Sharafdini R. ${ }^{1}$, Abdian A.Z. ${ }^{2}$

SIGNLESS LAPLACIAN DETERMINATIONS OF SOME GRAPHS WITH INDEPENDENT EDGES

Let G be a simple undirected graph. Then the signless Laplacian matrix of G is defined as $D_{G}+A_{G}$ in which D_{G} and A_{G} denote the degree matrix and the adjacency matrix of G, respectively. The graph G is said to be determined by its signless Laplacian spectrum (DQS, for short), if any graph having the same signless Laplacian spectrum as G is isomorphic to G. We show that $G \sqcup r K_{2}$ is determined by its signless Laplacian spectra under certain conditions, where r and K_{2} denote a natural number and the complete graph on two vertices, respectively. Applying these results, some DQS graphs with independent edges are obtained.

Key words and phrases: spectral characterization, signless Laplacian spectrum, cospectral graphs, union of graphs.

[^0]
INTRODUCTION

All graphs considered here are simple and undirected. All notions on graphs that are not defined here can be found in $[13,16]$. Let G be a simple graph with the vertex set $V=V(G)=$ $\left\{v_{1}, \ldots, v_{n}\right\}$ and the edge set $E=E(G)$. Denote by d_{i} the degree of the vertex v_{i}. The adjacency matrix A_{G} of G is a square matrix of order n, whose (i, j)-entry is 1 if v_{i} and v_{j} are adjacent in G and 0 otherwise. The degree matrix D_{G} of G is a diagonal matrix of order n defined as $D_{G}=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$. The matrices $L_{G}=D_{G}-A_{G}$ and $Q_{G}=D_{G}+A_{G}$ are called the Laplacian matrix and the signless Laplacian matrix of G, respectively. The multiset of eigenvalues of Q_{G} (resp. L_{G}, A_{G}) is called the Q-spectrum (resp. L-spectrum, A-spectrum) of G. For any bipartite graph, its Q-spectrum coincides with its L-spectrum. Two graphs are Q-cospectral (resp. L-cospectral, A-cospectral) if they have the same Q-spectrum (resp. L-spectrum, A spectrum). A graph G is said to be DQS (resp. DLS, DAS) if there is no other non-isomorphic graph Q-cospectral (resp. L-cospectral, A-cospectral) with G. Let us denote the Q-spectrum of $G \operatorname{by~}_{\operatorname{Spec}_{Q}}(G)=\left\{\left[q_{1}\right]^{m_{1}},\left[q_{2}\right]^{m_{2}}, \ldots,\left[q_{n}\right]^{m_{n}}\right\}$, where m_{i} denotes the multiplicity of q_{i} and $q_{1} \geq q_{2} \geq \ldots \geq q_{n}$.

[^1]The join of two graphs G and H is a graph formed from disjoint copies of G and H by connecting each vertex of G to each vertex of H. We denote the join of two graphs G and H by $G \nabla H$. The complement of a graph G is denoted by \bar{G}. For two disjoint graphs G and H, let $G \sqcup H$ denotes the disjoint union of G and H, and $r G$ denotes the disjoint union of r copies of G, i.e., $r G=\underbrace{G \sqcup \ldots \sqcup G}_{r-\text { times }}$.

Let G be a connected graph with n vertices and m edges. Then G is called unicyclic (resp. bicyclic) if $m=n$ (resp. $m=n+1$). If G is a unicyclic graph containing an odd (resp. even) cycle, then G is called odd unicyclic (resp. even unicyclic).

Let C_{n}, P_{n}, K_{n} be the cycle, the path and the complete graph of order n, respectively. $K_{s, t}$ the complete bipartite graph with s vertices in one part and t in the other.

Let us remind that the coalescence [21] of two graphs G_{1} with distinguished vertex v_{1} and G_{2} with distinguished vertex v_{2}, is formed by identifying vertices v_{1} and v_{2} that is, the vertices v_{1} and v_{2} are replaced by a single vertex v adjacent to the same vertices in G_{1} as v_{1} and the same vertices in G_{2} as v_{2}. If it is not necessary v_{1} or v_{2} may not be specified.

