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Wavelet transform has been widely used in image and signal processing applications

such as denoising and compression. In this study, we explore the relation of the wavelet

representation of stimuli with MEG signals acquired from a human object recognition

experiment. To investigate the signature of wavelet descriptors in the visual system, we

apply five levels of multi-resolution wavelet decomposition to the stimuli presented to

participants during MEG recording and extract the approximation and detail sub-bands

(horizontal, vertical, diagonal) coefficients in each level of decomposition. Apart from,

employing multivariate pattern analysis (MVPA), a linear support vector classifier (SVM) is

trained and tested over the time on MEG pattern vectors to decode neural information.

Then, we calculate the representational dissimilarity matrix (RDM) on each time point

of the MEG data and also on wavelet descriptors using classifier accuracy and one

minus Pearson correlation coefficient, respectively. Given the time-courses calculated

from performing the Pearson correlation between the wavelet descriptors RDMs and

MEG decoding accuracy in each time point, our result shows that the peak latency

of the wavelet approximation time courses occurs later for higher level coefficients.

Furthermore, studying the neural trace of detail sub-bands indicates that the overall

number of statistically significant time points for the horizontal and vertical detail

coefficients is noticeably higher than diagonal detail coefficients, confirming the evidence

of the oblique effect that the horizontal and vertical lines are more decodable in the

human brain.

Keywords: wavelet, MEG data, object recognition, oblique effect, multivariate pattern analysis, orientation

INTRODUCTION

Feature engineering andmapping input data to a discriminative feature space is themost important
and critical part of classical object recognition systems. Various machine learning applications
such as texture analysis, image compression and denoising utilize visual features and wavelet
representations of images as promising features for object recognition purposes (Strickland and
Hahn, 1997; Tieng and Boles, 1997; Khalil and Bayoumi, 2002; Vidal-Naquet and Ullman, 2003;
Samani and Moghaddam, 2017; Samani et al., 2018). Performing a two-dimensional wavelet
transform on an image provides one approximation and three detail (horizontal, vertical and
diagonal) sub-bands representations of images. extracted the shape of pedestrians using only a
combination of wavelet coefficients as input features to support vector machine (SVM) classifier.
They then could detect the pedestrians in images with different indoor and outdoor backgrounds
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with a reasonable performance. proposed a Gabor wavelet model
as a representation of images which yielded to better object
recognition in comparison to applying conventional Gabor
filters. Furthermore, wavelet transform has been implemented on
diverse types of images from medical to real-world images which
demonstrates the capability of this transformation in dealing with
computer vision challenges.

On the other hand, among numerous research topics done
in neuroscience and psychology regarding the visual processing
(Attneave, 1954; Liu et al., 2002; Chaumon et al., 2009; Mamashli
et al., 2010), many behavioral and neuroimaging studies on visual
perception of different species including humans confirmed in
comparison with oblique orientations, cardinal (horizontal or
vertical) details of visual stimuli are better resolved in the brain
which is known as the oblique effect (Taylor, 1963; Appelle,
1972; Freeman and Thibos, 1975; Poggio and Fischer, 1977;
Orban and Vandenbussche, 1979; Essock, 1980; Bonds, 1982;
Payne and Berman, 1983; Moskowitz and Sokol, 1985; Heeley
et al., 1997; Pantazis et al., 2017). Neural data from different
sources of functional neuroimaging modalities such as EEG,
MEG and fMRI data have been used to represent this effect in
the human visual processing. Furmanski and Engel (2000) used
stimuli with cardinal and diagonal orientations in an fMRI study.
They found that cardinal orientations generate an increased
fMRI response amplitude in V1 area. presented standard and
deviated stimuli containing task-irrelevant Gabor patches in an
oddball sequence during a tracking task to investigate non-
attended orientation anisotropies using ERP (event-related-
potential). By recording visual mismatch negativity, they found
that there is a difference between the amplitude of ERP
evoked by standard and deviated stimuli around 170ms in
occipitotemporal areas as evidence to the existence of the
oblique effect. applied multivariate pattern analysis on the
Gamma band of MEG data acquired from an experiment
using six different grating stimuli. Their results show cardinal
orientations are better decoded in the human brain than the
oblique ones.

