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Long non-coding RNAs (lncRNA) have emerged as important regulators of lipid

metabolism and have been shown to play multifaceted roles in controlling transcriptional

gene regulation, but very little relevant information has been available in fish, especially

in non-model fish species. With a feeding trial on a typical marine teleost tongue sole

C. semilaevis followed by transcriptomic analysis, the present study investigated the

possible involvement of lncRNA in hepatic mRNA expression in response to different

levels of dietary DHA and EPA, which are two most important fatty acids for marine

fish. An 80-day feeding trial was conducted in a flow-through seawater system, and

in this trial three experimental diets differing basically in DHA/EPA ratio, i.e., 0.61

(D/E-0.61), 1.46 (D/E-1.46), and 2.75 (D/E-2.75), were randomly assigned to 9 tanks

of experimental fish. A total of 124.04G high quality genome-wide clean data about

coding and non-coding transcripts was obtained in the analysis of hepatic transcriptome.

Compared to diet D/E-0.61, D/E-1.46 up-regulated expression of 178 lncRNAs and

2629 mRNAs, and down-regulated that of 47 lncRNAs and 3059 mRNAs, while

D/E-2.75 resulted in much less change in gene expression. The co-expression and

co-localization analysis of differentially expressed (DE) lncRNA and mRNA among dietary

groups were then conducted. The co-expressed DE lncRNA and mRNA were primarily

enriched in GO terms such as Metabolic process, Intracellular organelle, Catalytic activity,

and Oxidoreductase activity, as well as in KEGG pathways such as Ribosome and

Oxidative phosphorylation. Overlap of co-expression and co-localization analysis, i.e.,

lncRNA–mRNA matches “XR_523541.1–solute carrier family 16, member 5 (slc16a5)”

and “LNC_000285–bromodomain adjacent to zinc finger domain 2A (baz2a),” were

observed in all inter-group comparisons, indicating that they might crucially mediate the

effects of dietary DHA and EPA on hepatic gene expression in tongue sole. In conclusion,
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this was the first time in marine teleost to investigate the possible lncRNA–mRNA

interactions in response to dietary fatty acids. The results provided novel knowledge of

lncRNAs in non-model marine teleost, and will serve as important resources for future

studies that further investigate the roles of lncRNAs in lipid metabolism of marine teleost.
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INTRODUCTION

Long non-coding RNAs (lncRNAs) are a class of RNA molecules
with more than 200 bases that function as RNAs with little
or no protein-coding capacity (Spizzo et al., 2012). LncRNAs
represent a new frontier in molecular biology. More and more
studies have demonstrated that lncRNAs play critical roles in
various biological processes, including chromatin modification,
regulation of transcription, influence of nuclear architecture
and regulation of gene expression at post-transcriptional and
post-translational levels, and also interact with DNA, RNA and
proteins during these processes (Zhu et al., 2013; Kornfeld and
Brüning, 2014; Gardini and Shiekhattar, 2015; Lopez-Pajares,
2016; Smekalova et al., 2016; Delás andHannon, 2017; Long et al.,
2017).

LncRNAs have emerged as important regulators of lipid
metabolism, and have been shown to influence lipid homeostasis
by controlling lipid metabolism in the liver and by regulating
adipogenesis (Chen, 2016). In humans and other mammals, loss-
and gain-of-function analysis of identified lncRNAs showed that
lncRNAs are important regulators of a series of lipid metabolism-
related processes such as plasma triglyceride accumulation
(Cui et al., 2015; Li et al., 2015), cholesterol transportation,
apolipoprotein A1 (APOA1) expression (Halley et al., 2014; Hu
et al., 2014), adipose proliferation (Xu et al., 2010; Liu et al.,
2014a,b), brown adipose tissue activation (Alvarez-Dominguez
et al., 2015), and adipogenesis (Cooper et al., 2014; Divoux et al.,
2014; Zhao et al., 2014; Gernapudi et al., 2015; Xiao et al., 2015).

In fish, however, little information has been available either
about the identification and characterization of lncRNAs or about
the roles of lncRNAs in lipid metabolism. Limited studies on
lncRNAs in fish have been restricted to model fish species, and
most of the studies focused on developmental biology (Kaushik
et al., 2013; Liu et al., 2013; Haque et al., 2014; Dhiman et al.,
2015; Al-Tobasei et al., 2016; Wang et al., 2016, 2017; Sarangdhar
et al., 2017; Hu et al., 2018). Therefore, following our previous
studies on lipid/fatty acid nutrition of marine fish (Zuo et al.,
2012a,b; Xu et al., 2016, 2017), the present study was aimed at
investigating the potential involvement of lncRNAs in effects of
dietary fatty acids on a non-model marine teleost tongue sole
Cynoglossus semilaevis, which is also an important aquaculture
species. A feeding trial was conducted in this study, followed by
hepatic transcriptome analysis.

Docosahexaenoic acid (DHA, 22:6n-3) and eicosapentaenoic
acid (EPA, 20:5n-3) are the most important essential fatty acids
for marine fish. Previous studies have widely demonstrated the
critical roles of DHA and EPA in a series of physiological
functions of marine fish such as functions of visual and
neural systems (Bell et al., 1995; Furuita and Takeuchi, 1998;

Ishizaki et al., 2000, 2001; Benítez-Santana et al., 2007; Noffs
et al., 2009), bone development (Gapasin and Duray, 2001;
Roo et al., 2009), pigmentation (Villalta et al., 2008; Vizcaíno-
Ochoa et al., 2010), stress resistance (Kanazawa, 1997; Liu
et al., 2002), immune response (Zuo et al., 2012b; Xu et al.,
2016), and reproduction (Wilson, 2009; Xu et al., 2017).
However, more fundamental mechanisms involved are still
elusive. How DHA and EPA regulate physiological processes
at transcriptional and post-transcriptional levels needs to be
elucidated. Moreover, compared to total DHA+EPA contents,
the effects of DHA/EPA ratio were interesting as well but
relatively less studied (Sargent et al., 1999; Kim et al., 2002; Lee
et al., 2003; Wu et al., 2003; Skalli and Robin, 2004; Hamre
and Harboe, 2008; Wilson, 2009; Lund and Steenfeldt, 2011;
ØStbye et al., 2011; Tocher, 2015). Our previous studies with
marine species such as large yellow croaker Larmichthys crocea
(Zuo et al., 2012a), Japanese seabass Lateolabrax japonicus (Xu
et al., 2016) and tongue sole (Xu et al., 2017) have shown
the significantly different roles of DHA and EPA in some
physiological processes such as non-specific immune response
and gonadal steroidogenesis. In the present study, taking
advantage of completely sequenced genome data on tongue sole
C. semilaevis, a genome-wide hepatic transcriptome analysis was
conducted with tongue sole following an 80-day feeding trial with
diets containing different DHA/EPA ratios. Potential lncRNA–
mRNA interactions were thereafter analyzed based on the co-
expression and co-localization analysis of differentially expressed
lncRNAs and mRNAs among dietary groups. The results will
provide novel knowledge about lncRNAs in non-model marine
fish, and will serve as important resources for future studies that
further investigate the roles of lncRNAs in lipid metabolism of
marine teleost.