The friendship graph F_{n} is a graph with $2 n+1$ vertices and $3 n$ edges obtained by the coalescence of n copies of C_{3} with a common vertex as the distinguished vertex; in fact, F_{n} is nothing but $K_{1} \nabla n K_{2}$.

The lollipop graph, denoted by $H_{n, p}$, is the coalescence of a cycle C_{p} with arbitrary distinguished vertex and a path P_{n-p} with a pendent vertex as the distinguished vertex; for example $H_{11,6}$ is depicted in Figure $1(b)$. We denote by $T(a, b, c)$ the T-shape tree obtained by identifying the end vertices of three paths P_{a+2}, P_{b+2} and P_{c+2}. In fact, $T(a, b, c)$ is a tree with one and only one vertex v of degree 3 such that $T(a, b, c)-\{v\}=P_{a+1} \sqcup P_{b+1} \sqcup P_{c+1}$; for example $T(0,1,1)$ is depicted in Figure 1 (a).

Figure 1: (a) The T-shape tree $T(0,1,1)$

(b) The lollipop graph $H_{11,6}$

A kite graph $K i_{n, w}$ is a graph obtained from a clique K_{w} and a path P_{n-w} is the coalescence of K_{w} with an arbitrary distinguished vertex and a path P_{n-w+1} with a pendent vertex as the distinguished vertex. A tree is called starlike if it has exactly one vertex of degree greater than two. We denote by $U_{r, n-r}$ the graph obtained by attaching $n-r$ pendent vertices to a vertex of C_{r}. In fact, $U_{r, n-r}$ is the coalescence of $K_{1, n-r-1}$ and P_{n-w+1} where distinguished vertices are the vertex of degree $n-r$ and a pendent vertex, respectively. A graph is a cactus, or a treelike graph, if any pair of its cycles has at most one common vertex [35]. If all cycles of the cactus G have exactly one common vertex, then G is called a bundle [12]. Let $S(n, c)$ be the bundle with n vertices and c cycles of length 3 depicted in Figure 2, where $n \geq 2 c+1$ and $c \geq 0$. By the definition, it follows that $S(n, c)=K_{1} \nabla\left(c K_{2} \sqcup(n-2 c-1) K_{1}\right)$. In fact $S(n, c)$ is the coalescence of F_{c} and $K_{1, n-2 c-1}$ where the distinguished vertices are the vertex of the degree $2 c$ and the vertex of the degree $n-2 c-1$, respectively.

Figure 2: The bundle $S(n, c)$

Let G be a graph with n vertices, H be a graph with m vertices. The corona of G and H, denoted by $G \circ H$, is the graph with $n+m n$ vertices obtained from G and n copies of H by joining the i-th vertex of G to each vertex in the i-th copy of $H(i \in\{1, \ldots, n\})$; for example $C_{4} \circ 2 K_{1}$ is depicted in Figure 3.

Figure 3: $C_{4} \circ 2 K_{1}$
A complete split graph $\operatorname{CS}(n, \alpha)$, is a graph on n vertices consisting of a clique on $n-\alpha$ vertices and an independent set on the remaining $\alpha(1 \leq \alpha \leq n-1)$ vertices in which each vertex of the clique is adjacent to each vertex of the independent set. The dumbbell graph, denoted by $D_{p, k, q}$, is a bicyclic graph obtained from two cycles C_{p}, C_{q} and a path P_{k+2} by identifying each pendant vertex of P_{k+2} with a vertex of a cycle, respectively. The theta graph, denoted by $\Theta_{r, s, t}$, is the graph formed by joining two given vertices via three disjoint paths P_{r}, P_{s} and P_{t}, respectively, see Figure 4.

