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Bariatric surgery has been proved to be effective and sustainable in the long-
term weight-loss and remission of metabolic disorders. However, the underlying
mechanisms are still far from fully elucidated. After bariatric surgery, the gastrointestinal
tract is manipulated, either anatomically or functionally, leading to changed bile
acid metabolism. Accumulating evidence has shown that bile acids play a role in
metabolic regulation as signaling molecules other than digestive juice. And most of
the metabolism-beneficial effects are mediated through nuclear receptor FXR and
membrane receptor TGR5, as well as reciprocal influence on gut microbiota. Bile
diversion procedure is also performed on animals to recapitulate the benefits of bariatric
surgery. It appears that bile acid alteration is an important component of bariatric
surgery, and represents a promising target for the management of metabolic disorders.
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INTRODUCTION

Bariatric surgery has been proved to be both effective and sustainable in the long-term weight-
loss and remission of metabolic disorders (Adams et al., 2017; Schauer et al., 2017). However, the
underlying mechanisms are still far from fully elucidated. One interesting phenomenon observed
after bariatric surgery is the increase of serum total bile acids. Actually, apart from the purely
restrictive procedure, adjustable gastric banding (AGB) (Kohli et al., 2013a), it has been reported
that all other types of bariatric surgery are associated with postsurgical increase of serum total bile
acids (Steinert et al., 2013; Albaugh et al., 2015; Ferrannini et al., 2015; Han et al., 2015). And this
phenomenon has raised concern about the relationships between bile acids and bariatric surgery.
Bile acids are known as the “intestinal soap,” for their physiological effect on facilitating dietary
fat and fat-soluble vitamin absorption. It is not until the late 1990s that bile acids had been found
taking effect as signaling molecules (Makishima et al., 1999). Most of the metabolic benefits of bile
acids are mediated through nuclear or membrane receptors, or interaction with gut microbiota. In
the present review, we focus on two major questions: (i) why serum bile acids are increased after
bariatric surgery? (ii) how the altered bile acid metabolism contributes to the metabolic benefits of
bariatric surgery?

MECHANISMS OF SERUM BILE ACID ELEVATION AFTER
BARIATRIC SURGERY

Bile acids are synthesized from cholesterols in the liver, stored in the gallbladder and expelled into
the duodenum in response to enteral stimuli. Approximately, 95% of luminal bile acids are recycled
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into the portal vein in the terminal ileum and reutilized
by the liver, forming the “enterohepatic circulation.” Serum
bile acids represent the excess bile acids that cannot be
recycled by the liver during the enterohepatic circulation
and thus present in the peripheral circulation. Increased
serum bile acids may derive from increased synthesis in
the liver, more reabsorption in the ileum and/or decreased
excretion in the feces.

In Roux-en-Y gastric bypass (RYGB) and biliopancreatic
diversion (BPD), shortened route of the enterohepatic circulation
(the biliopancreatic limb and the common limb) expedites
the contact of luminal bile acids with the ileum, a major
area for bile acid reabsorption, leading to earlier and more
active bile acid reabsorption (Ferrannini et al., 2015). This
explanation is also supported by an experimental procedure
performed on rats termed ileal interposition (IT), in which the
interposition of a segment of the ileum into the proximal jejunum
shows greater bile acid reabsorption and increased serum bile
acids (Cummings et al., 2013). It has been speculated that the
length ratio of the biliopancreatic limb and the common limb
represent a major determinant of postoperative serum bile acid
concentrations. Postoperative serum bile acid concentrations
are likely to be greater with longer biliopancreatic limb and
shorter common limb, as evidenced by both animal (Han et al.,
2015; Miyachi et al., 2016) and human studies (Mika et al., 2018).
The precise mechanism has yet been elucidated. In BPD,
the functional common limb left is less than one meter
(Tacchino et al., 2003), and the increased luminal bile acid
reabsorption cannot compensate for substantial fecal bile acid
loss. Therefore, the increased hepatic bile acid synthesis also
contributes to increased serum bile acids as a complementary
mechanism (Scopinaro, 2006; Ferrannini et al., 2015). Compared
to BPD, RYGB as well as duodenal-jejunal bypass (DJB, an
experimental procedure designed to investigate the mechanism
of diabetes remission with no effect on weight-loss), has enough
intestinal bile acid reabsorption area, with either decreased
(de Siqueira Cardinelli et al., 2019) or unchanged fecal bile
acid excretion (Li et al., 2011; Bhutta et al., 2015), and the
hepatic bile acid synthesis is decreased (Ferrannini et al., 2015;
Zhang et al., 2016), probably due to a feedback regulation in
response to the increased serum bile acids.