MATERIALS AND METHODS

Experimental Diets, Experimental Fish, and
Feeding Procedure
The experimental diets, experimental fish and feeding procedure
has been described in a previous study of ours (Xu et al., 2018).
Briefly, different levels of EPA enriched oil (containing 11.2%
DHA and 52.0% EPA; in the form of triglyceride; Xi’an Renbang
Biological Science and Technology Co., Ltd., Xi’an, China) and
DHA enriched oil (containing 69.5% DHA and 6.6% EPA; in
the form of triglyceride; Xi’an Renbang Biological Science and
Technology Co., Ltd., Xi’an, China) were supplemented to the
basal diet to obtain different DHA/EPA ratios, 0.61, 1.46, and
2.75, and the corresponding diets were designated as D/E-0.61,
D/E-1.46, and D/E-2.75, respectively (Tables 1,2).
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TABLE 1 | Formulation and proximate composition of the experiment diets (g

kg−1 dry matter).

Ingredient D/E-0.61 D/E-1.46 D/E-2.75

Fish meal 400.0 400.0 400.0

Soybean meal 200.0 200.0 200.0

Wheat gluten 120.0 120.0 120.0

Wheat meal 144.0 144.0 144.0

Vitamin premixa 10.0 10.0 10.0

Mineral premixb 10.0 10.0 10.0

Monocalcium phosphate 10.0 10.0 10.0

Choline chloride 10.0 10.0 10.0

L-ascorbyl-2-polyphosphate 2.0 2.0 2.0

Ethoxyquin 0.5 0.5 0.5

Soy lecithin 20.0 20.0 20.0

Soybean oil 15.0 15.0 15.0

ARA enriched oilc 6.0 6.0 6.0

Olive oil 18.6 21.2 22.7

EPA enriched oild 29.9 14.0 5.0

DHA enriched oile 4.0 17.3 24.8

PROXIMATE COMPOSITION

Crude protein 531.1 532.2 533.7

Crude lipid 118.2 119.2 121.6

Ash 114.1 114.6 114.4

aVitamin premix (mg or g/kg diet): thiamin 25mg; riboflavin, 45mg; pyridoxine HCl, 20mg;

vitamin B12, 0.1mg; vitamin K3, 10mg; inositol, 800mg; pantothenic acid, 60mg; niacin,

200mg; folic acid, 20mg; biotin, 1.2mg; retinol acetate, 32mg; cholecalciferol, 5mg;

alpha-tocopherol, 120mg; wheat middling, 13.67 g.
bMineral premix (mg or g/kg diet): MgSO4·7H2O, 1200mg; CuSO4·5H2O, 10mg;

ZnSO4·H2O, 50mg; FeSO4·H2O, 80mg; MnSO4·H2O, 45mg; CoCl2·6H2O (1%), 50mg;

NaSeSO3·5H2O (1%), 20mg; Ca(IO3)2·6H2O (1%), 60mg; zoelite, 13.485 g.
cARA enriched oil: containing 41.0% ARA (of total fatty acids); in the form of triglyceride;

Jiangsu Tiankai Biotechnology Co., Ltd., Nanjing, China.
dEPA enriched oil: containing 11.2% DHA and 52.0% EPA (of total fatty acids); in the form

of triglyceride; Xi’an Renbang Biological Science and Technology Co., Ltd., Xi’an, China.
eDHA enriched oil: containing 69.5% DHA and 6.6% EPA (of total fatty acids); in the form

of triglyceride; Xi’an Renbang Biological Science and Technology Co., Ltd., Xi’an, China.

The feeding trial was conducted in a flow-through seawater
system. Juvenile tongue sole C. semilaevis with an average initial
weight of 23.40 ± 0.45 g were used in the feeding trial. Each
diet was randomly assigned to triplicate tanks of 30 fish each.
Fish were hand-fed to apparent satiation twice daily. The feeding
trial lasted for 80 days. At the end of the feeding trial, after
anesthetized with eugenol, liver samples from 6 fish each tank
were collected, frozen with liquid nitrogen and stored at −80◦C
prior to analysis. The feeding trial was carried out in accordance
with the recommendations of Guidelines on Management of
Experimental Animals, Animal Care and Use Committee of
Yellow Sea Fisheries Research Institute. All sampling protocols,
as well as fish rearing practices, were reviewed and approved by
the Animal Care and Use Committee of Yellow Sea Fisheries
Research Institute.

RNA Isolation, cDNA Library Construction,
and Illumina Sequencing
Total RNA in liver samples was isolated using RNAiso Plus
(TaKaRa Biotechnology (Dalian) Co., Ltd., Dalian, China).

TABLE 2 | Fatty acid compositions of the experimental diets (% total fatty acids).

Fatty acid D/E-0.61 D/E-1.46 D/E-2.75

C14:0 1.36 1.35 1.36

C16:0 13.68 14.02 13.96

C18:0 3.88 3.77 3.67
∑

SFA 18.93 19.15 18.98

C16:1n-7 1.52 1.56 1.64

C18:1n-9 20.72 21.79 21.83

C18:1n-7 2.14 1.99 1.81
∑

MUFA 24.37 25.35 25.27

C18:2n-6 21.18 21.19 21.15

C20:4n-6 3.69 3.15 2.91
∑

n-6 PUFA 24.87 24.34 24.07

C18:3n-3 2.27 2.22 2.24

C20:5n-3 13.92 8.94 5.93

C22:5n-3 1.36 2.03 2.43

C22:6n-3 8.54 13.06 16.32
∑

n-3 PUFA 26.10 26.25 26.92
∑

n-3 LC-PUFA 23.83 24.03 24.68
∑

n-3/
∑

n-6 1.05 1.08 1.12

DHA/EPA 0.61 1.46 2.75

SFA, saturated fatty acid; MUFA, monounsaturated fatty acid; PUFA, polyunsaturated fatty

acid; LC-PUFA, long chain-polyunsaturated fatty acid.

RNA degradation and contamination were monitored
on 1% agarose gels. No genomic DNA contamination
was observed. RNA purity was checked using the Nano
Photometer R© spectrophotometer (IMPLEN, Westlake
Village, CA, USA). RNA concentration was measured
using Qubit R© RNA Assay Kit in Qubit R© 2.0 Flurometer
(Life Technologies, Carlsbad, CA, USA). RNA integrity
was assessed using the RNA Nano 6000 Assay Kit of the
Bioanalyzer 2100 system (Agilent Technologies, Santa Clara,
CA, USA).

