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Draculab is a neural simulator with a particular use scenario: firing rate units with

delayed connections, using custom-made unit and synapse models, possibly controlling

simulated physical systems. Draculab also has a particular design philosophy. It aims to

blur the line between users and developers. Three factors help to achieve this: a simple

design using Python’s data structures, extensive use of standard libraries, and profusely

commented source code. This paper is an introduction to Draculab’s architecture and

philosophy. After presenting some example networks it explains basic algorithms and

data structures that constitute the essence of this approach. The relation with other

simulators is discussed, as well as the reasons why connection delays and interaction

with simulated physical systems are emphasized.
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1. INTRODUCTION

When faced with a new project, modelers in computational neuroscience must decide whether
to program their simulations from scratch, or to use one of the existing neural simulators.
Draculab was born from a project whose requirements were not met by any other simulator. Those
requirements were:

• Firing rate units that operate as continuous-time dynamical systems, connected with
transmission delays.

• Experimental types of units and synapses, with frequent modifications happening.
• Simulations where neural controllers interact with a physical system, implementing closed-loop

control.

Besides satisfying these requirements, Draculab aims to have a simple interface, but still provide
total control over the simulation to experienced Python users. For users with basic command
of Python, or in a hurry to simulate, Draculab is a neural simulator with an interface similar to
PyNEST (Eppler et al., 2009). For more experienced users, it is also a simulator where almost every
aspect of the models can be customized.

Following Brian’s (Goodman and Brette, 2009) insight that the main limiting factor is not always
computational efficiency, Draculab is written entirely in Python, with certain key functions coded
in Cython (Behnel et al., 2011) (https://cython.org/) for speed. Development environments such
as Spyder (https://www.spyder-ide.org/), or the Jupyter Notebook (https://jupyter.org/), are well
suited for working with Draculab. The interface uses standard functions that create units, connect
them, and run simulations. These functions are configured using parameter dictionaries as their
arguments. Users can launch their first simulations within minutes (see section 2).
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It is expected that people who want to write a simulation
do not want to learn a new programming language, or the
intricacies of a complex interface. On the other hand, some
users want to write very non-standard simulations, using their
own synaptic plasticity rules, or their own firing rate models,
perhaps connecting themwith other dynamical systems. The idea
to resolve this is to take advantage of the users’ knowledge of
Python. People who already understand Python do not have to
learn many new things, except for the basic architecture of the
system, which is described in the sections below.

For experienced Python users, Draculab aims to give
ample control over the simulation, so it feels like they
wrote the simulator themselves (but without going through
the hassle of writing and testing it). This comes from a
straightforward implementation, profusely commented source
code, and standard libraries such as Scipy (https://www.scipy.
org/), Numpy (https://www.numpy.org), andMatplotlib (https://
matplotlib.org/) for numerical routines and visualization.

Section 2 introduces some examples so the reader can become
acquainted with Draculab’s API, and some use scenarios. Section
3 briefly explains the problem of numerically solving delay
differential equations, and the approach followed by Draculab.
Section 4 gives some details on how this approach is implemented
using Python’s data structures. Section 5 explains how to modify
this implementation to increase simulation speed. Section 6

is concerned with how noise can be included in simulations.
Section 7 mentions several tools that can be used to simplify
the construction and analysis of Draculab networks. Finally,
section 8 gives an overview of alternatives to Draculab, and how
they compare.

Readers who want to proceed further can work through
the tutorials included with the Draculab distribution (https://
gitlab.com/sergio.verduzco/draculab), or consult the docstring
documentation. Readers who only want a quick description
of Draculab can skip the more technical sections 3, 4,
and 5.

2. EXAMPLE NETWORKS

This section presents two Draculab simulations.

2.1. A First Example
To begin with, let’s create a network with 10 sigmoidal units
and one input. It does nothing special, but it illustrates the basic
interface of the simulator.

We segment the source code of this example code
into 5 steps, and analyze each one. The full program
(in Jupyter notebook format) can be found in the file
tutorial/hello_world.ipynb of the distribution.

1. CREATE A NETWORK OBJECT

net_params = {’min_delay’: 0.1,

’min_buff_size’: 10 }

net = network(net_params)

The basic object used to run Draculab simulations is an
instance of the class network. The constructor of this
class requires a parameter dictionary with the smallest
delay among all the connections (min_delay), and
the number of values to be stored by each unit in the
timespan of the smallest delay (min_buff_size).
The significance of these parameters will be explained
in section 3.

2. POPULATE THE NETWORK WITH TWO TYPES OF

UNITS

sig_params = {’type’: unit_types.sigmoidal, # unit model

’init_val’: 0.5, # initial value for all sigmoidal units

’slope’: 1, # slope of the sigmoidal function

’thresh’: 0., # threshold of the sigmoidal function

’tau’: 0.2, # time constant of the sigmoidal unit

’tau_fast’: 0.1 } # time constant of the ’fast’ low-pass filter

inp_params = {’type’: unit_types.source, # source units provide inputs

’init_val’: 1.,

’function’: lambda t: np.cos(t) } # a cosine function

sig_units = net.create(10, sig_params) # create 10 sigmoidal units

inp_unit = net.create(1, inp_params) # create 1 input unit

First we create parameter dictionaries that configure the
sigmoidal and the input units. All units have type

and init_val attributes; other parameters to include
depend on the type of the unit. The specifics can be
consulted in the unit’s documentation. For example, the
Python command help(sigmoidal.__init__) will
show the entries expected in the parameter dictionary for
sigmoidal units.

Usually units produce an output based on their inputs
and their current state. source units are different, since
their output comes from a Python function defined by
the user, whose argument is the simulation time. This
is a flexible way to specify inputs. Source units can
also be used to report the value of any variable in the
simulation (such as the synaptic weights) as it evolves
through time.
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Upon creation, each unit is assigned an
integer that uniquely identifies it. The create

method returns a list with the identifiers of the
created units.