For vertical sleeve gastrectomy (VSG), only limited data
are available regarding postsurgical serum bile acids. One
human study showed immediate increase of serum bile acids
after surgery (Kindel et al., 2018), while two other human
studies showed unchanged serum bile acids until 1 or 2 years
after surgery, with only statistically non-significant increase
(Nakatani et al., 2009; Haluzikova et al., 2013). In contrast,
animal studies showed consistently increased serum bile acids
after VSG (Cummings et al., 2012; Myronovych et al., 2014a,b).
Due to the lack of direct anatomical manipulation of the
gut, the increased serum bile acids after VSG are likely
to be a secondary effect of altered gastrointestinal function
(Sips et al., 2018) and progressively intestinal adaption. It has
been reported that VSG accelerates gastric emptying and
intestinal motility (Mans et al., 2015). And Myronovych et al.
(2014b) has found decreased hepatic bile acid synthesis, increased

intestinal villus length and enlarged bile acid reabsorption
intestinal area, which might explain the increased serum bile
acids after VSG.

BILE ACIDS, FXR AND BARIATRIC
SURGERY

Role of FXR in Maintaining Bile Acid
Homeostasis
The farnesoid X receptor (FXR, NR1H4), an orphan member
of the nuclear receptor family, was first identified as a natural
receptor for bile acids in 1999 (Makishima et al., 1999;
Parks et al., 1999; Wang et al., 1999). Subsequently, bile acids
were found transcriptionally regulating their own synthesis and
enterohepatic transport by repressing CYP7A1 (a rate-limiting
enzyme for bile acid synthesis in the liver) via hepatic FXR-
SHP-CYP7A1 pathway (Goodwin et al., 2000; Lu et al., 2000).
Later, fibroblast growth factor 19 (FGF19, in rodents ortholog
FGF15), secreted mainly from the ileum in response to intestinal
FXR activation, was found as an enterohepatic signal to
regulate bile acid homeostasis as well (Inagaki et al., 2005).
Circulating FGF15/19 within the portal venous system targets
FGF receptor 4 (FGFR4) in the liver, and inhibits CYP7A1
expression and bile acid synthesis, thus working as components
of a gut-liver signaling pathway that synergizes with hepatic
FXR-SHP-CYP7A1 pathway to regulate bile acid homeostasis
(Inagaki et al., 2005).

Role of FXR in Metabolism Regulation
The metabolism-regulating effect of FXR is more complex
compared to bile acid homeostasis maintenance. A variety
of genetic and pharmacological animal models have been
established to investigate the role of FXR signaling in body
weight management and metabolism regulation. Whole body
FXR knock-out mice (FXR−/−) displayed impaired glucose
disposal and elevated blood glucose concentrations, as a result
of blunted insulin pathway in the liver, peripheral adipose tissue
and skeletal muscles, although FXR is not expressed in skeletal
muscles (Cariou et al., 2006; Ma et al., 2006). Meantime, plasma
triglycerides, cholesterols and free fatty acids were elevated,
with severe liver fat accumulation, however, surprisingly, this
kind of mouse model was protected from diet- or genetically-
induced obesity, probably because the adipocyte differentiation
was impaired in the absence of FXR (Sinal et al., 2000;
Cariou et al., 2006). In contrast, supplementation of whole-body
FXR agonist (GW4064) in ob/ob mice has multiple beneficial
effects, indicating that FXR could be a potential therapeutic target
for metabolic disorders and bariatric surgery (Cariou et al., 2006).