A total amount of 3 µg RNA per sample was used as input
material for the RNA sample preparations and all samples
had RIN values > 8. Six individual samples from the same
experimental tank were pooled in equal amounts to obtain a
pooling sample for this replicate tank. Nine pooling samples were
then used to prepare 9 separate Illumina sequencing libraries
(three biological replicates for each dietary group).

After ribosomal RNA was removed with Epicentre Ribo-
ZeroTM rRNA Removal Kit (Epicentre, Madison, WI, USA), and
rRNA free residues were cleaned up by ethanol precipitation,
sequencing libraries were generated using the rRNA-depleted
RNA by NEBNext R© UltraTM Directional RNA Library Prep
Kit for Illumina R© (NEB, USA) following the manufacturer’s
instructions. Briefly, fragmentation was carried out using
divalent cations under elevated temperature in NEBNext First
Strand Synthesis Reaction Buffer (5×). First strand cDNA
was synthesized using random hexamer primer and M-MuLV
Reverse Transcriptase (RNase H−). Second strand cDNA
synthesis was subsequently performed using DNA Polymerase I
and RNase H. Remaining overhangs were converted into blunt
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ends via exonuclease/polymerase activities. After adenylation
of 3′ ends of DNA fragments, NEBNext Adaptor with
hairpin loop structure was ligated to prepare for hybridization.
In order to select cDNA fragments of 150 ∼200 bp in
length, the library fragments were purified with AMPure
XP system (Beckman Coulter, Beverly, MA, USA). Then 3
µl USER Enzyme (NEB, Ipswich, MA, USA) was added to
size-selected and adaptor-ligated cDNA at 37◦C for 15min
followed by 5min of 95◦C treatment before the PCR process.
PCR was then carried out with Phusion High-Fidelity DNA
polymerase, Universal PCR primers and Index (X) Primer. At
last, PCR products were purified with AMPure XP system
(Beckman Coulter, Beverly, USA), and the library quality was
assessed on Agilent Bioanalyzer 2100 system (Agilent, Santa
Clara, USA).

The clustering of the index-coded samples was performed on a
cBot Cluster Generation System using TruSeq PE Cluster Kit v3-
cBot-HS (Illumina) according to the manufacturer’s instructions.
After cluster generation, the libraries were sequenced on an
Illumina Hiseq2500 platform (Illumina, Inc., San Diego, CA,
USA) and 150 bp paired-end reads were generated.

Raw data (raw reads) in fastq format were firstly processed
through in-house perl scripts. Clean data (clean reads) were
obtained by removing reads containing adapter or poly-N,
as well as low quality reads from raw data. At the same
time, Q20, Q30, and GC content of the clean data were
calculated. All the downstream analysis were based on clean
data with high quality. The paired-end clean reads were
then aligned to the reference genome (RefSeq assembly
accession: GCA_000523025.1; https://www.ncbi.nlm.nih.gov/
genome/?term=Cynoglossus%20semilaevis) using TopHat
v2.0.9. The mapped reads of each sample were assembled by
both Scripture (beta2) (Guttman et al., 2010) and Cufflinks
(v2.1.1) (Trapnell et al., 2010) in a reference-based approach.
Cuffdiff (v2.1.1) was also used to calculate FPKMs (Fragments
Per Kilo-base of exon per Million fragments mapped) of
both lncRNAs and coding genes in each sample. FPKMs
were calculated based on the length of the fragments and
reads count mapped to this fragment. Gene FPKMs were
computed by summing the FPKMs of transcripts in each gene
group. Cuffdiff provides statistical routines for determining
differential expression in digital transcript or gene expression
data using a model based on the negative binomial distribution.
The resulting P-values were adjusted with the Benjamini
and Hochberg’s approach for controlling the false discovery
rate (FDR). Transcripts or genes with an adjusted P-value
(P-adj) < 0.05 were assigned as differentially expressed (DE)
between experimental groups (three biological replicates for
each group).

Gene Ontology (GO) enrichment analysis of differentially
expressed genes (DEGs) or lncRNA target genes was
implemented by the GOseq R package, and GO terms with
corrected P < 0.05 were considered significantly enriched
by DEGs. KOBAS software was used to test the statistical
enrichment of differentially expressed genes or lncRNA target
genes in KEGG (Kyoto Encyclopedia of Genes and Genomes)
pathways (http://www.genome.jp/kegg/).

Quantitative Real-Time Polymerase Chain
Reaction (qRT-PCR) Validation of Illumina
Sequencing Data
To validate the Illumina sequencing data, 10 mRNA and
ten lncRNA, which were selected from the most potential
“lncRNA-mRNA” interactions based on the co-expression and
co-localization analysis of DElncRNAs and DEmRNA among
dietary groups, were tested for qRT-PCR analysis, using the same
RNA samples for the transcriptome profiling. Specific primers
were designed based on the data from GenBank (Table 3),
and beta-2-microglobulin (β-2-m) was used as the reference
gene according to our previous screening. The real-time PCR
was carried out with SYBR Green Real-time PCR Master Mix
(TaKaRa Biotechnology (Dalian) Co., Ltd., Dalian, China) in a
quantitative thermal cycler (Mastercycler eprealplex, Eppendorf,
German). The amplification efficiency for all primers, which
was estimated by standard curves based on a 6-step 10-fold
dilution series of target template, was within 95 ∼105%, and
the coefficients of linear regression (R2) were more than 0.99.
The detailed program was similar with Xu et al. (2014). The
mRNA expression levels were studied by qRT-PCR method:
2−11CT (Livak and Schmittgen, 2001). The qRT-PCR data
were subjected to one-way analysis of variance (ANOVA) in
SPSS 16.0 (SPSS Inc., Chicago, USA) for Windows. Differences
between means were tested by Tukey’s multiple range test.
The level of significance was chosen at P < 0.05, and
the results were presented as means of triplicate tanks ±

standard errors.

Availability of Materials
Detailed information about methods and materials used in the
current study are available from the corresponding author on
reasonable request.

RESULTS AND DISCUSSION

Transcriptome Sequencing and Assembly
In the transcriptomic analysis, three pooled liver RNA samples
were prepared for each dietary group (D/E-0.61, D/E-1.46,
and D/E-2.75). Nine cDNA libraries were then constructed
to perform Illumina sequencing. A total of 278,269,246,
269,325,362, and 279,307,386 clean reads were obtained for
groups D/E-0.61, D/E-1.46, and D/E-2.75 respectively, giving
rise to total clean bases of 41.74, 40.40 and 41.90G, respectively
(Supplementary Table 1). The average Q20 and Q30 (the
sequencing error rate at 1 and 0.1% respectively) of the
experimental samples was 96.17 and 90.17% respectively,
indicating the high accuracy of the sequencing processes. Raw
reads were deposited at the National Center for Biotechnology
Information (NCBI)’s Sequence Read Archive under Accession
No. SRP127310 (D1E2, D3E2, and D3E1 in the archived
data represents groups D/E-0.61, D/E-1.46, and D/E-2.75
respectively). The reads were mapped on the genome of
C. semilaevis and the average mapping rates of groups
D/E-0.61, D/E-1.46, and D/E-2.75 was 77.62, 76.09, and
72.43%, respectively (Supplementary Table 2). The classification
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TABLE 3 | Sequences of the primers used in this work.