As we described earlier, many studies have been conducted
in both the human and machine vision domains to support
the idea that the orientation detail is a key factor for object
recognition purposes. Here, we built a bridge between a straight
machine learning and a pure neuroimaging method in an
object recognition challenge. In this study, we used the same
stimuli applied in the human object recognition experiment. We
extracted wavelet detail coefficients in horizontal, vertical and
diagonal orientations to investigate the signatures of different
orientations in the human visual system. Furthermore, instead
of using basic grating stimuli used in different neuroimaging
studies, we employed stimuli containing real-world objects
and extracted orientation-related features from them. Our
result shows that the oblique effect is evident even with
these stimuli. Apart from that, we also studied the temporal
neural signature of wavelet approximation coefficients at
different levels of decomposition. Due to the downsampling,
the approximation coefficients corresponding to higher levels
of decomposition contain a denser representation of objects.
Therefore, their corresponding timecourses which represent the

temporal neural traces of higher level wavelet approximation
coefficients peak later.

MATERIALS AND METHODS

Experimental Design, Stimuli, and MEG
Data acquisition
We applied all the analysis and inferences on the data of
an experiment designed and conducted at MIT by Cichy
et al. (2014). During this experiment, 92 stimuli from six
distinct categories (human and non-human bodies and faces,
natural and artificial images) presented to 16 healthy human
participants (N = 16) while MEG data was acquired. These
images were displayed for 500ms, with 1.5–2s inter-stimulus-
intervals. The participants finished 10–15 MEG runs and every
stimulus was shown twice in each run. To read more details
see Cichy et al. (2014).

MEG Signal Preprocessing
MEG data were acquired from 306 sensor channels (Neuromag,
Triux, Elekta, Stockholm) (Cichy et al., 2014). To compensate
for the head movement, we preprocessed the raw MEG data
with Max filter software (Elekta, Stockholm). Then, the resulting
signal was denoised and analyzed using the brainstorm software
(Tadel et al., 2011). We extracted each trial from 150ms pre-
stimulus onset to 1,000ms post-stimulus onset (−150, 1,000).
Then, we removed the baseline mean for each trial. We also
discarded the trials having a peak-to-peak>6,000 fT and detected
them as bad trials. Furthermore, a low-pass filter with a cutting
frequency of 30Hz has been used to smoothen the remaining
trials. Finally, we utilized the frontal sensors of MEG data to
automatically detect the Eyeblink artifacts and remove them by
principal component analysis.

Multivariate Pattern Analysis (MVPA)
Multivariate pattern classification is a well-suited approach
to decode brain activities associated with different perceptual
stimuli. According to this method, if a classifier discriminates
between the MEG data of two different stimuli, these two
stimuli are separable in the human brain (Wardle et al., 2016;
Cichy and Pantazis, 2017; Diedrichsen and Kriegeskorte, 2017;
Grootswagers et al., 2017). To measure the perceptual differences
of the stimuli, we trained a linear pairwise SVM classifier (Chang
and Lin, 2011) at each time point (every millisecond) of the MEG
trials associated with every pair of stimuli. In other words, we
build the binary linear SVM model using 306-dimensional MEG
pattern vectors which are the signal values of all MEG channels.
In order to reduce noise and computational load, we permuted
the trials randomly and divided them into K = 4 groups of 10
trials and averaged the trials within groups, resulting in 4 sub-
averaged trials per stimulus. We used K-1 trials per condition for
training and held the remaining one which was not used in the
training phase, for testing the SVM classifier. This procedure was
repeated 100 times to find the SVM classifier performance. The
accuracy of pairwise linear SVM classifier is used as a measure
of dissimilarity between every pair of the stimuli to populate a
92× 92 representational dissimilarity matrix (RDM) (Figure 1B,
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the upper part of the panel). Considering 92 × 92 possible
pairs of stimuli and 1,151 time points in each trial, MVPA
yields 1,151 symmetric diagonal-undefined MEG RDMs. Having
calculated the grand average of every matrix at each time point,
we plotted and traced the time-course of object decoding in the
human brain.