Since FXR is abundant in the liver and small intestine,
some studies concentrate on its tissue-specific signaling. In the
liver, FXR activation lowers plasma triglycerides via FXR-SHP-
(SREBP-1c) pathway (Watanabe et al., 2004), and improves
hyperglycemia by inhibiting gluconeogenesis and improving
insulin sensitivity (Zhang et al., 2006). In contrast, liver-specific
FXR−/− mice showed increased plasma triglycerides, and unlike
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whole-body FXR knock-out, were not protected from diet-
induced obesity and insulin resistance (Watanabe et al., 2004).
In the small intestine, the physiological role of FXR is
primarily mediated by FGF15/19 whose metabolism-beneficial
functions resemble those of insulin in stimulating protein and
glycogen synthesis and inhibiting gluconeogenesis, but does
not lead to body weight gain or hepatic fat accumulation
(Kir et al., 2011).

Bile Acid-FXR Pathway in Bariatric
Surgery
Since bile acids are natural ligands for FXR, it has been
believed that bile acid-FXR pathway contribute to the beneficial
effects of bariatric surgery. However, no consensus has been
reached so far. The essential role of FXR in bariatric surgery
was first demonstrated by a milestone research published
in 2014. The ability of VSG to reduce body weight and
improve glucose tolerance was substantially reduced in the
state of genetic disruption of FXR (Ryan et al., 2014).
Nevertheless, the results were later questioned by the authors
themselves, as the whole body FXR knock-out mice per se
were protected from diet-induced obesity as well as glucose
intolerance, and the observational window might not be
long enough (Bozadjieva et al., 2018). Bariatric surgery alters
bile acid drainage, either anatomically or functionally, and
changes luminal bile acid concentrations and composition.
Activation of intestinal FXR by bile acids increases FGF19
following bariatric surgery in humans and represents one
mechanism accounting for postsurgical metabolic improvement
(Jansen et al., 2011; Pournaras et al., 2012; Gerhard et al., 2013;
Haluzikova et al., 2013; Jorgensen et al., 2015; Sachdev et al.,
2016). One human study did not support the contribution
of FGF19 to the benefit of RYGB, as the increase of
FGF19 did not parallel the improvement of glucose tolerance
(Jorgensen et al., 2015). And animal studies have shown that both
intestine-specific FXR agonist (Fexaramine) (Fang et al., 2015)
and antagonist (Glycine-muricholic acid) (Jiang et al., 2015)
have the capacity of reducing body weight and improving
metabolism. Interestingly, alteration of luminal bile acids after
bariatric surgery did not guarantee activation of intestinal
FXR. On the contrary, intestinal FXR was intact or even
repressed (Kohli et al., 2013b; Goncalves et al., 2015).
These unexpected phenomena have been thought closely
related to the intestinal bile acid milieu, as the physiological
effect of each individual bile acid differs in interacting
with FXR, with chenodeoxycholic acid (CDCA) being a
potent agonist, deoxycholic acid (DCA) being a moderate
agonist (Parks et al., 1999), yet ursodeoxycholic acid (UDCA)
(Mueller et al., 2015), and muricholic acid (MCA, only in
rodents) being antagonists (Jiang et al., 2015). Surprisingly,
intestinal FXR repression also leads to metabolic benefits.
One study reported that FXR repression within intestinal
L cells led to glucagon-like peptide 1 (GLP-1) secretion
hence improving glucose metabolism (Trabelsi et al., 2015). This
finding may also partly explain the paradox between intestinal
bile supplementation and bile deprivation (e.g., bile sequestrant),

both of which have been confirmed effective in enhancing GLP-1
secretion (Trabelsi et al., 2015; Zhang et al., 2016).