3. CONNECT THE UNITS

conn_spec = {’rule’: ’fixed_outdegree’, # rule to create connections

’outdegree’: 2, # each unit sends 2 projections randomly

’delay’: 0.2 } # all connections have a delay of .2 time units

syn_spec = {’type’: synapse_types.oja, # synapses use Oja learning rule

’init_w’: {’distribution’: ’uniform’,

’low’: 0.1, ’high’: 1.},

’lrate’: 0.1 } # learning rate for the Oja rule

net.connect(sig_units, sig_units, conn_spec,

syn_spec)

conn_spec_2 = {’rule’: ’all_to_all’, # rule to create connections

’delay’: 0.1 } # all connections have a delay of .1 time units

syn_spec_2 = {’type’: synapse_types.static, # synapses do not change

’init_w’: 0.5 } # all synapses have this initial weight

net.connect(inp_unit, sig_units, conn_spec_2, syn_spec_2)

Users familiar with PyNEST may find many similarities
in how the connect method works. PyNEST was
used as a template on how to specify connections, and
Draculab has a topology module that resembles the
one in PyNEST, although they are not identical (see
section 7). In the example code, we create parameter
dictionaries to configure the connections, and then call
the connect method to create them. Running the
Python instruction help(network.connect) can
yield more details.

In the syn_spec dictionary it can be observed
that the synapses used for connections between
sigmoidal units are of the oja type. The Oja learning
rule (Oja, 1982) is a Hebbian-type model, usually
associated with principal component extraction. In
Draculab a continuous-time version of this model
is implemented in the oja_synapse object. The
network.connect function creates a synapse object
for each connection. The name of all implemented
synapse models can be obtained by typing the command
synapse_types.list_names().

4. RUN THE SIMULATION

sim_data = net.run(10.)

The run method receives a time to simulate, and
returns a tuple containing simulation data. Calling
run repeatedly restarts the simulation from its last
time point. It should be noted that in Draculab
no particular units of time, distance, or firing rate
are enforced.

5. PLOT THE RESULTS

sig_activs = np.array(sim_data[1])[sig_units]

plt.plot(sim_data[0], sig_activs.transpose())

plt.show()

In here we use the plot function from Matplotlib
to visualize the activities of the 10 sigmoidal units.
The resulting plot is similar to the one presented
in Figure 1.

2.2. A Closed-Loop Simulation
Next is one of the simplest networks that perform feedback
control of a physical system, with synaptic plasticity enhancing
performance. Borrowing terminology from control engineering,
the system to be controlled is called a plant. The plant is a
pendulum, and a single linear control unit acts as a proportional
feedback controller that puts the pendulum at a desired angle.
The control unit receives an error signal from a source unit,
and the state of the pendulum from four afferent sigmoidal
units. Learning takes place at the synapses connecting afferent
units to the control unit, using the input correlation rule (Porr
and Wörgötter, 2006). The connectivity of this network can be
observed in Figure 2.

The input correlation rule is defined by the
following equation:

dωj

dt
= µuj

du0

dt
,

where ωj is the weight of the input from the j-th unit, which
has activity uj. Unit 0 provides an error signal, and by using its
derivative the input correlation rule seeks to exploit correlations
between input signals and error increase. This is implemented as
the inp_corr synapse type.

Further details about this network and the full
source code can be found in Draculab’s tutorial, in the
tutorial/tutorial4.ipynb file. In here we just briefly
describe what was done, and the ensuing results.
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FIGURE 1 | Output of the first example program. It can be seen that the heterogeneous initial values of the synaptic weights cause the units to have different

responses.

FIGURE 2 | Diagram of the network in the closed-loop simulation. The

pendulum sends angle and angular velocity signals to four sigmoidal afferent

units, which in turn send inputs to a control unit (blue circle). The control unit

produces a torque on the pendulum based on this input. The source unit, in

green, calculates an error signal from the desired and the current angle. The

derivative of this error is used by the learning rule. Blue dotted lines indicate

that the source unit does not receive the angles from connections; instead, its

function reads them directly.

When using the Draculab module in Python, a useful
approach is to create a class that contains all the parameter
dictionaries. This class can also be provided with methods to
run the simulation, and to visualize the results. In this case we
created a class called ic_control, whose constructor contains
all the parameter dictionaries. These parameters can be modified
by the user before calling the ic_control.initialize

method, which creates the network, the pendulum, all units, and
all connections. The pendulum is a special type of object that
is derived from the plant class, which is used to model any
dynamical system governed by ordinary differential equations.
After initialize we can call the ic_control.simulate
method, which receives a simulation time, runs the network
for that time span, and reports the real time required to
finish. Finally we can call ic_control.plot_results,
which produces figures illustrating the simulation results (e.g.,
Figures 3, 4).

Creating the network for this example uses the
same procedures as in the previous example. The one
unfamiliar thing may be that the pendulum is connected
to the units not with network.connect, but with
the methods network.set_plant_inputs and
network.set_plant_outputs.

Both units and plants may receive qualitatively different types
of inputs. For example, units may have inputs that have a
modulatory, rather than excitatory effect. Moreover, plants may
have separate inputs that act on different state variables, such
as torques on different joints of a double pendulum. To handle
this Draculab uses input ports, which is a concept inspired
by the NEST simulator (Diesmann and Gewaltig, 2001). The
syn_spec parameter dictionary of the network.connect
method can specify an input port, which gets stored in the
synapse object. How different ports are interpreted depends on
the particular unit and plant models, opening many possibilities,
such as inputs that target distinct regions of the dendritic tree
(e.g., London and Häusser, 2005).