Wavelet Feature Descriptors
The multilevel wavelet transform decomposes a complex signal
or an image into multiple simpler components which can be
studied separately (Ravichandran et al., 2016). Discrete two-
dimensional wavelet transform uses a set of discrete scale and
translation functions to decompose an image into a set of
mutually orthogonal wavelet descriptors (Mallat, 1989; Antonini
et al., 1992; Graps, 1995; Stanković and Falkowski, 2003).
Equations (1–4) (Ravichandran et al., 2016) define the wavelet
transform for calculating the approximation, horizontal, vertical
and diagonal sub-bands descriptors respectively.8j,m,n

(

x, y
)

and

ϕij,m,n , defined in Equations (5, 6), describe the two-dimensional

wavelet functions of scale (level) j at pixel in row m and
column n of an input image with M rows and N columns
of pixels. These functions act as low-pass and high-pass filters
followed by downsampling. Superscript i in the Equation (6)
shows the orientation of wavelet details coefficients which can
be horizontal (H), vertical (V), and diagonal (D). The block
diagram in Figure 2 describes one level of two-dimensional
wavelet decomposition on an input image. According to this
diagram, two finite impulse response (FIR) low-pass (hφ) and
high-pass (hψ ) filters, selected from the collection of wavelet
basis functions Φ and ψ defined in Equations (5, 6), are applied
to columns or rows of an input image. To get the wavelet
approximation coefficients, a sequence of two low-pass filters
followed by downsampling (by a factor of 2) is applied to columns
and rows of the image. Horizontal and vertical detail sub-images
are calculated by a combination of a low and high-pass filter and
downsamplings. As Figure 2 shows, swapping the order of low
and high-pass filters switches the resulting orientation of detail
descriptors. For extracting the detail descriptors, a sequence of
identical high pass filtering and downsampling is applied to
both columns and rows of an image. To compute the wavelet
descriptors of level j+1, approximation wavelet descriptor of
level j is used as an input image and the whole process is repeated
in the same mentioned manner.
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0 otherwise

(7)

ϕ (t) =
{

1 0 ≤ t < 1
0 otherwise

(8)

We employed two-dimensional Haar wavelet on the gray-scaled
stimuli to decompose them into four orthogonal sub-bands. The
mother Haar wavelets 8 and ϕ are defined in Equations (7, 8).
The first row of Figure 1 depicts some examples of the original
images and the second one illustrates their corresponding level-
one approximation (A1) and horizontal(H1), vertical(V1) and
diagonal(D1) high-frequency details. According to the Block
Diagram in Figure 1, each level of decomposition provides four
wavelet components whose rows and columns resolutions are
half of the previous level. All the original images have 175
rows and columns. Due to downsampling of the images in both
rows and columns at each level of decomposition, the size of
approximation and detail sub-images in the fifth level is 6 × 6.
All the approximation and detail sub-bands matrices calculated
in different levels are flattened and rearranged into vectors
separately. To study the overall neural information decoded
in the details in each level, we concatenated the horizontal,
vertical and diagonal details vectors corresponding to each
stimulus as an additional descriptor and called it ’All details’
descriptor. In general, after 5 levels of decomposition with 5
different wavelet descriptors per level, a total number of 25
wavelet descriptor vectors are determined for each stimulus.
As shown in the bottom right corner of Figure 1, W1 to
W25 represent the wavelet descriptors for different sub-band at
different levels.

Wavelet Coefficients RDM
Representational dissimilarity matrix (RDM) maps the
descriptors into a common space and provides the overall
representational information of each wavelet descriptors.
For each wavelet descriptor, we computed 1min Pearson’s
rho as a dissimilarity measure between each pair of
stimuli wavelet descriptors to construct a 92 × 92 RDM
matrix. Since we have 25 different wavelet descriptors
per stimulus, this process results in 25 RDM matrices
corresponding to 25 wavelet descriptors (Figure 1B lower part of
the panel).

Representational Similarity Analysis
To trace the neural signature of stimulus wavelet descriptors
in the visual system, we used the representational similarity
analysis (RSA). We mapped MEG data of each time point
to the representational space (92 × 92 RDMs) using the
MVPA. Similarly, we also mapped the 25 wavelet descriptors
to the representational space of 92 × 92 RDMs. Therefore,
in this common two-dimensional (92 × 92) matrix space, we
can compare the wavelet RDMs with the neural RDMs using
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FIGURE 1 | Wavelet transformation on stimuli and block diagram of proposed method. (A) Some of the 92 original stimuli and their corresponding

wavelet approximation and details coefficients descriptors are displayed in the first row and second row. (B) Block diagram of the proposed method. The stimuli are

represented in the first column. The upper part of panel shows the schematic of MEG multivariate pattern analysis in which the linear SVM classifier is trained to

discriminate between each pair of stimuli at each time point and pairwise decoding accuracy is stored in 92 × 92 representational dissimilarity matrix (RDM). The lower

part of the panel shows the wavelet descriptors consisting of Approximation and details (vertical, horizontal and diagonal) descriptors of each stimulus up to five level.