Primer Sequence (5′-3′) GenBank reference Tm (◦C) Product length (bp)

baz2a-F GTCCCATTTCCAAACACGC XM_017036014.1 58.3 120

baz2a-R TGGACCTTAGGGCTTTTATGAG 58.4

kmt2d-F CCAGATGGAGGTGAAGACAGTC XM_017035697.1 58.4 197

kmt2d-R GCATAAAGCACAGGCGAAAT 58.2

mdtet3-F CAGCCCAATCTCAGGTATCCA XM_017042774.1 59.9 183

mdtet3-R CTTCGCACTTCGGGTCTAAAT 58.9

mthfd1-F TTCTTCCGTCTCATTTGGTCA XM_008313708.1 58.0 158

mthfd1-R CACCTGTAGAACCAGCAGACCT 58.5

rps10-F GATGCTGATGCCCAAGAAGA XM_008320951.2 58.3 179

rps10-R CCTTGACATACCCACAGGACTT 58.2

sfxn2-F TGAGAACGGGAACAAACTGG XM_008314293.2 58.2 119

sfxn2-R GCATGATGATGGGCAGAATAA 58.4

slcl6a5-F TACGCCACCGCTAACAACA XM_008337600.2 58.3 182

slcl6a5-R CAGATACTGTTACTGAGTCCGTTGA 58.4

usmg5-F AAAGGAGGGACTTCCGCTAA XM_008317371.2 58.4 123

usmg5-R AGAGTCGTGTCCACCCATGTT 58.9

zfp319-F AGCACCACTCGTCCCATAAC XM_008311023.2 57.2 158

zfp319-R TGGAAAAGGCAGAATAGAAGAAC 57.8

znf574-F TGTTTCTTCCTCTGGAGTCGC XM_008322835.2 59.4 181

znf574-R CATGCTCTGGATGAACCCTTT 59.1

LNC_000230-F AAACAACCTCCAGTAACCTTCC novel 57.1 106

LNC_000230-R TCTCTCTTGCGGGAGGACTA 57.3

LNC_000255-F GTTAGAGCACGACACGACCAA novel 58.6 125

LNC_000255-R GTAAAGCCAACCAACCGACA 58.4

LNC_000285-F TCAACCATCAGCGTACAGTAGG novel 58.0 153

LNC_000285-R GACGACGACGCTTTCACAAC 58.4

LNC_000314-F ACCTCCGACTGTTTGTATCACC novel 58.7 155

LNC_000314-R GTTCATCCTCTGCACTGGCT 57.3

LNC_000360-F GGAAATGAGTTCTGAAGTGCCT novel 57.8 190

LNC_000360-R TTCACCTGGCAGCAGTTTG 58.5

LNC_000562-F GCTGCCATTCCAAGACATACA novel 58.5 114

LNC_000562-R AAAAAGCCTGAGACACCCCT 57.9

XR_521587.1-F AGACTCTTGAATTGTCTGTTCATCC XR_521587.2 58.7 158

XR_521587.1-R CAGGGTGTTTGTTTATTTGTGC 57.7

XR_521789.1-F ACTTCGCCTCAGCCAATCA XR_521789.2 58.7 95

XR_521789.1-R AACCGTGTTCTCCATCAGCA 58.5

XR_522182.1-F TGGTAGCCGTTGACTTCCTT XR_522182.2 57.3 104

XR_522182.1-R TACTTTGACCTCTGCCTCATCTT 57.8

XR_523541.1-F CATGATGAGTGCTGGTGGCT XR_523541.1 58.8 203

XR_523541.1-R TGTGCTGCTGGTTGACATAGAG 58.8

β-2-m-F TTGGCTCGTGTTCGTCGTTC XM_017034328.2 57.2 119

β-2-m-R TCAGGGTGTTGGGCTTGTTG 58.3

Baz2a, bromodomain adjacent to zinc finger domain 2A; kmt2d, lysine (K)-specific methyltransferase 2D; mdtet3, methylcytosine dioxygenase TET3-like; mthfd1,

methylenetetrahydrofolate dehydrogenase (NADP+ dependent) 1; rps10, ribosomal protein, S10 sfxn2, sideroflexin 2; slc16a5, solute carrier family 16 member 5; usmg5, up-regulated

during skeletal muscle growth 5 homolog; zfp319, zinc finger protein 319-like; znf574, zinc finger protein 574; β-2-m, beta-2-microglobulin.

analysis of the reads showed that the total reals were
comprised of (average): exon, 0.07%;mRNA, 67.72%;misc_RNA,
0.03%; ncRNA, 0.30%; tRNA, 1.19%; and others, 30.69%
(Supplementary Table 3). Regarding the comparison among
dietary groups, compared to groups D/E-1.46 and D/E-2.75,

group D/E-0.61 had higher proportion of mRNA (70.21% vs.
66.52% and 66.43%), misc_RNA (0.04% vs. 0.02% and 0.02%),
and ncRNA (0.41% vs. 0.27% and 0.22%). This indicated
that dietary DHA/EPA ratio might have significant effects on
transcription of different types of RNA.
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Filtration and Characterization of lncRNA
Large-scale analysis of the mammalian transcriptome have
shown that the number and types of lncRNAs far exceed those
of protein-coding mRNAs, while a small proportion of lncRNAs
have been reported to have biological functions (Carninci
et al., 2005; Birney et al., 2007; Carninci and Hayashizaki,
2007; Kapranov et al., 2007). In fish, however, very little
information has been available about the identification and
function prediction of lncRNAs. Only limited studies have been
published inmodel fish such as zebrafishDanio rerio and rainbow
trout Oncorhynchus mykiss (Kaushik et al., 2013; Liu et al., 2013;
Haque et al., 2014; Dhiman et al., 2015; Al-Tobasei et al., 2016;
Wang et al., 2016). Moreover, previous studies in both mammals
and zebrafish have shown that lncRNAs are less conserved than
protein-coding genes (Guttman et al., 2010; Cabili et al., 2011;
Ulitsky et al., 2011; Derrien et al., 2012). Therefore, specific
investigation is needed to identify and characterize the lncRNA
profile in a certain fish species.