We use the ic_control object to compare the performance
of the network with and without the input correlation
rule. First we set the learning rate to zero so the control
unit becomes a proportional controller, only driven by
the error:
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FIGURE 3 | Output of the closed loop simulation using static synaptic weights. The top two plots show the angle and angular velocity of the pendulum. The next plot

shows the activity of the four afferent units, and the bottom plot shows the error signal, the activity of the control unit, and a signal proportional to the error’s derivative

(used in the learning rule).

icc = ic_control()

icc.affs2ic_syn_spec[’lrate’] = 0.

# learning rate of input correlation rule

icc.initialize()

icc.simulate(30.)

icc.plot_results()

The results of this simulation can be seen in Figure 3. It is
clear that the system is not stable, as would be expected from
a proportional controller in an underdamped system. Next we
simulate with a non-zero learning rate for the input correlation
rule, obtained by replacing the second line of the code above by
icc.affs2ic_syn_spec[’lrate’] = 40.

The results can be seen in Figure 4. The input correlation rule
is surprisingly effective, despite not using input filter banks (Porr
and Wörgötter, 2006).

3. THE DRACULAB APPROACH TO
NEURAL SIMULATION

A Draculab network is a collection of interconnected units,
optionally interacting with a plant.

With the exception of source units, all units are
continuous-time dynamical systems arising from an ordinary
differential equation (ODE). Although a unit’s ODE may
be multidimensional, its output is always one-dimensional.
Connections between units have a temporal delay and a synapse
type. Temporal delays are multiples of a minimum delay.
Synapses can too be dynamical systems, modifying their weights
in response to presynaptic and postsynaptic events.

Plants are continuous dynamical systems that can be modeled
with ODEs. Like units, they can receive input connections from
multiple units, and unlike units they can produce several output
values. Plants can be used to model a physical system that is being
controlled by the units in the network.

In mathematical terms, a Draculab network is a first-order
system of Delay Differential Equations (DDEs) of the form:

u̇(t) = f
(

t, u(t), u(t − τ1), u(t − τ2), . . . , u(t − τk)
)

,

where u(t) ∈ R
n is a state vector that includes the state variables

for all units, plants, and synapses. The constants τi correspond
to the connection delays, which explains the dependence on the
u(t − τi) functions.

An initial value problem (IVP) for this system involves finding
a solution u(t) for t > t0 ∈ R given an initial state φ(t) for
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FIGURE 4 | Output of the closed loop simulation using the input correlation rule to adjust the synaptic weights of the afferent inputs to the control unit.

t ∈ [t0 − τ , t0], with τ being the largest τi value. Notice that an
IVP for a finite-dimensional ODE requires an initial state that
is a finite-dimensional vector, whereas the DDE IVP requires a
function φ :R → R

n defined in the interval [t0−τ , t0] as its initial
condition. In other words, the state of the DDE at any time t0 is
the full trajectory in state space for the time interval [t0 − τ , t0],
which is contained in the φ function.

The type of DDE that Draculab must solve, shown in
the equation above, is relatively well-understood (Bellen and
Zennaro, 2013). Moreover, there are well-established numerical
methods for solving IVPs for this type of equation (Shampine
and Thompson, 2009; Bellen and Zennaro, 2013). The simplest
and most common numerical approach may be to adapt linear
multistep methods for ODEs. Linear multistep methods for an
ODE system u̇ = f (t, u) use an iterative procedure where
given the state u(tn) we find the state at the next time point
tn+1 with a formula u(tn+1) = u(tn) + L, where L is a linear
combination of values of f evaluated at intermediate time points
in [tn, tn+1]. This includes the very common Euler and Runge-
Kutta methods.

As an illustrative example, we can adapt the forward Euler
method to find an approximate solution of the system u̇(t) =

1 + u(t − 1), with initial conditions u(t) = 0 for t ∈ [−1, 0].
Using a timestep 1t = 0.1 we can begin with u(0) = 0, and find

u(0.1) = u(0)+ 1t(1+ u(−1)) = 0.1. Repeating this procedure
iteratively we find u(n1t) = n1t for n = 0, 1, . . . , 10. At this
point our first calculated value enters the right-hand side of the
equation, so at the next iteration we have u(1.1) = u(1)+1t(1+
u(0.1)) = 1.11. It is clear that we can continue this process at
time tn as long as we maintain in memory the values of u(t) for
t = tn − 1t, tn − 21t, . . . , tn − 101t.

Draculab uses the approach of adapting linear multistep ODE
numerical methods, which for the general case requires access
to all past values of the solution in the time span required
by the delays. To implement this, we begin by specifying a
minimum delay (called min_delay), which is the step size of
the simulation. The simulation step size is called min_delay
because the minimum value among the connection delays is an
upper bound on the step size.

For example, in the system:

dx(t)

dt
= y(t − 0.2),

dy(t)

dt
= −x(t − 0.5);

there is a minimum delay of 0.2 s, and to simulate the system
we need to store values of x spanning the last 0.5 s, and values
of y spanning the last 0.2 s. Using this we can advance the state
from time t to time t + 0.2 using a standard ODE solver. The
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simulation can thus proceed with time steps of size 0.2, although
the numerical solver may calculate many states at intermediate
time points for each time step. In order to simplify the
numerics a further requirement is that all delays are multiples of
min_delay, so for this example min_delay could actually be
0.1, or some other common divisor of 0.2 and 0.5. Furthermore,
the user may set a smaller value of min_delay in order to
enhance numerical precision (see Appendix B).