For each descriptor, the Spearman correlation between the wavelet descriptors corresponding to every pair of stimuli is calculated, and the results are stored and

identified as a wavelet RDM descriptors. All 25 wavelet descriptors are specified in the bottom right corner of this figure. The last column of panel illustrates the time

courses resulted from the Spearman correlation MEG RDM in each time point and the RDM of each wavelet descriptors separately.
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FIGURE 2 | One level of two-dimensional wavelet decomposition on an input image. A sequence of low-pass (h φ ) and high-pass (h ψ ) filters, selected from the

collection of wavelet basis functions Φ and ψ , are applied on the columns (n) and rows (m) of images. While h φ (n) and h ψ (n) shows that the filters are applied in

columns, h φ (n) and h ψ (n) show that the filters are applied in rows. All filters are followed by a downsampling () by a factor 2 on filtered rows or columns. Applying two

low-pass filters (h φ (n) and h φ (m)) followed by downsampling the sub-image at first level (A1) provides the approximation sub-image of the second level (A2). The

second level horizontal and vertical sub images (H2, V2) are calculated by a combination of a low and high-pass filters and downsampling A1 with the specified

orders. For extracting the diagonal details descriptors of second level (D2), the high pass filtering and downsampling by factor 2 is sequentially applied to both

columns and rows of the sub-image A1.

the two-dimensional Spearman correlation between wavelet
descriptors RDMs and the MEG RDMs in each time point.
This results in 25 time courses representing the temporal
neural traces of the wavelet descriptors in the human object
recognition (Figure 1B).

Statistical Testing
In order to estimate the significant time points of the time series,
we performed non-parametric signed permutation statistical
test (Pantazis et al., 2005; Nichols, 2012) broadly used in
neuroimaging studies (Hayasaka and Nichols, 2004; Mirman
et al., 2016; Mohsenzadeh et al., 2018). Permutation and
bootstrap were done with a sample size (n = 16) equal to the
number of subjects. We used 1,000 bootstrap samples. In each
bootstrap sample, we chose 16 time series with replacement
among all subject time courses and we estimated the significant
time points and onset time. To estimate the significant time
points and assess the statistical significance of the time series, we
performed the sign permutation test. Since the time series carry
the results of correlation between MEG pattern classification and
Wavelet descriptors, the null hypothesis indicates no signal or
dynamics in the time series. To do the sign permutation test, we
randomly permuted the labels of MEG data (conditions labels).
Therefore, the subjects’ responses were randomly multiplied by
+1 or −1. The operations (permutation and bootstrapping with
sample size 16) were repeated for 1,000 times which led us to
provide a one-dimensional p-value statistical map. Then, we
performed the cluster correction test to regularize the error across
all the time points. The cluster definition threshold was set to

0.05. According to this test, if the size of connected time points
(clusters) was greater than the threshold these time points were
considered significant.

We used bootstrapping to test and estimate the peak
and onset latencies of the time courses. The time series for
each subject were bootstrapped and averaged across the
subjects 1,000 times. The standard error of measurement
(SEM) and 95% confidence intervals are defined based
on the distribution of obtained Peaks or onsets of all
bootstrap samples.

RESULTS AND DISCUSSION

We explored the temporal relation between the brain activity
and wavelet representations of real-world images. The signature
results of wavelet components in the human brain during
an object vision task are presented separately for five levels
of wavelet decomposition. These components consist of
approximation and sparse detail sub-bands of two dimensional
Haar wavelet transform. We also investigated the neural
information encoded in the visual system regarding wavelet
descriptors of images.