It should be noted that most of the studies identifying
intestinal FXR repression as a positive metabolic regulator
are from animal models, suggesting that the gut may
respond differently to FXR-specific targeting between
animals and humans.

BILE ACIDS, TGR5, AND BARIATRIC
SURGERY

G protein coupled receptor 1, also known as TGR5 (GPR131),
was discovered as a membrane-type receptor for bile acids
in 2002 (Maruyama et al., 2002) and has been confirmed as
another essential receptor in maintaining glucose homeostasis
after sleeve gastrectomy (McGavigan et al., 2017). However,
one latest report revealed that the metabolic benefits were
still maintained in Tgr5−/−, but not FxrM /E mice after
a bariatric procedure, suggesting a less important role
for TGR5 as opposed to intestinal FXR (Albaugh et al.,
2018). Unlike FXR, each individual bile acid is capable of
activating TGR5, only with different potency (conjugated
form > unconjugated form, LCA > DCA > CDCA > CA)
(Maruyama et al., 2002). Therefore, after bariatric surgery,
the increased luminal or serum bile acids are able to elicit
TGR5-mediated metabolic benefits, and appear to make a
complementary contribution to the metabolic benefits of
bariatric surgery.

Luminal Bile Acids, TGR5, and Incretins
In the distal small intestine, TGR5 activation within
enteroendocrine L cells in response to luminal bile acids
have been confirmed as a critical signaling pathway in promoting
GLP-1 secretion in both animal models (Thomas et al., 2009)
and humans (Wu et al., 2013). Following bariatric surgery, as
a result of gut manipulation and increased luminal bile acids,
serum GLP-1 has been found ubiquitously elevated, either
acutely (le Roux et al., 2007) or gradually (Borg et al., 2006),
and is now referred to as an important, albeit not exclusive,
mechanism of bariatric surgery in improving glucose tolerance
(Madsbad and Holst, 2014). GLP-1 and glucose-dependent
insulinotropic polypeptide (GIP) are known as “incretin
hormones” as they mediate the incretin effect, defined as
the increased stimulation of insulin secretion elicited by
oral compared with intravenous administration of glucose
under similar plasma glucose levels (Wu et al., 2016). In
health, the incretin effect accounts for 70% of postprandial
insulin secretion after oral ingestion of glucose in a glucose-
dependent fashion (Nauck et al., 1986). In T2DM, the
incretin effect is markedly impaired as a result of the loss
of insulinotropic effect of GIP, while GLP-1 still maintains
its pleiotropic physiological functions including stimulating
insulin secretion, improving hepatic insulin sensitivity and
suppressing appetite (Wu et al., 2014, 2016), which might
account for the partially restored incretin effect after bariatric
surgery (Laferrere et al., 2007). A latest “proof of concept” study
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has proved that the distal, as opposed to proximal, small intestine
is superior in modulating postprandial glucose metabolism
in both health and T2DM, of which GLP-1 plays a major
role (Zhang et al., 2019). Currently, GLP-1 analogs as well
as dipeptidyl peptidase-4 (DDP4, an enzyme for degradation
of incretins) inhibitors have been commercialized for the
management of T2DM.

Serum Bile Acids, TGR5, and Energy
Expenditure
In the skeletal muscle and brown adipose, increased serum
bile acids have the capacity of converting tetraiodothyronine
(T4) to triiodothyronine (T3) through TGR5, leading to
more energy expenditure, which might facilitate weight loss
(Kohli et al., 2013a; Broeders et al., 2015; Watanabe et al., 2006).
However, the relevance between TGR5-mediated energy
expenditure and bariatric surgery has not been clarified.
In a human study, increased skeletal gene expressions of
TGR5 downstream targets (mitochondrial COX IV and
Kir6.2) were detected after RYGB, but no correlation with
resting energy expenditure was found (Kohli et al., 2013a).
In addition, the majority of studies suggest decreased
energy expenditure after bariatric surgery, which might be
a secondary effect of weight loss (Benedetti et al., 2000;
Carrasco et al., 2007). In contrast, increased weight-adjusted
energy expenditure was also present in some studies (Faria
et al., 2012; Rabl et al., 2014). As energy metabolism is
related to many factors, such as body composition, exercise
or hormones, whether TGR5-mediated energy regulation
plays a role in weight-loss after bariatric surgery still warrants
further research.