In Draculab every unit has a buffer with past activation values
spanning a time interval equal to the longest delay in the unit’s
projections. The network parameter min_buff_size in the
first example of section 2 indicates how many values are stored
for a min_delay time period in all buffers; the number of
past activation values in a unit’s buffer depends on how many
min_delay time periods it spans. If unit A sends a projection
to unit B, when B is updating its state it will request unit A for
any past values that it requires. Unit A will respond to these
requests by using linear interpolation on the values stored in its
buffer. It is possible to specify other interpolation methods (see
section 9 andAppendix B). Moreover, for some implementations
of ODE integration (such as the forward Euler example above)
interpolation is not required (see section 5).

In Draculab this is transparent to a user writing a new unit
model. All the user needs to do is to create a new class for
their custom unit, and to have that new class inherit from the
unit class. This will provide the new class with the methods that
handle buffers and integration, which use Cython optimizations
and Scipy’s odeint numerical solver by default; a different
solver can be specified for a unit with the integ_meth attribute
of its parameter dictionary. The new unit class only needs to
specify a constructor (__init__) to initialize its variables, and
a derivatives(y, t) method, that will tell the numerical
ODE solver what’s the derivative of the unit’s firing rate at
time t, given that the current state is y. Figure 5 provides the
code implementing a simple linear unit, where this can be seen
explicitly. All the functionality of the unit is implemented using
3 lines.

At this point it is also possible to read the method used
to run the simulations (network.run), whose source code is
in Figure 6. The reader is encouraged to have a look at this
short example.

A unit has a single output, but it may many more dynamical
variables used to assist the computation of synaptic dynamics
and its own firing rate. The firing rate of the unit is a fast
variable, integrated with the odeint solver. Units may have
other variables, often evolving on slower timescales, updated
every min_delay time units with a user defined update
method. These variables are usually required to compute synaptic
plasticity. For example, in the Law and Cooper version of the
BCM plasticity rule (Law and Cooper, 1994) the synaptic weights
evolve according to the equation:

w′ = αxprexpost
(

xpost − θ
)

/θ

where xpre and xpost are the presynaptic and postsynaptic firing
rates, α is the learning rate, and θ is the average of the squared
postsynaptic activity. To avoid duplicate calculations, a variable

like θ should be computed by the units rather than by the synapse
objects. In this case, θ can be obtained using a first order low-
pass filter on xpost , and when this is implemented the unit updates
two state variables: its firing rate, and the low-pass filtered value,
which is a synaptic requirement.

“Requirements” are updated every time the unit.update
function is called. This is also the function that updates the firing
rate and the unit’s buffer. unit.update handles requirements
by calling the function pre_syn_update, which invokes all
functions required for this end. If the user wants to write a
plasticity rule that uses a value such as the sum of inputs, or
something more exotic, this can be done by writing a function
that updates the required value, and by including that function
among the ones called by pre_syn_update.

A design convention in Draculab is that synapses do not
have buffers to store past activation values, as units do. Synapses
are updated once per simulation step, and as far as the unit’s
firing rate dynamics are concerned, the synaptic weights are
constant during this min_delay period. This comes from
the observation that the changes in synaptic weights tend to
be much slower than the changes in firing rate, so we might
as well update them using a simple integration rule (such as
forward Euler) explicitly written in the synapse’s update method.
This can bring significant gains in efficiency. For example,
the bcm_synapse class implements the BCM learning rule
described above, and has the following updatemethod, getting
called once per simulation step by the unit.update method
of its postsynaptic unit.

def update(self, time):

post = self.net.units[self.postID].get_

lpf_fast(0)

avg_sq = self.net.units[self.postID].sq_lpf_slow

pre = self.net.units[self.preID].get_lpf

_fast(self.delay_steps)

# A forward Euler step

self.w = self.w + self.alpha * post * (post

- avg_sq) * pre / avg_sq

There are some clarifications to make about this piece of code:

• self refers to the synapse object, self.net to the network

object, and sel.net.units is a list that contains all the
units in the network. The index of a unit in this list is

its unique identifier (ID). The synapse keeps the identifiers
of its postsynaptic unit (postID), and its presynaptic unit
(preID). The valuealpha is the length of the simulation step

times a learning rate.
• This implementation of the learning rule does not really

use the pre- and postsynaptic firing rates. Instead it applies

low-pass filters with a fast time constant to the firing

rates, and uses that in the equations. A version of the

firing rate passed through a first order low-pass filter is
a standard synaptic requirement in Draculab, as it can
promote stability in continuous-time systems. Draculab uses
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FIGURE 5 | The linear unit class. Docstring comments were removed for brevity.

FIGURE 6 | The network.run method receives the time to simulate as an argument, and advances the simulation taking steps of min_delay length. At each step the

units, synapses, and plants use their own methods to advance their state variables. The values of the state variables and of the source units are stored in the

unit_store and plant_store Numpy arrays. np stands for the numpy module. Docstring comments removed for brevity.

the analytical solution of the filter’s differential equation in
order to implement an explicit solver. A unit’s lpf_fast
value is its “fast” low-pass filtered activity, and a unit’s
get_lpf_fast(n) method returns the lpf_fast value
as it was n simulation steps before (to account for
transmission delays).

Plants are very similar to units, but they may have more than

one state variable that gets updated by the odeint solver. Units
can send projections to plants, and plants can send projections

to units, in both case mediated by synapses. Direct connections
between plants is not supported.

As with units, to create a new plant a user has to define a
class. This class only requires __init__ and derivatives
methods to be defined.

From the information so far it is possible to get a
general outline of how a Draculab simulation proceeds when
network.run (Figure 6) is executed:

1. The network object stores all unit and plant values from the
previous step.

2. The network object requests all units and plants update
their state.

3. In unit.update:

(a) Units first update the content of their buffers from the
current simulation time t, to t+min_delay, using the
values in the buffers of all other units, and their own
integration method (odeint by default).

(b) Units run pre_syn_update, which updates the values
of all their requirements.

(c) Units call the update method of all synapses providing
them inputs. This updates their weights.