In the present study with tongue sole, based on the transcript
assembly results, lncRNA was filtered following five steps: (1)
number of exon (≥2); (2) length of transcript (>200bp); (3)
comparison with annotated transcript (Cuffcompare software):
transcripts overlapped with annotated coding exon were
eliminated, and transcripts overlapped with annotated lncRNAs
were regarded as annotated lncRNA; (4) expression level
(Cuffquant software, FPKM≥0.5); (5) prediction of coding
potential: transcripts containing no coding potential predicted
by any mainstream software (CPC, CNCI, and PFAM) was
recognized as novel lncRNAs (see Supplementary Figure 1 for
the results), and transcripts with coding potential predicted by at
least one software were designated as Transcripts of Uncertain
Coding Potential (TUCP). The filtration results following these
steps were presented in Figure 1.

Finally, 789 annotated lncRNAs and 638 novel lncRNAs
were obtained. These lncRNAs contained 69.9% lincRNA (long
intergenic non-coding RNA), 30.1% antisense_lncRNA, but no
intronic_lncRNA. Either annotated or novel lncRNAs were
shorter and had less exons than mRNA (Figures 2, 3). Also,
the average expression level of lncRNA was lower compared to
mRNA (Figure 4). These characteristics of tongue sole lncRNAs
were similar to those found in other species (Guttman et al., 2010;
Cabili et al., 2011; Young and Ponting, 2013; Liang et al., 2015;
Núñez-Acuña et al., 2017).

Differentially Expressed Genes (DEGs)
Among Dietary Groups
Non-coding RNAs have emerged as important regulators of
cellular and systemic lipid metabolism (Chen, 2016; Zhou et al.,
2016). In particular, the enigmatic class of long non-coding
RNAs have been shown to play multifaceted roles in controlling
transcriptional and posttranscriptional gene regulation (Kornfeld
and Brüning, 2014; Gardini and Shiekhattar, 2015; Lopez-Pajares,
2016; Delás and Hannon, 2017; Long et al., 2017; Mathy and
Chen, 2017).

In the present study, the experimental diets significantly
affected the expression levels of both lncRNAs and mRNAs

FIGURE 1 | Filtration of lncRNA.

FIGURE 2 | Length distribution of transcripts.

(Table 4). The most significant difference existed between groups
D/E-0.61 and D/E-1.46. Compared to group D/E-0.61, D/E-
1.46 significantly (adjusted P < 0.05) up-regulated expression of
178 lncRNA and 2629 mRNA, and down-regulated that of 47
lncRNA and 3059 mRNA. However, compared to group D/E-
0.61, D/E-2.75 only significantly up-regulated expression of 78
lncRNA and 1925mRNA, and down-regulated that of 42 lncRNA
and 2015 mRNA. Generally, this result indicated that dietary
DHA/EPA ratio regulated gene transcription in tongue sole in
a dose-dependent manner. This was in accordance with the
effects of dietary DHA/EPA ratio on growth performances and
other physiological status such as lipid accumulation (Xu et al.,
2018). As reported previously, compared to group D/E-0.61,
D/E-1.46 but not D/E-2.75 significantly increased the growth
rate and whole-body lipid content of juvenile tongue sole. In
addition, despite the large number of differentially expressed
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FIGURE 3 | Exon distribution of transcripts.

FIGURE 4 | FPKM distribution of transcripts. The boxplot inside shows the

FPKM distribution. The five characteristic values indicate maximum, upper

quartile, mid-value, lower quartile, and minimum, respectively. The violin

diagram shows the FPKM density distribution. The width of violin diagram

represents the density of transcript under a certain expression level.

(DE) genes among dietary groups, only 24 DElncRNA (about
16%) and 638 (about 16%) DEmRNA were overlapped among
the three inter-group comparisons, D/E-1.46 vs. D/E-0.61, D/E-
2.75 vs. D/E-0.61, and D/E-1.46 vs. D/E-2.75 (Figure 5). This
indicated that each DHA/EPA ratio exerted a different regulation
of the liver transcriptome. Moreover, the amount of DElncRNA
was in proportion to that of DEmRNA among the inter-group
comparisons. This suggested that the transcriptional activity
of coding and non-coding RNAs in tongue sole liver was co-
expressed in response to dietary DHA/EPA ratio, which was to
be evidenced by the co-expression analysis described below.

To confirm the DEG results from the transcriptomic assay, 10
mRNA and 10 lncRNA, which were selected from most potential

TABLE 4 | Differentially expressed genes among dietary groups.

Compare lncRNA mRNA TUCP

Up- Down- Up- Down- Up- Down-

D/E-1.46 vs. D/E-0.61 178 47 2629 3059 60 35

D/E-2.75 vs. D/E-0.61 78 42 1925 2015 37 35

D/E-1.46 vs. D/E-2.75 87 18 1073 1474 44 16

TUCP, transcripts of uncertain coding potential.

“lncRNA-mRNA” interactions based on the co-expression and
co-localization analysis of DElncRNA and DEmRNA described
below, were tested for quantitative RT-PCR analysis. The results
showed that transcription of 18 out of 20 selected genes was
in good accordance with the transcriptomic results (Table 5,
Figure 6). The validation results confirmed the high accuracy of
the transcriptomic results.

Co-expression and Co-localization of
lncRNA and mRNA
In order to estimate the potential lncRNA–mRNA interactions in
response to dietary DHA/EPA ratio and consequently to predict
the potential roles of the obtained lncRNAs in mRNA expression,
co-expression and co-localization relationship of DElncRNA
and DEmRNA among dietary groups were analyzed (Table 6).
The co-expression analysis showed that 12888, 7659, and
2765 co-expression relationships were observed in inter-group
comparisons D/E-1.46 vs. D/E-0.61, D/E-2.75 vs. D/E-0.61, and
D/E-1.46 vs. D/E-2.75, respectively. The significant expression
correlations between certain lncRNAs and protein-coding
genes have also been observed in a previous study on rainbow
trout investigating the intestinal lncRNA and coding RNAs
transcription in response to functional diets (Núñez-Acuña et al.,
2017). These results highlighted that the regulation of numerous
protein-coding genes by dietary nutrients was highly correlated
with lncRNAs. The GO enrichment analysis of the co-expression
relationships showed that the most enriched GO terms were
Metabolic process (including Protein metabolic process, Primary
metabolic process, Macromolecule metabolic process, and
Organic substance metabolic process), Gene expression, Cellular
macromolecule bioynthetic process, Introcellular organelle
(including Intracellular non-membrane-bounded organelle), and
Oxidoreductase activity (see Figure 7 for D/E-1.46 vs. D/E-0.61,
see Supplementary Figures 2A, S3A for D/E-2.75 vs. D/E-0.61,
and D/E-1.46 vs. D/E-2.75, respectively). The KEGG pathway
enrichment analysis of the co-expression relationships showed
that the most enriched pathways were Ribosome and Oxidative
phosphorylation (see Figure 8 for D/E-1.46 vs. D/E-0.61, see
Supplementary Figures 2B,S3B for D/E-2.75 vs. D/E-0.61, and
D/E-1.46 vs. D/E-2.75, respectively). These enrichment results
were highly similar with the enrichment results for DEmRNA
among experimental groups (Supplementary Figures 4,5),
indicating the possible wide involvement of lncRNA in the
regulation of mRNA expression. On the other hand, these results
also indicated the effects of dietary DHA/EPA on a wide range of
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FIGURE 5 | Venn diagram of differentially expressed genes.