MICROBIOTA AND BILE ACIDS

Role of Gut Microbiota in Metabolic
Disorders
Gut microbiota, also named as “The Second Genome,” consists
of more than 1014 microorganisms, most of which have not
been fully investigated (Turnbaugh et al., 2007). Five phyla
dominate human gut community, including Actinobacteria,
Bacteroidetes, Firmicutes, Proteobacteria, and Verrucomicrobia,
of which Bacteroidetes and Firmicutes account for over 90%
of the whole gut microbiota (Tilg and Kaser, 2011). Along the
whole gut, microbiota is not uniformly distributed. Both the
abundance and diversity are increased from the proximal to
distal gut (Prakash et al., 2011). In the stomach, only bacteria
resistant to acidic environment survive (e.g., Lactobacillus
or Streptococcus or Veillonella) (Dicksved et al., 2009), while
in the large intestine, where the intrinsic environment is
suitable for bacterial growth, lives most of the gut bacteria
(Prakash et al., 2011). Gut microbiota begins to colonize since
newborns, and is related to certain pathological states in
adulthood. An identical twin study showed that different
physiologic states (obese versus lean) are associated with
distinct gut microbiota, despite the same genetic background

(Turnbaugh et al., 2009). In obesity, the majority of animal
and human studies have demonstrated that the diversity of gut
microbiota is decreased, and Phylum Firmicutes is increased
at the expense of Phylum Bacteroidetes, independent of food
consumption (Ley et al., 2006; Turnbaugh et al., 2006, 2009).
In T2DM, inconsistent results have been reported. Larsen
et al. found that the proportions of Phylum Firmicutes
and Class Clostridia were significantly reduced in T2DM,
and Bacteroidetes/Firmicutes ratio was correlated positively
and significantly with plasma glucose concentrations
(Larsen et al., 2010). Qin et al. used a deep shotgun sequencing
method analyzing gut microbial DNA from 345 Chinese
individuals, and found that type 2 patients had a moderate
degree of gut bacterial dysbiosis, a decline in butyrate-
producing bacteria and an increase in diverse opportunistic
pathological bacteria (Qin et al., 2012). They also pointed
out that compared to inflammatory bowel disease (IBD),
the degree of gut microbiota changes in T2DM was not that
substantial. Since gut microbiota is influenced by various
factors such as life style, dietary, disease, medication, and
surgery, the currently available results should be interpreted
with caution, and may not be used as a marker for T2DM
monitoring at the moment.

Changes of Gut Microbiota After
Bariatric Surgery
Bile acids and gut microbiota are reciprocally affected and are
both altered by bariatric surgery. Within the enterohepatic
circulation, bile acids in the distal ileum and colon undergo
hydrolysis (deconjugation) and subsequent transformation into
secondary bile acids. These processes require the catalysis of bile
salt hydrolases (BSHs, produced by certain gut bacteria) and
the bacterial activity of 7α-dehydroxylation (Ridlon et al., 2006).
Meantime, both gut bile acid concentrations and compositions
have direct influence on gut microbiota. Increased luminal
bile acid concentrations have anti-bacterial effects, killing
certain strains of bacterium and make some other bacteria
(e.g., Bilophila wadsworthia) thrive (Noh and Gilliland, 1993;
Devkota et al., 2012). Furthermore, some individual bile
acids are capable of activating enteral FXR, thus leading to
enteroprotection by promoting related gene expressions and
inhibits bacterial overgrowth and mucosal injury in the ileum.
All these effects indicate the existence of indirect influence
on gut microbiota by gut bile acids (Inagaki et al., 2006).
Following bariatric surgery, gut microbiota is changed. In
RYGB, at the phylum level, Proteobacteria has been reported
to be increased at the expense of Firmicutes (Zhang et al.,
2009; Tremaroli et al., 2015), while Bacteroidetes has been
found inconsistently changed, either increased (Furet et al.,
2010) or decreased (Li et al., 2011; Graessler et al., 2013).
In VSG, both animal and human studies showed increased
Bacteroidetes and decreased Firmicutes, and rebuilt of the gut
microbiota diversity (Jahansouz et al., 2017; Murphy et al.,
2017; Shao et al., 2018). At the species level, the outcomes
have been inconsistently reported across different studies,
further increasing the difficulty of gut microbiota research.
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) As to the interaction of bile acids and gut microbiota after