4. In plant.update the plants update the content of
their buffers.

The next section brings a little more detail to this process.

4. THE ESSENTIAL DRACULAB DATA
STRUCTURES

Draculab uses four basic classes to run simulations: network,
unit, synapse, and plant. These comprise the core
simulator. Each instance of the network class is a full neural
network with its own set of units, synapses, and plants, which the
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network stores in 3 lists named units, syns, and plants. As
mentioned in section 3, each unit has an identifier ID, which is
its index in the units list.

Representing the connectivity information in a network with
no delays can be done with a weight matrix. Furthermore,
the product of the weight matrix times the vector of
unit activities conveniently provides the sum of inputs
times their synaptic weights for all units. This is not so
straightforward when there are connection delays, so a new
approach is needed. Draculab provides two different options
to represent connections. The first one, to be described
in the next section, uses advanced Numpy array indexing
so that each unit has an index representing all its inputs
and their delays. The second one, to be described in this
section, solves all connectivity issues using 3 lists: the
aforementioned syns, and two other lists called delays

and act.
Each element in syns is another list. The list syns[i]

contains all the synapses from the projections received by the
unit with ID=i. syns[i][j] is the synapse object for the j-
th connection to the i-th unit. The delays list has the same
structure: delays[i][j] is the delay of the j-th connection
to the i-th unit. act has also this structure, but it requires
some clarifications.

Every unit has a get_act(time) method that provides its
activity (firing rate) as a function of time. Thismethod obtains the
activity using interpolation on the values of the unit’s buffer. The
value act[i][j] contains a reference to the get_actmethod
of the presynaptic unit for the j-th connection to unit i.

Using these three lists it is simple to get the j-th input to
unit i at time t: it is act[i][j](t - delays[i][j]).
To further illustrate this, here is a plausible implementation of
the unit.get_input_sum method, which provides the sum
of inputs times their synaptic weights:

sums = 0.

for j in range(len(syns[ID])):

sums += syns[ID][j].w * act[ID][j](t - delays[ID]

[j])

return sums

The actual implementation uses a list comprehension, and
may not be as readable to some, but it gets everything done in
a single line:

def get_input_sum(self,time):

""" Returns the sum of all inputs at the given

time, each scaled by its synaptic weight.

The sum accounts for transmission delays.

Input ports are ignored.

"""

return sum([ syn.w * fun(time-dely) for syn,

fun,dely in

zip(self.net.syns[self.ID],

self.net.act[self.ID],

self.net.delays[self.ID]) ])

Lists can offer a clear solution to the problem of connectivity.
It is not the fastest way, but it agrees with the principles of Python
and Draculab. Simple is better than complex. Still, sometimes we
may want to trade some simplicity for the sake of speed, so the
approach of section 5 is offered.

5. IN SEARCH FOR SPEED

The architecture described so far was created with simplicity
and flexibility in mind, but it would be great if it could be fast

too. Speed, however, is limited because the get_input_sum

method shown above relies on Python data structures. In
particular, the connectivity structure is described by the

delays and act nested lists. The speed bottleneck imposed

by this can be broken through a design we call the flat
network.

In a flat network the data of all the unit buffers is placed in a
single 2-dimensional numpy array in the network class, called

acts. It could be said that all the unit buffers are flattened into

acts. The unit class still retains its buffer attribute, but it

now becomes a view of a slice of the acts array. Being a view

means that the buffer of a unit is a numpy array that uses the same
memory addresses as its corresponding entries in theacts array.

With the past activation data for all units contained in the
acts array, connectivity and delays can be represented by having
a structured index in each unit, so that when applied to acts,
it retrieves all the input values that the unit needs to calculate
its input sum at several time points. In other words, if a unit
has an idx index, then acts[idx] will return an array with
all the inputs the unit received during a min_delay time
period. In the current implementation, if the unit has m inputs,
then acts[idx] hasm rows and min_buff_size columns.
Using this array is straightforward to calculate the input sums to
the unit.

To the user all of this is transparent. Creating a flat network is
identical to creating a normal Draculab network. The difference
is that the run method used to start simulations is substituted
by the flat_run method, which automatically uses the flat
network. The first thing that flat_run does is to call the
network.flatten method, which moves the unit buffers
into the acts array, along with other preparations. The rest of
flat_run is very similar to run except for the method that
updates the units’ activity.

To a developer writing a Draculab unit model, there is a small
difference between writing it for a regular or a flat network.
As mentioned before, for the regular network the user needs to
write init and derivatives methods. For a flat network
a dt_fun method must be written instead of derivatives.
The difference between these two is that whereasderivatives
retrieves the input sum using the get_input_sum method,
dt_fun retrieves the input sum directly from an array in the
unit called inp_sum. For example, here is the dt_funmethod
for linear units:

Frontiers in Neuroinformatics | www.frontiersin.org 9 April 2019 | Volume 13 | Article 18

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Verduzco-Flores and De Schutter Draculab

def dt_fun(self, y, s):

return ( self.inp_sum[s] - y ) * self.rtau

As this suggests, for most developers using a flat network
will not bring an increase in complexity. Flat networks are more
challenging only for those wanting to write new integration
methods for the unit, as this entails advanced array indexing.
Currently, all integration methods used for flat networks use a
fixed step size, because with these it is not necessary to interpolate
in order to obtain the required past activation values. There
are versions of the “Euler,” “Euler-Maruyama,” and “Exponential
Euler” integration methods using this scheme. It should be
noted, however, that flat networks can work with solvers that
use variable step sizes. In fact, the default solver for plants in flat
networks is Scipy’s solve_ivp.

The reduction in execution time from using a flat, non-
interpolating integration method is dependent on the specific
structure of the network, but it is common to observe that
a flat network is at least 3 times faster than the analogous
regular network.