TABLE 5 | Transcriptome data of genes selected for qRT-PCR validation.

Gene Featured ID Log2FC Adjusted P

D/E-1.46 vs.

D/E-0.61

D/E-2.75 vs.

D/E-0.61

D/E-1.46 vs.

D/E-2.75

D/E-1.46 vs.

D/E-0.61

D/E-2.75 vs.

D/E-0.61

D/E-1.46 vs.

D/E-2.75

mRNA

Bromodomain adjacent to zinc finger

domain 2A (baz2a)

103385419 3.23 2.52 0.71 0.001 0.001 0.011

Lysine (K)-specific methyltransferase 2D

(kmt2d)

103385102 1.86 1.73 0.001 0.001

Methylcytosine dioxygenase TET3-like

(mdtet3)

103397059 2.45 1.14 1.30 0.001 0.005 0.001

Methylenetetrahydrofolate dehydrogenase

(NADP+ dependent) 1 (mthfd1)

103381395 −1.32 −1.25 0.001 0.001

Ribosomal protein S10 (rps10) 103386602 −1.43 −1.27 0.001 0.001

Sideroflexin 2 (sfxn2) 103381775 −1.31 −1.41 0.001 0.001

Solute carrier family 16 member 5

(slc16a5)

103398853 2.04 0.92 1.13 0.001 0.005 0.001

Up-regulated during skeletal muscle

growth 5 homolog (usmg5)

103384010 −2.17 −1.60 0.001 0.001

Zinc finger protein 319-like (zfp319) 103379464 1.58 0.88 0.001 0.009

zinc finger protein 574 (znf574) 103387998 1.07 0.003

lncRNA

LNC_000230 XLOC_014945 −2.57 −3.41 0.001 0.001

LNC_000255 XLOC_017426 −1.09 −0.80 0.003 0.041

LNC_000285 XLOC_019682 3.37 2.26 1.11 0.010 0.049 0.037

LNC_000314 XLOC_021506 2.93 2.68 0.036 0.047

LNC_000360 XLOC_024544 1.98 1.54 0.001 0.009

LNC_000562 XLOC_038357 1.86 1.12 0.001 0.001

XR_521587.1 103379468 2.15 1.22 0.001 0.001

XR_521789.1 103381358 −1.11 −1.30 0.001 0.001

XR_522182.1 103385094 −2.57 −1.66 –0.90 0.001 0.001 0.002

XR_523541.1 103398852 2.65 1.20 1.45 0.001 0.001 0.001

FC, fold change.
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FIGURE 6 | Validation of the transcriptome results by qRT-PCR measurement. The gene levels were expressed relative to β-2-microglobulin. Results are expressed as

means ± standard error. For a certain mRNA or lncRNA, bars not sharing same letters denote significant (P < 0.05) difference in gene expression.

TABLE 6 | Analysis of co-expression and co-localizaiton of differentially expressed

lncRNA and mRNA among dietary groups.

Comparison Co-expression Co-localization Overlap

D/E-1.46 vs. D/E-0.61 12,888 684 17

D/E-2.75 vs. D/E-0.61 7,659 278 13

D/E-1.46 vs. D/E-2.75 2,765 159 4

Overlap 761 14 2

physiological processes in fish liver, which, however, was not the
focus of the present study.

As some lncRNAs could regulate the expression of coding
genes near genomic regions, the co-localization of DElncRNA
and DEmRNA among dietary groups were also analyzed. In total,
684, 278, and 159 co-localization relationships were observed
in comparisons D/E-1.46 vs. D/E-0.61, D/E-2.75 vs. D/E-0.61,
and D/E-1.46 vs. D/E-2.75, respectively. The co-localization
relationships were primarily enriched in GO terms such as RNA
metabolic process, Membrane-bounded organelle, Nucleus, RNA
polymerase, and Nucleoside-triphosphatase regulator activity, as

well as in KEGG pathways such as Ribosome and Glycerolipid
metabolism (Supplementary Figures 6–8). Compared to the
co-expression relationships, the co-localization relationships
were more related to gene expression regulation, indicating
the distance from target mRNA probably influenced the
transcription-regulating effects of lncRNAs.

Considering that concurrent existence of co-expression and
co-localization relationships of a certain lncRNA-mRNA match
must increase the possibility of lncRNA-mRNA interaction, the
overlap of co-expression and co-localization relationships of
DElncRNA and DEmRNA was analyzed (Table 7). A total of 17,

13, and 4 overlapped lncRNA-mRNA matches was obtained for

D/E-1.46 vs. D/E-0.61, D/E-2.75 vs. D/E-0.61, and D/E-1.46 vs.
D/E-2.75, respectively. Two overlapped matches, “XR_523541.1–

solute carrier family 16, member 5 (slc16a5)” and “LNC_000285–
bromodomain adjacent to zinc finger domain 2A (baz2a)” were
observed in all the three inter-group comparisons, indicating that
they might play crucial roles in the effects of dietary DHA and
EPA on hepatic gene transcription in tongue sole.

Solute carrier family 16 (SLC16) is a proton-linked
monocarboxylate transporter (MCT), which comprises 14
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FIGURE 7 | GO enrichment analysis for differentially expressed mRNA in lncRNA-mRNA co-expression analysis for D/E-1.46 vs. D/E-0.61. * denotes significant

enrichment (Padj < 0.05, Padj is the adjusted P-value). The GO terms without full title: (1) Cellular amide metabolic process; (2) Organonitrogen compound

biosynthetic process; (3) Macromolecule metabolic process; (4) Organic substance metabolic process; (5) Cellular protein metabolic process; (6) Organonitrogen

compound metabolic process; (7) Cellular macromolecule biosynthetic process; (8) Structural constituent of ribosome.

members (Halestrap and Meredith, 2004), and mainly catalyzes
the rapid transport of many monocarboxylates across the plasma
membrane. While function of some members of this family
such as SLC16A1 (also known as MCT1), SLC16A7 (MCT2),
SLC16A8 (MCT3), and SLC16A3 (MCT4) have been elucidated
(Bröer et al., 1997, 1998; Lin et al., 1998; Grollman et al., 2000;
Manning Fox et al., 2000), functions of SLC16A5 (MCT6)
are still unknown. Considering the possible roles of SLC16A5
in transmembrane transport of lactate, pyruvate, and ketone
bodies, the significant difference in hepatic transcription of
slc16a5 among groups with different DHA/EPA ratios indicated
that DHA and EPA may have different efficiency and priority
in energy supply in tongue sole. The co-expression and co-
localization relationship of XR_523541.1 and slc16a5 suggested
that the lncRNA XR_523541.1 may be involved in the regulation
of slc16a5 transcription by dietary DHA/EPA. Precise functions
of both XR_523541.1 and slc16a5 need to be elucidated by
future studies.