bariatric surgery, it’s similar to an old question: “which came
first, the chicken or the egg?” We do not have direct and
strong evidence at the moment, but assume that the instantly
altered luminal bile acids following bariatric surgery might
be the driving force, and the final phenotype of luminal bile
acids and gut microbiota is a result of gradual interaction and
adaption of each other.

Gut Microbiota After Bariatric Surgery: A
Signal Carrier?
Another question to be answered is how gut microbiota
affects the host after bariatric surgery. In fact, the contribution
of gut microbiota to the metabolic benefits after bariatric
surgery has not been clarified. Based on currently available
reports, gut microbiota is likely to be a signal carrier and
transmits signals that are able to play a role even in a
different host. Direct evidence comes from fecal microbiota
transplantation (FMT). Patients with metabolic syndrome
experienced significantly increased insulin sensitivity after
receiving gut microbiota from lean donors (Vrieze et al., 2012).
However, the improvement of insulin sensitivity disappeared
at 12 weeks after FMT, suggesting that the beneficial effect
of FMT might not last in absence of sustainable exogenous
stimulations. Metabolic benefits were also observed in FMT
from bariatric surgery recipient donors to mice (Tremaroli
et al., 2015), but we do not know whether the effect of
bariatric surgery could be recapitulated by FMT in human
recipient as well.

Due to technical reasons, it’s difficult to observe the dynamic
change of luminal bile acids and gut microbiota frequently after
bariatric surgery. And a Dutch population-based cohort showed
that the influence of currently realized exogenous and intrinsic
host factors could only explain 18.7% of the inter-individual
variation of microbial composition (Zhernakova et al., 2016).
Therefore, the knowledge of gut microbiota is far from enough
and warrants future research.

BILE DIVERSION PROCEDURES

In order to isolate the contribution of bile acids to the
metabolic benefits of bariatric surgery, some studies have
tried to manipulate bile flow directly without altering the
gastrointestinal tract (Table 1). Bile diversion (BD) procedure
in rats was performed as early as the 1980s, even before
the discovery of GLP-1, to investigate the influence of re-
routing of bile flow on glucose homeostasis. This early study
showed 10% less weight of rats undergoing BD than control,
decreased fasting blood glucose and improved glucose tolerance,
with no effect on insulin secretion (Manfredini et al., 1985).
Another study in 1991 using streptozocin (STZ) -induced
diabetic rats showed similar results, except an immediate return
of insulin to normal level after surgery (Ermini et al., 1991).
It is not until 2013 that the BD procedure had regained
attention. Subsequent studies have demonstrated comparable
effects of BD with gastric bypass procedure in glucose control
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in normal rats (Goncalves et al., 2015), diet-induced obese rats
(Kohli et al., 2013b), and mice (Flynn et al., 2015). However,
under diabetic state, the effects of BD were attenuated compared
to DJB, with limited glucose-lowering effect observed. Therefore,
to our knowledge, bile acid manipulation appears to be capable
of recapitulating the effects of bariatric surgery only in non-
diabetic state.

CONCLUSION

Bile acids play a role in metabolic regulation through various
pathways. Alteration of bile acid metabolism is an important
component of bariatric surgery, and represents a promising target
for the management of metabolic disorders.
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