Readers who have progressed this far have already peeked
at the heart of Draculab, and should have no major trouble in
creating custom models and tweaking things after going through
the tutorials.

6. NOISE

Noise can be an important component of neural computations
(Destexhe and Contreras, 2006; Swain and Longtin, 2006), and is
sometimes part of rate models (Hahne et al., 2017).

External noise present in the inputs to a unit is straightforward
to implement using source units. A source unit that provides
noise input can be created by assigning it a function that
produces random values from a particular distribution. It is
recommended to use the numpy.random library for this
purpose, because Draculab uses this library for its own random
routines (e.g., to create random initial weights or random
connectivity). Thus, if numpy.random is used to provide noisy
inputs then a single seed initialization [e.g., an instruction like
numpy.random.seed(546789054)] permits to reproduce
the simulation with the same random values.

Intrinsic noise can also be added to the unit models, turning
their ODEs into Langevin equations. Specifically, if the equation
of the model is:

x′(t) = f (x, t)

it can be turned into the stochastic differential equation:

dx(t) = f (x, t)dt + σdW(t)

whereW(t) denotes a Wiener process with unit variance.
Turning the ODE into an SDE can be done by substituting

the odeint numerical solver by a stochastic integrator. This can
be done by specifying a different integration method with the
integ_meth entry of the unit’s parameter dictionary. Currently

two stochastic integrators (Euler-Maruyama and “stochastic
exponential Euler”) are available, as Cython utilities for regular
networks, and as methods of the unit class for flat networks.

It is easy to create simulations where different units
have different integration methods. The one restriction is
that all integration methods must be either for regular, or
for flat networks. The integration methods have different
implementations for these two cases, and the network can’t mix
flat and regular methods.

7. BEYOND THE CORE SIMULATOR

Writing down all the parameters and connectivity details of a
complex network can be a daunting task, even with a simulator
handling the basic creation and simulation routines. Draculab’s
general approach is to separate the core simulator from the tools
used to make simulations easier to write and visualize.

Python provides enough power so that individual users can
create configuration and visualization solutions according to the
model they are writing. Nevertheless, we offer a few tools to make
this easier. First and foremost is the topology module, which
allows to create spatially structured connections. The second are
the ei_net and ei_networkmodules. These are a collection
of Python classes and methods to quickly create a particular
type of networks with standard parameters, and to visualize the
simulation results using Matplotlib.

Draculab’s topology model is inspired in NEST’s topology
module1. Although the tools to define connection profiles are
similar, there are some key differences, the main one being the
Draculab’s topologymodule does not use layer objects.

The function used to create structured connections is
called topo_connect. As with network.connect, the first
argument to topo_connect is a list with the IDs of the
units sending the connections, and the second argument is a
list with the IDs of the units receiving the connections. Unlike
network.connect, all units must have a coordinates

attribute that describes their spatial location. The third argument
is a connection specification dictionary, which determines the
probability of connection (and optionally strength of synaptic
weights) between any two units based on their coordinates. The
fourth argument is a synapse specification dictionary, with the
same format as in network.connect.

Since topo_connect expects units with spatial coordinates,
the topology module also includes a method to create
them, called create_group. This method resembles
network.create, but it receives an extra geometry

parameters dictionary as a way to specify how many units to
create, and where to put them. Currently create_group

can only create flat two-dimensional layers with units in a grid
or in random arrangements. Still, both topo_connect and
create_group are written to support a possible expansion to
3D coordinates. An alternative to create_group is to provide
a list with coordinates to network.create.

1http://www.nest-simulator.org/introduction-to-pynest/part-4-topologically-

structured-networks/

Frontiers in Neuroinformatics | www.frontiersin.org 10 April 2019 | Volume 13 | Article 18

http://www.nest-simulator.org/introduction-to-pynest/part-4-topologically-structured-networks/
http://www.nest-simulator.org/introduction-to-pynest/part-4-topologically-structured-networks/
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Verduzco-Flores and De Schutter Draculab

The ei_net and ei_network modules have classes that
can build networks with 3 populations: one with excitatory
units, one with inhibitory units, and one with source units.
All parameter dictionaries are written into these classes, so
networks can be created with a single instruction. After creation
the default parameters can be modified (these modifications get
automatically logged), and then the network can be built. At this
point simulations can be run and results can be visualized, either
with plots or with animations. The example network from section
2.2 used this approach at a smaller scale. Specifying simulations
by modifying a standard set of parameters greatly reduces their
description length, and the possibility of errors.

The difference between ei_net and ei_network is that
ei_net specifies a single “layer” object, whereas ei_network
has tools to create and connect several “layer” elements. Both
modules provide solutions to the most common tasks in
neural network simulations, including parameter specification,
input configuration, storage, documentation, visualization of
connections, and visualization of results. These two modules
implement a particular type of network for a particular type of
simulation, but it is expected that individual users can adapt
these tools to their own needs. This complements various other
choices that users have, such as NeuroTools and Sumatra (http://
neuralensemble.org/) for simulation management and analysis,
and scikit-learn (https://scikit-learn.org/stable/) for machine
learning analytics.

It is easy to program a plant to interact with the network,
as long as the plant is simple, such as a planar arm. Things are
harder when the plant is more complex, such as the model of a
particular robot, and things are downright hard if the actuator
has to interact with a virtual environment. Fortunately there are
physics simulators written with these considerations in mind
(Ivaldi et al., 2014). When using an external physics simulator
the plant object can stop being an implementation of the physics
simulation, and become an interface to the physics simulator.
Writing a simulation where Draculab interacts with a physics
simulator may require considerable expertise.

A relatively simple option to integrate a Draculab controller
in a virtual environment is provided by the HBP neurorobotics
platform (NRP) (Hinkel et al., 2017) (https://neurorobotics.net).
The NRP calls a Python transfer function on each simulation step,
and Draculab can be used in it. In part this is possible because
Draculab’s core is compatible with Python 2.7, although it was
developed with Python 3.5.