Baz2a is an essential component of nucleolar remodeling
complex, a complex that mediates silencing of a fraction of
rDNA by recruiting histone-modifying enzymes and DNA
methyltransferases, leading to heterochromatin formation and
transcriptional silencing (Gu et al., 2015). The co-expression
and co-localization relationship of “LNC_000285–baz2a”
indicated that the lncRNA LNC_000285 probably mediated
the regulatory effects of dietary DHA/EPA on gene expression
through promoting heterochromatin formation. Inducing
heterochromatin formation and suppressing mobile elements

were major mechanisms of transcription-regulating effects
of non-coding RNAs (Cusanelli and Chartrand, 2015; Meller
et al., 2015; Acharya et al., 2017; da Rocha and Heard, 2017;
Oliva-Rico and Herrera, 2017). In human pancreatic ductal
adenocarcinoma, the lncRNA HOTAIR contributed in the
silence of MicroRNA-34a by enchancer of zeste homolog 2
through induction of heterochromatin formation (Li et al.,
2016). Microsatellite repeat DXZ4-associated long non-coding
RNAs also had developmental changes in expression coincident
with heterochromatin formation at the human (Homo sapiens)
macrosatellite repeat (Figueroa et al., 2015). Other evidence
showed that lncRNA maturation to initiate heterochromatin
formation in the nucleolus is required in exit from pluripotency
in embryonic stem cells (Savić et al., 2014).

Besides “LNC_000285–baz2a,” the overlapped matches
“LNC_000562–methylcytosine dioxygenase TET3-like (mdtet3)”
and “LNC_000314–polyhomeotic-like protein 2 (php2)” also
provided potential evidence for the roles of lncRNAs in
chromatin remodeling. Mdtet3 catalyzes DNA demethylation
and thus plays important roles in epigenetic chromatin
reprogramming and maintenance of genome stability (Xu et al.,
2012; Deplus et al., 2013; Jiang et al., 2017). Php2 is a component
of a Polycomb group (PcG) multiprotein PRC1-like complex,
which is required to maintain the transcriptionally repressive
state of many genes, and acts via chromatin remodeling and
modification of histones (Isono et al., 2005).

The overlapped match “XR_522182.1–lysine (K)-specific
methyltransferase 2D (kmt2d)” was observed in inter-group
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TABLE 7 | Overlap of co-expression and co-localization relationships between differentially expressed lncRNAs and mRNAs among dietary groups.

lncRNA_ID mRNA Co-expression Co-location

(lncRNA to mRNA)

ID Gene name Pearson

correlation

P-value Distance Location

D/E-1.46 vs. D/E-0.61

XR_523541.1 103398853 Solute carrier family 16, member 5 (slc16a5) 0.990 3.82E-07 200 Downstream

XR_521587.1 103379464 Zinc finger protein 319-like (zfp319) 0.972 1.24E-05 19594 Upstream

XR_523068.1 103393985 Apolipoprotein A-IV-like (apoa4) 0.953 7.22E-05 67904 Downstream

XR_521789.1 103381395 Methylenetetrahydrofolate dehydrogenase

(NADP+ dependent) 1 (mthfd1)

0.986 1.06E-06 54 Downstream

LNC_000230 103381775 Sideroflexin 2 (sfxn2) 0.961 3.79E-05 52923 Downstream

LNC_000230 103381769 Suppressor of cytokine signaling 3-like (scs3) 0.955 6.09E-05 191 Upstream

LNC_000285 103385419 Bromodomain adjacent to zinc finger domain

2A (baz2a)

0.958 4.60E-05 837 Downstream

LNC_000587 103398248 Chymotrypsin-like elastase family member 2A

(ce2a)

0.970 1.46E-05 4443 Downstream

XR_522182.1 103385102 Lysine (K)-specific methyltransferase 2D

(kmt2d)

−0.987 9.01E-07 74060 Downstream

XR_522818.1 103391927 Uncharacterized LOC103391927 0.957 5.37E-05 17005 Downstream

LNC_000360 103388031 Zinc finger protein 585A-like (zfp585a) 0.968 1.88E-05 67207 Downstream

LNC_000360 103387998 Zinc finger protein 574 (zfp574) 0.957 5.02E-05 98036 Upstream

LNC_000562 103397059 Methylcytosine dioxygenase TET3-like (mdtet3) 0.957 5.33E-05 746 Downstream

LNC_000314 103386594 Polyhomeotic-like protein 2 (php2) 0.959 4.23E-05 33381 Downstream

LNC_000314 103386602 Ribosomal protein S10 (rps10) −0.968 1.87E-05 69929 Upstream

LNC_000255 103384010 Up-regulated during skeletal muscle growth 5

homolog (usmg5)

0.973 9.75E-06 91044 Downstream

XR_523487.1 103398370 Sodium/potassium/calcium exchanger 1-like

(spc1)

0.951 8.46E-05 82748 Upstream

D/E-2.75 vs. D/E-0.61

XR_523541.1 103398853 Solute carrier family 16, member 5 (slc16a5) 0.990 3.82E-07 200 Downstream

XR_523068.1 103393985 Apolipoprotein A-IV-like (apoa4) 0.953 7.22E-05 67904 Downstream

XR_521789.1 103381395 Methylenetetrahydrofolate dehydrogenase

(NADP+ dependent) 1 (mthfd1)

0.990 1.06E-06 54 Downstream

LNC_000230 103381775 Sideroflexin 2 (sfxn2) 0.961 3.79E-05 52923 Downstream

LNC_000230 103381769 Suppressor of cytokine signaling 3-like (scs3) 0.955 6.09E-05 191 Upstream

LNC_000285 103385419 Bromodomain adjacent to zinc finger domain

2A (baz2a)

0.958 4.60E-05 837 Downstream

LNC_000587 103398248 Chymotrypsin-like elastase family member 2A

(ce2a)

0.952 7.35E-05 4443 Downstream

XR_522182.1 103385102 Lysine (K)-specific methyltransferase 2D

(kmt2d)

−0.987 9.01E-07 74060 Downstream

XR_522818.1 103391927 Uncharacterized LOC103391927 0.957 5.37E-05 17005 Downstream

LNC_000360 103388031 Zinc finger protein 585A-like (zfp585a) 0.968 1.88E-05 67207 Downstream

LNC_000314 103386594 Polyhomeotic-like protein 2 (php2) 0.959 4.23E-05 33381 Downstream

LNC_000314 103386602 Ribosomal protein S10 (rps10) −0.968 1.87E-05 69929 Upstream

LNC_000255 103384010 Up-regulated during skeletal muscle growth 5

homolog (usmg5)

