, which is more than
ten times higher than that in Lymphoma cancer (Alexandrov
et al., 2013). There are frequent driver coding mutations in
melanoma cancer (Hodis et al., 2012; Roberts and Gordenin,
2014). Therefore, DNA regions from 2 Kbp upstream to
100 bp downstream of TSS of protein-coding genes [e.g.,
GENCODE (Harrow et al., 2012)] were selected, and genes
differentially expressed between the patient RNA-Seq data
and the normal melanocyte RNA-Seq (Haltaufderhyde and
Oancea, 2014) were used in this study (10015 genes with
∼99173 mutations).

After applying BayesPI-BAR2 Python package, 166 putative
regulatory mutation blocks were detected (containing 2746
mutations). A list of the 15 most highly mutated blocks is
shown in a Supplementary Table 1, where blocks matched to
previous findings are marked and the corresponding publications
are cited. A mutation block near TERT gene has the most
patients affected, 58 in number, closely followed by blocks
near several housekeeping genes (RPL∗, RPS∗, and others). This
is in agreement with the previous studies (Weinhold et al.,
2014; Poulos et al., 2015). It has been suggested that these
mutations are due to vulnerability of some DNA positions
to ultraviolet light damage (Fredriksson et al., 2017). In the
TERT mutation block, significantly affected TFs were also
predicted by BayesPI-BAR2 automatically (e.g., Wilcoxon rank-
sum test P < 0.001 with Bonferroni correction; Figure 3),
which split into two groups: positive change (creation of
binding sites) at the top, in orange; and negative change
(destruction of existing binding sites) on the bottom, in blue.
The heatmap of Figure 3 shows the variation of affinity
changes among 58 patients, who harbor at least one mutation
in the TERT block. Nine out of seventeen positively affected
TFs belong to the ETS protein family, which are the most
significantly affected ones. This is also in agreement with
the well-known pathomechanisms of melanoma (Huang et al.,
2013). When testing significance of affinity changes against
the skin cancer specific mutation signature model and a
uniform model, the same significantly affected TFs were found
in the TERT block, with small differences in the ranking
(Supplementary Figures 1, 2).

Additionally, BayesPI-BAR2 discovers novel regulatory
mutations which affect gene expression in skin cancer. For
instance, binding of TFs from Sp/KLF family and ETS family

Frontiers in Genetics | www.frontiersin.org 5 April 2019 | Volume 10 | Article 282

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-10-00282 March 29, 2019 Time: 18:51 # 6

Batmanov et al. Predicting Functional Non-coding Mutations

FIGURE 3 | Results of new BayesPI-BAR2 package – TFs significantly affected by skin cancer somatic mutations in the TERT promoter mutation block. The
heatmap displays the distribution of predicted TF binding effects of TERT promoter somatic SNVs across 58 skin cancer patients. The columns represent patients,
the rows represent predicted significantly affected TFs, and the color represents the binding effect size. Reduced binding is shown in blue and increased binding in
orange. The color shade represents the log10-scaled fraction of background δdbA values which are more extreme than the observed δdbA of a patient, which is an
indication of effect size. The darker cells the larger effect. Some TFs are represented by multiple PWM models, their instances are indicated by a number in
parentheses. Only significantly affected TFs (Wilcoxon rank-sum test P-value < 0.001 after Bonferroni correction) are shown. The following TFs belong to the ETS
family (Gutierrez-Hartmann et al., 2007): GABPα, ELF4, ETV5, ELK1, ETS1, SPI1, and SPIB. Here, background mutation model in BayesPI-BAR2 is based on
tumor samples.