Representational Similarity Comparison of
Brain Data With Wavelet Approximation
and Detail
First, we investigate how the wavelet representation
(approximation and details) of images at different levels of
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FIGURE 3 | Wavelet approximation and detail information decoded in MEG signal. (A) An example of first level wavelet descriptors: From left to right, wavelet

approximation, horizontal, vertical, diagonal and all detail descriptors. (B)Time courses illustrating the similarity between wavelet details of different levels and brain

representation of images. (C)Time courses illustrating the similarity between wavelet approximation of different levels and brain representation of images. Solid lines

above the time courses demonstrated the significant time points evaluated with two-sided sign permutation test (N = 16, cluster definition threshold P = 0.05 and

cluster definition P = 0.05).

composition are encoded in neural data. With this aim, we
use multivariate pattern analysis on MEG data to compute the
neural representations and calculate the wavelet descriptors of
images and create their corresponding RDM. One example of the
approximation (A1) and detail descriptors including horizontal

(H1), vertical (V1), diagonal (D1) and ‘all details’ are shown from
left to right on Figure 3A. Figures 3B,C shows the time courses

generated from performing the Spearman correlation between

MEG RDM at each time point and wavelet approximation as

well as details RDMs. Color-coded solid lines above the time
courses mark the significant time points for each curve. All

the significant time points are found with non-parametric
permutation statistical tests using cluster defining threshold

P < 0.05, and corrected significance level P < 0.05 (N=16).
As can be seen in Figure 3C, the curves representing the

neuro-dynamics of wavelet approximation of all five levels
maintain the same trends and time courses. With regard to the
significant time points, we found that the neural signatures of
wavelet approximation coefficients are sustained, while they are

transient for details descriptors. Research on the spatiotemporal

dynamics of object recognition in the human brain (Cichy
et al., 2014) demonstrates that neuronal processing of objects

TABLE 1 | Peak latency and onset of wavelet descriptors time courses of

approximation coefficients for 5 levels.

Approximation

coefficients

Peak

latency(conf95)

Mean peak ±

SEM

Onset(conf95)

Level1 108 (95–208) 110.5 ± 1.2 50(43–54)

Level2 108 (96–210) 118.7 ± 1.8 50(41–53)

Level3 126 (108–213) 134.5 ± 2.3 49(41–54)

Level4 131(125–140) 133.3 ± 0.5 49(41–68)

Level5 137(125–254) 149.4 ± 2.8 50(45–95)

can be both transient and persistent. As Figure 3A illustrates,
all-detail descriptor which aggregates the detail descriptors in
three orientations (horizontal, vertical and diagonal) captures the
overall shape and some categorical information of objects. For
this reason, it can act as a discriminant feature in the human
object recognition, but it still lacks other low, mid and high-level
features. However, wavelet approximation descriptors contain a
broader range of high-level semantics of images which may be
processed and maintained in the later visual processing areas of
the human brain such as Inferior-temporal (IT), Fusiform, and
Parahippocampal cortex (PHC).
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FIGURE 4 | Peak latencies of wavelet approximation time course at different levels represented by (A) Error bar and (B) Box plot. Peak latencies increased with the

level number evaluated by signed permutation test non-parametric permutation statistical tests using cluster defining threshold P < 0.05, and corrected significance

level P < 0.05 (N = 16). Error bar represents the standard error of the mean calculated by 1,000 times bootstrapping the participant sample. To remove the outliers,

the top and bottom 5% of data points have been discarded.

FIGURE 5 | Histogram of peak latencies of wavelet approximation time course at levels Level 1 to Level 5 (A–E) estimated by 1,000 times bootstrapping the

participant sample. The red curves show the normal density functions fitted on the histograms. The mean peak latencies of the distributions are 108, 110,123, 132,

136ms for level 1–level 5 respectively which demonstrates the peak latencies increased with the decomposition level number.
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FIGURE 6 | Wavelet details information in different orientations decoded in MEG time course of Spearman correlation between MEG RDM with horizontal, vertical and

diagonal wavelet details descriptors RDM of Level 1 to 5 (A–E) respectively. Shaded color-coded areas around the curves in Figure 6 (A–E) shows the standard

deviation of time courses over 1,000 bootstrap sampling with sample size N = 16.

Comparison of Peak Latencies in Different
Levels of Wavelet Approximation
Time Courses
Given sustained neural information of wavelet approximation
time courses at all five levels, we further asked how categorical
information is represented in different levels. To understand
that, we estimated the peak latency of these time courses
using the signed permutation test (N = 16; p < 0.05). We
found that, as the level of wavelet approximation coefficients
increases, peak latencies of its corresponding time course occurs
later. This can be explained by the fact that the sub-band
images extracted from higher levels of wavelet decomposition
contain less sparsity and signify a denser representation of
the stimuli which accentuate semantic information decoded in
the stimuli.