0.973 9.75E-06 91044 Downstream

D/E-1.46 vs. D/E-2.75

XR_523541.1 103398853 Solute carrier family 16, member 5 (slc16a5) 0.990 3.82E-07 200 Downstream

XR_521587.1 103379464 Zinc finger protein 319-like (zfp319) 0.972 1.24E-05 19594 Upstream

LNC_000285 103385419 Bromodomain adjacent to zinc finger domain

2A (baz2a)

0.958 4.60E-05 837 Downstream

LNC_000562 103397059 Methylcytosine dioxygenase TET3-like (mdtet3) 0.957 5.33E-05 746 Downstream

Minus values in Pearson correlation denote negative correlation, i.e., “mRNA up-regulated but lncRNA down-regulated” or “mRNA down-regulated but lncRNA up-regulated.”
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FIGURE 8 | Statistics of KEGG pathway enrichment for differentially expressed mRNA in lncRNA-mRNA co-expression analysis for D/E-1.46 vs. D/E-0.61. Rich factor

is the ratio of number of differentially expressed genes in a certain pathway to number of all annotated genes in this pathway. qvalue is corrected P-value by multiple

hypothesis test. q-value < 0.05 denotes significant differences.

comparisons D/E-2.75vs. D/E-0.61 and D/E-1.46vs. D/E-0.61. As
a histone methyltransferase, Kmt2d methylates ’Lys-4’ of histone
H3 into H3K4me, which represents a specific tag for epigenetic
transcriptional activation (Cho et al., 2007; Lan et al., 2007).
This result indicated the potential roles of lncRNA in epigenetic
transcriptional regulation.

Other mechanisms of transcription-regulating effects of
lncRNAs were also indicated from the present results. For
example, several overlapped “lncRNA–zinc finger protein”
matches, such as “XR_521587.1–zinc finger protein 319-like
(zfp319),” “LNC_000360–zinc finger protein 574 (zfp574),” and
“LNC_000360–zinc finger protein 585A-like (zfp585a),” were
observed in the co-expression and co-localization analysis of
DElncRNAs and DEmRNAs. Interacting with these zinc finger
proteins may be a possible way of lncRNA functioning on
gene expression.

Interactions of other lncRNAs with some mRNAs observed
in overlapped “lncRNA–mRNA” matches of the current
analysis have been reported in human and terrestrial
animal studies. For example, the lncRNA–mRNA match
“XR_523068.1–apolipoprotein A-IV (apoa4)” was overlapped
in the co-expression and co-localization analysis in the present
study. A study on mice has shown that an anti-sense lncRNA
(APOA4-AS) concordantly and specifically regulated apoa4

expression both in vitro and in vivo with the involvement of the
mRNA stabilizing protein HuR (Qin et al., 2016). The alignment
analysis did not find homology between mice APOA4-AS and
tongue sole XR_523068.1. Moreover, mice APOA4-AS was
transcribed from the opposite strand of apoa4 locus (+ strand),
and partially overlapped with apoa4 exon 3 and 3’-UTR, while
tongue sole XR_523068.1 was far away from tongue sole apoa4
(67904 bp downstream). In mice, gene expression of another
apolipoprotein APOC2 was also reported to be regulated by
the lncRNA lncLSTR (Li et al., 2015). These results indicated
that lncRNAs may play certain roles in gene expression of
apolipoproteins, which are key components of lipoproteins and
play important roles in lipid transportation. In addition, the
mRNA expression of apoa4 in response to dietary DHA/EPA
ratio was negatively correlated with the hepatic lipid content of
the experimental fish (Xu et al., 2018). The lower hepatic apoa4
expression in group D/E-1.46 may reduce the transportation
of lipid out of liver, and thus contribute to higher hepatic lipid
accumulation in this group.

Interactions between lncRNAs and suppressor of
cytokine signaling 3-like (scs3) or methylenetetrahydrofolate
dehydrogenase (NADP+ dependent) (mthfd) have also been
observed in human studies. A recent study on postmenopausal
osteoporosis observed a probable interaction between lncRNA
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LINC00963 and scs3 based on analysis of DElncRNA–DEmRNA
co-expression network (Fei et al., 2018). However, different from
the present study which showed that lncRNA LNC_000230 was
191 bp upstream relative to co-expressed scs3, in that study
LINC00963 and scs3 were located in different chromosomes.
Regardingmthfd, a study with MCF-7 breast cancer cells showed
that a lncRNA, taurine-upregulated gene 1 (tug1), positively
regulated the gene expression of mthfd2 (Zhao and Ren, 2016).
Tug1 and mthfd2 were also located in different chromosomes,
while in the present study, lncRNA XR_521789.1 was 54 bp
downstream relative to co-expressedmthfd1.

Other overlapped “lncRNA–mRNA” matches in the co-
express and co-localization analysis, such as “LNC_000587
- chymotrypsin-like elastase family member 2A (ce2a),”
“LNC_000230–sideroflexin 2 (sfxn2),” “XR_523487.1–
sodium/potassium/calcium exchanger 1-like (spc1),”
“LNC_000314–ribosomal protein S10 (rps10),”and
“LNC_000255–up-regulated during skeletal muscle growth
5 homolog (usmg5),”were novel findings of the present study.
No similar or relevant lncRNA-mRNA interactions have been
reported in other studies. These findings provided useful sources
for further investigation on lncRNA–mRNA interactions,
especially regarding the effects of dietary fatty acids.

In conclusion, this was the first time in marine teleost to
investigate the possible lncRNA-mRNA interactions in response
to dietary fatty acids. The results provided novel knowledge
of lncRNAs in non-model marine teleost, and will serve as
important resources for future studies that further investigate
the roles of lncRNAs in lipid metabolism of marine teleost.
Potential lncRNA–mRNA interactions “XR_523541.1–slc16a5”
and “LNC_000285–baz2a” may play important roles in effects of
dietary DHA/EPA on hepatic gene transcription in tongue sole.

Non-standard Abbreviations
DE, differentially expressed; DEG: differentially expressed gene;
slc16a5, solute carrier family 16, member 5; baz2a: bromodomain
adjacent to zinc finger domain 2a; mct, monocarboxylate
transporter; mdtet3, methylcytosine dioxygenase tet3-like;

php2, polyhomeotic-like protein 2; kmt2d, lysine (k)-
specific methyltransferase 2d; zfp, zinc finger protein; apo,
apolipoprotein; scs3, suppressor of cytokine signaling 3-like;
mthfd1, methylenetetrahydrofolate dehydrogenase (nadp+
dependent) 1; ce2a, chymotrypsin-like elastase family member
2a, sfxn2; sideroflexin 2; spc1, sodium/potassium/calcium
exchanger 1-like; rps10, ribosomal protein s10; usmg5,
up-regulated during skeletal muscle growth 5 homolog.
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