The obvious drawback of using the NRP is that the user needs
to understand how to program it. Also, a basic understanding
of the services provided by the Robot Operating System
(https://www.ros.org/) may be necessary in some cases. Physics
simulators make it easier to produce a virtual environment, but
they bring a new learning curve.

8. ALTERNATIVES TO DRACULAB

There are excellent simulators for firing rate networks (Aisa
et al., 2008; Cofer et al., 2010; Rougier and Fix, 2012;
Bekolay et al., 2014; Vitay et al., 2015; Tosi and Yoshimi,

2016), but it is unusual to find rate simulators that take into
account connection delays. To the authors’ knowledge there
are currently three simulators with this capability: The Virtual
Brain (Sanz Leon et al., 2013) (https://www.thevirtualbrain.org),
MIIND (de Kamps et al., 2008) (http://miind.sourceforge.net/
index.html), and NEST (Diesmann and Gewaltig, 2001) (http://
www.nest-simulator.org/).

The Virtual Brain is a simulation platform with a graphical
user interface. Among other things, this platform includes data
management and analysis functionality so that models with
realistic large-scale connectivity of identified brain regions can be
compared with brain scanning data such as fMRI, MEG, or EEG.
Although it is an open source project, it does not appear feasible
for normal users to add their own custom models or to integrate
the platform with biomechanical simulations.

MIIND is a very flexible framework for simulation of neural
networks, consisting of a C++ library that can be used to describe
network components in a modular fashion, and to perform
simulations. Perhaps the most distinctive feature of MIIND is
the support it offers for population density techniques, which
use differential equations to model the distribution of states for
a neural population. This can describe the behavior of large
populations of leaky-integrate-and-fire neurons at a fraction of
the computational cost.

The use of connection delays is not explicitly mentioned
in the MIIND 2008 paper (de Kamps et al., 2008), or in
the current version of the tutorial2, but a procedure to
introduce them is present in the API documentation, and
simulations with connection delays are already producing results
(personal communication).

NEST is a simulator for spiking neural networks, but it has
recently incorporated firing rate models (Hahne et al., 2017) for
the benefit of easy validation of mean-field approaches, and at
some point in the future to allow multi-scale modeling with
both spiking and rate neurons. Over the years NEST has become
a mature software project, with a large C++ codebase capable
of handling massive parallel simulations on supercomputers.
Learning how to create new neuron or synapse models is thus a
significant endeavor, but the resulting implementations can take
advantage of NEST’s infrastructure.

Considering that NEST is often taken as a reference for the
performance of spiking neural models, it seems appropriate to
use its rate models to assess Draculab’s efficiency. NEST’s rate
models still lack features such as sources of temporally varying
inputs or plastic synapses, but we expect that development
will continue to move forward. At the time of this writing
continuous-time inputs to rate models were soon to be released
(personal communication).

As an initial exploration the rate_neuron_dm example
distributed with the NEST version 2.16 codebase was modified by
changing its instantaneous connections to delayed connections
with a 4 millisecond delay. The elapsed simulation time was
compared with that of an equivalent Draculab implementation
(Appendix A). Both simulations showed the same response in
the absence of noise. When the NEST file is modified only

2http://miind.sourceforge.net/tutorial.pdf
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TABLE 1 | Simulation times for the rate_neuron_dm model.

resolution 0.001 0.01

Draculab time 5.8 s 1.0 s

NEST time 92.5 s 1.5 s

by placing a delay in the connections the execution time rises
sharply, as seen in Table 1. Such a result is restricted to networks
with small resolution values. This resolution is a kernel parameter
in NEST, specifying how much precision is available in the
output. The closest parameter in Draculab may be the minimum
delay divided by the minimum buffer size, which is matched with
NEST’s resolution for the comparisons of this section. Reducing
the resolution in the rate_neuron_dm example dramatically
brought down the execution time for NEST (Table 1).

Draculab is not designed for large networks, whereas NEST
is highly adapted for this. To explore how computation times
scale with network size both simulators were programmed
with equivalent network simulations (Appendix A). For this
comparison, Draculab used a flattened network. Figure 7 shows
the results. For small networks both simulators perform similarly,
but NEST clearly scales better for large networks.

It should be noted that NEST, MIIND, and Draculab
offer complementary approaches. Draculab’s approachable
architecture and simple Python interface permits researchers
to quickly create and test prototypes, going through several
iterations until the right properties are found. When the need
for large or fast simulations arises, one of the C++ alternatives
can be used. NEST is a great choice for users who want to
run spiking and rate simulations side by side. On the other
hand MIIND may be the best option when population density
techniques are appropriate. The Virtual Brain is an easy choice
when comparison with brain scanning data is required.

9. DISCUSSION

The inclusion of connection delays in a firing rate simulator
merits some consideration.

Research in firing rate neural networks has brought a large
number of results. Many of the early results produced the Parallel
Distributed Processing Paradigm (Rumelhart and Mcclelland,
1986) (including backpropagation and Boltzmann machines),
eventually leading to the more recent “deep learning” trend
(Schmidhuber, 2015). Because of their feedforward connectivity
and lack of continuous dynamics these models have deviated
from biological plausibility, and it is unclear whether their
computation style is anything like biological brains. There is
also a wealth of firing rate models that represent cognitive
processes (e.g., Carpenter and Grossberg, 1991; O’Reilly, 1998;
Mastebroek et al., 2001; Eliasmith, 2013). Although these latter
models aim for biological plausibility, virtually all of them
lack connection delays.