were found to be disrupted (e.g., about 47 patients with
mutations; Supplementary Table 1) in a mutation block near
RALY. RALY is differentially expressed between the skin cancer
patients and the normal control samples. It is an RNA-binding
protein that may play a role in pre-mRNA splicing. Based on
human phenotype association evidence for RALY from the
GWAS Catalog (MacArthur et al., 2017), we found mutations of
this gene associated with melanoma, skin pigmentation, and skin
sensitivity to sun. The next most frequent mutation block was
predicted near RPS27 (e.g., 46 patients with mutations), where
binding of TBP, ETS, and IRF TF families are interrupted. RPS27
mutation and its elevated expression have been detected in many
melanoma patients and in various human cancers (Dutton-
Regester et al., 2014). The two newly discovered regulatory
mutation blocks may contribute to the dysregulation of RALY
and RPS27 and are worthy for further investigation because both
genes are known to be significantly associated with melanoma.
Thus, BayesPI-BAR2 not only can automatically recover known
gene regulatory disturbance, but also can discover the novel ones
which can be tested in wet-lab. BayesPI-BAR2 Python package
comes with the code to perform the complete analysis of this
melanoma dataset.

DISCUSSION AND CONCLUSION

The new BayesPI-BAR2 Python package has been evaluated
in both small (e.g., 14 FL patients) and large (e.g., 263
skin cancer patients) cancer patient cohorts, based on whole
genome sequencing experiments. It achieves good prediction
accuracy and automatically reproduces the published results. The
new package can be used to investigate previously unknown
regulatory effects, even if the sample size is small and the
recurrent mutation frequency is low. Nevertheless, the robustness
of significance test in BayesPI-BAR2 is dependent on the sample
size (Biau et al., 2008), a small sample size may pose difficulty
in achieving the significance difference. For example, there are
3 mutation blocks from 14 FL patients that pass the test of
significant TF binding affinity changes (P-values <0.05), but
there are 15 mutation blocks from 263 skin cancer samples
that pass a more stringent criteria (P-values <0.001). Therefore,
a large sample size is preferred when using BayesPI-BAR2 to
predict putative functional non-coding mutations.

BayesPI-BAR2 approach is more general than a previous
mutation recurrence analysis (Weinhold et al., 2014), because
it takes into account the recurrence of both the mutation
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among multiple patients and the effect on TF binding.
In other words, different mutations may contribute to the
creation or disruption of the same regulatory link in different
patients. For example, there are two canonical highly recurrent
mutations in the TERT promoter mutations: C > T at
chr5:1,295,228 and chr5:1,295,250. Both of these mutations create
ETS binging sites. Though six of fifty-eight patients did not
have these two mutations, some ETS factors are positively
affected in five of them (Figure 3). It indicates that other
non-canonical mutations at TERT promoter may also create
ETS binding sites.

Although BayesPI-BAR2 needs heavy computation to achieve
the goal, the waiting time can be significantly reduced by
distributing more jobs in a high performance computing
system. In the study of 263 skin cancer patients, the total
waiting time was reduced to 1 h and 30 min while using 10
nodes of 10 CPUs of ABEL computer cluster at University
of Oslo. On average, approximately 6 min are used for
completing the calculation of one mutation block. Efficiency of
BayesPI-BAR2 can be further improved by applying advanced
sampling method and parallel algorithm, or by implementing
it in Graphical Processing unit (GPU) (Zou et al., 2018).
Alternatively, if more prior information regarding mutation
blocks (e.g., differential methylation, nucleosome occupancy,
active enhancer/promoter histone markers, and predicted long
distance gene regulations) (Wang et al., 2013; Cao et al.,
2017; Dhingra et al., 2017) is available, then fewer mutation
blocks will be selected for testing against the background
models. Thus additional information can also reduce the
total computation time significantly. The new features will be
implemented in the future.

The new BayesPI-BAR2 Python package allows analysis of
non-coding mutations in cancer patient cohorts, discovering
mutation hotspots, and predicting effects of these mutations on
TF-DNA binding. Unlike previously available tools, it considers
the frequency of mutations, their recurrence across patients,
and integrates this information with the predicted affinity
changes employing a simple and statistically sound approach.
Although in principle, it is applicable to any mutation dataset,
BayesPI-BAR2 is designed for the typical cancer use case,
with the goal to find few non-random effects among many
somatic mutations. The package can be a useful tool for in-
depth analysis of non-coding mutations detected in whole
genome sequencing experiments, as well as for predicting
their effects on genome regulation in cancer. All in all,

it provides a reasonable number of predictions for further
experimental validation.
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