The first and second columns of Table 1 report the peak
latency of wavelet approximation time courses with 95%
confidence interval and (mean± SEM) in which SEM represents
the standard error of measurement. The third column reports the
onset time. Figures 4A,B illustrates the peak latencies of wavelet
approximation coefficient at different levels of decomposition
with error bar and box plot using bootstrap test. To remove
the outliers, the top and bottom 5% of data points have been
discarded. Figure 5 displays the histograms of peak latencies
at different levels using 1,000 bootstrap samples and the
red curves show the normal density functions fitted on the
histograms. Since the object recognition and categorization
in the human brain occurs earlier than 150ms after the

stimulus onset Thorpe et al. (1996) Isik et al. (2013), we
kept the first group of data which shows the histogram of
peak latency happening earlier or equal to 150ms and we
discarded the data points with peak latency >150ms which
contain a small portion of all the data points. The mean peak
latencies of the distributions fitted on histograms in Figure 5

are 108, 110,123, 132, 136ms for level 1 to level 5, respectively.
Similarly, as Figures 4A,B confirms, the peak latencies of wavelet
approximation time-courses increase with level. This suggests
that approximation descriptors at higher levels carry more
categorical and semantic visual information required to be
processed in later visual processing areas across the ventral
stream pathway.

Representational Similarity Analysis Infers
the Oblique Effect for Wavelet
Details Descriptors
To further study the signature of wavelet details coefficients of
different orientations, we calculated the wavelet details RDM
for each orientation separately. Figures 6A–E illustrate the
time courses of Spearman correlation between MEG RDMs
and horizontal, vertical and diagonal wavelet detail RDMs
for Levels 1–5. In each time point, we performed 1,000
bootstrap samples (sample size N = 16) with replacement
among all subject time courses and averaged them across
the subjects. Shaded color-coded areas around the curves
in Figure 6A–E shows the standard deviation of the time
courses over 1,000 bootstrap samples. Similar to Figure 3,
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FIGURE 7 | Number of significant time points of the time courses of wavelet details descriptors at level 1 to level 5 (A–E). A number of 1,000 bootstrapping is

performed on the participant sample and the significant time points evaluated with two-sided sign permutation test (N = 16, cluster definition threshold P = 0.05 and

cluster definition P = 0.05). (F) The summation of all significant time points for different orientations.

color-coded solid lines above the time courses express the
significant time points. The box plots in Figures 7A–E illustrate
the number of significant time points of time courses
corresponding to diagonal, horizontal and vertical detail
descriptors using bootstrap sampling. Figure 7F represents the
summation of all significant time point for different orientations.
As shown, the overall number of significant time points of
the horizontal and vertical wavelet time courses is noticeably
greater than the diagonal wavelet time course. This suggests that
vertical and horizontal details are represented stronger in the
human brain.

The majority of experimental researchers have designed or
used the specific stimuli such as grating stimuli to study the
oblique effect. employed MVPA to investigate the decoding
of various orientations with a set of six different grating
stimuli. Their results confirmed the oblique effect in the
human visual system. In our study, we inferred the oblique
effect on the human visual system by estimating the wavelet
details descriptors of the real-world images as representatives
of orientations. This inference is based on the number of
significant time points which can be interpreted as the
time points in which there is a significant and meaningful
correlation of MEG data and its corresponding wavelet
orientation details.

CONCLUSION

We explored the neuro-dynamic of wavelet approximation and
details sub-bands in human vision. Although orientation-specific
stimuli were not used in this study, our results revealed that
MVPA is a well-suited approach for inference of the implicit
oblique effect in the human visual system. Furthermore, we
found that while the signature of wavelet details descriptors was
transient, there was a sustained significant correlation between
the approximation descriptors and neural data. The result of our
study on the time course of wavelet approximation coefficient
indicated that the peak latencies of correlation time series
increased with the approximation level. This effect implies that
decreasing the size of images and increasing the level of wavelet
approximation coefficients causes a reduction of sparsity and
highlights semantic and categorical information of objects in the
human visual system.
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