The omission of connection delays is not surprising.
Mathematically it moves the models from the realm of linear
algebra into functional analysis, with the consequent increase
in complexity. Computationally it forces the storage of past

activation values for all units, with the consequent increase in
computational costs. And then again, delays may not change
the network’s dynamics, considering that in the brain delays can
be as short as one millisecond. Indeed oftentimes delays in the
millisecond range do not change the network’s dynamics, but it
can’t be denied that this is not always the case.

In the realm of spiking networks many arguments have
been presented to support the importance of precise timing
(Rieke, 1999), in which connection delays play a crucial part
(e.g., Izhikevich, 2006). On the other hand, the hypothesis of
firing rate coding seems to be the opposite of precise timing
playing an important role. This last characterization of firing
rate is incorrect. When a network’s dynamical system has non-
linearities such as the ones creating a separatrix in the phase
plane (Ermentrout and Terman, 2010), minute changes in the
firing rate can create very different dynamical trajectories, and
this translates in minute changes in timing causing very different
results. This compounds when the firing rate can vary quickly,
(e.g., when it comes from a population average, or when its
time window for averaging is short). Precise timing can be
important in firing rate networks, it’s just that the rate is invariant
to permutations in the identity of the neuron producing each
individual spike (in population averages).

It is thus clear that in principle the connection delays can
play an important role in firing rate networks too, and this role
comes into focus when simulations aim to produce biologically
plausible closed-loop control in continuous time. Firstly, it is
common knowledge in control theory that the presence of
delays in closed-loop feedback control imposes fundamental
limitations on performance (Mirkin and Palmor, 2005), and
can create chaos even on first order systems (Mackey and Glass,
1977). These performance limitations have prompted the rise
of predictive control. As an example of how this is important,
the cerebellum has been hypothesized to be a predictor that
permits motor control signals with millisecond precision despite
delays in the sensorimotor loop (Wolpert et al., 1998; Dean and
Porrill, 2008; Imamizu and Kawato, 2009; Verduzco-Flores and
O’Reilly, 2015). Secondly, firing rate coding is found in sensory
receptors (Ahissar et al., 2000; Salinas et al., 2000; Butts and
Goldman, 2006), and is the way that motor neurons control
contractions of skeletal muscle (Botelho, 1955; Ali et al., 1970;
MilnerBrown et al., 1973). Rate coding is thus often found in the
interaction of the vertebrate nervous system with its sensors and
with its actuators.

This type of considerations are not new to neural modelers.
For example, there were plans to provide built-in time-delayed
connections in the DANA simulator in order to provide
biological realism (Rougier and Fix, 2012), and the NEST
simulator is developing its own infrastructure to validate rate
models (Hahne et al., 2017). Draculab is also a response to this
need, but it also has an unusual aim: that most users can work
at the source code level when they need something completely
different. The extent to which this can be done depends on
the clarity of the design, as well as the user’s sophistication
level. It is plausible that Python is clear enough, Draculab is
simple enough, and researchers in computational neuroscience
are capable enough.
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FIGURE 7 | Simulation times as a function of the number of units.

Draculab embodies particular research principles. That neural
networks are more interesting when they can implement
cognitive functions, and when they can do it with biological
plausibility. That cognitive models are more illuminating when
they span the action-perception loop. Those principles are the
source of Draculab’s characteristics, such as rate models, delays,
and plants.

Future development plans include:

• performance optimizations (without adding too much
complexity to the simulator core),

• improvements to the unit tests,
• improvements to the documentation,
• improving the interface with the neurorobotics platform.

Regarding this last point, the HBP neurorobotics platform
will provide a new API to integrate it with neural simulators
(personal communication). This may be better than the
current method, which embeds Draculab in a transfer function.
Developers of the neurorobotics platform have also begun
translating several OpenSim (Delp et al., 2007) (http://opensim.
stanford.edu/) models into the NRP, making it appropriate for
biomechanic simulations.

A final point tomake is in regard to the precision and accuracy
of the solutions. Precision is of course dependent on the solver
and the parameters used. The simulation step size given by
min_delay is always important. In the case of the odeint and
solve_ivp solvers the rtol and atol parameters become
relevant. When using the forward Euler method, the step size is
min_delay/min_buff_size. Moreover, the interpolation
method used to retrieve past values can also affect precision.
Draculab can use Scipy’s interp1d function for this end by
modifying two lines in the units.py file, but this usually comes
with a reduction in speed.

It is not always obvious how the precision of a simulation
will be altered depending on parameter settings. To help users

investigate this, an IPython notebook was created (the file
tests/compare_accuracy.ipynb of the distribution),
where it is easy to test various simulator configurations. As
an initial guide, the results of running a network with high-
precision parameters were compared against the results when
performing various parameter modifications. This is reported
in Appendix B.

There is currently no agreed standard to test the accuracy
of neural simulators. In the absence of a common benchmark,
the approach taken to verify that solutions were correct
was to compare runs of the same network in different
simulators. In particular, the same network was simulated
using XPP (Ermentrout, 2012) and Simulink (https://www.
mathworks.com/products/simulink.html), and the resulting unit
activities were compared with Draculab. Results were almost
identical for the three simulators. This can be found among
Draculab’s unit tests. Additionally, the performance comparison
with NEST (section 8) provided an opportunity to compare
Draculab’s and NEST’s output. Results generally agree, although
there are small differences for networks with many units,
perhaps from differences in the way that initial conditions
are specified.

Draculab’s source code can be obtained from this repository:
https://gitlab.com/sergio.verduzco/draculab
It is distributed freely under the GNU GPLv3 license, with the
hope that it can become a valuable tool for researchers who find
that firing rate models with delays and closed-loop control hit
a sweet spot of biological plausibility, technical feasibility, and
scientific insight.

DATA AVAILABILITY

The source code created for this study can be found in the
Draculab repository:https://gitlab.com/sergio.verduzco/draculab
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