Figure 4: The graphs $D_{p, k, q}$ and $\Theta_{r, s, t}$
The problem "which graphs are determined by their spectrum?" was posed by Günthard and Primas [24] more than 60 years ago in the context of Hückel's theory in chemistry. In the most recent years mathematicians have devoted their attention to this problem and many
papers focusing on this topic are now appearing. In [36] van Dam and Haemers conjectured that almost all graphs are determined by their spectra. Nevertheless, the set of graphs that are known to be determined by their spectra is too small. So, discovering infinite classes of graphs that are determined by their spectra can be an interesting problem. Cvetković, Rowlinson and Simić in [17-20] discussed the development of a spectral theory of graphs based on the signless Laplacian matrix, and gave several reasons why it is superior to other graph matrices such as the adjacency and the Laplacian matrix. It is interesting to construct new DQS (DLS) graphs from known DQS (DLS) graphs. Up to now, only some graphs with special structures are shown to be determined by their spectra (DS, for short) (see [1-11, 15, 17, 19, 22, 23, 25-34,38-41] and the references cited in them). About the background of the question "Which graphs are determined by their spectrum?", we refer to $[36,37]$. For a DQS graph $G, G \nabla K_{2}$ is also DQS under some conditions [30]. A graph is DLS if and only if its complement is DLS. Hence we can obtain DLS graphs from known DLS graphs by adding independent edges. In [25] it was shown that $G \sqcup r K_{1}$ is DQS under certain conditions. In this paper, we investigate signless Laplacian spectral characterization of graphs with independent edges. For a DQS graph G, we show that $G \sqcup r K_{2}$ is DQS under certain conditions. Applying these results, some DQS graphs with independent edges are obtained.

1 Preliminaries

In this section, we give some lemmas which are used to prove our main results.
Lemma 1 ([17,19]). Let G be a graph. For the adjacency matrix of G, the following can be deduced from the spectrum.
(1) The number of vertices.
(2) The number of edges.
(3) Whether G is regular.

For the Laplacian matrix, the following follows from the spectrum:
(4) The number of components.

For the signless Laplacian matrix, the following follow from the spectrum:
(5) The number of bipartite components, i.e., the multiplicity of the eigenvalue 0 of the signless Laplacian matrix is equal to the number of bipartite components.
(6) The sum of the squares of degrees of vertices.

Lemma 2 ([17]). Let G be a graph with n vertices, m edges, t triangles and the vertex degrees $d_{1}, d_{2}, \ldots, d_{n}$. If $T_{k}=\sum_{i=1}^{n} q_{i}(G)^{k}$, then we have

$$
T_{0}=n, \quad T_{1}=\sum_{i=1}^{n} d_{i}=2 m, \quad T_{2}=2 m+\sum_{i=1}^{n} d_{i}^{2}, \quad T_{3}=6 t+3 \sum_{i=1}^{n} d_{i}^{2}+\sum_{i=1}^{n} d_{i}^{3}
$$

For a graph G, let $P_{L}(G)$ and $P_{Q}(G)$ denote the product of all nonzero eigenvalues of L_{G} and Q_{G}, respectively. Note that $P_{L}\left(K_{2}\right)=P_{Q}\left(K_{2}\right)=2$. We assume that $P_{L}(G)=P_{Q}(G)=1$ if G has no edges.

Lemma 3 ([16]). For any connected bipartite graph G of order n, we have $P_{Q}(G)=P_{L}(G)=$ $n \tau(G)$, where $\tau(G)$ is the number of spanning trees of G. Especially, if T is a tree of order n, then $P_{Q}(T)=P_{L}(T)=n$.

Lemma 4 ([32]). Let G be a graph with n vertices and m edges.
(i) $\operatorname{det}\left(Q_{G}\right)=4$ if and only if G is an odd unicyclic graph.
(ii) If G is a non-bipartite connected graph and $m>n$, then $\operatorname{det}\left(Q_{G}\right) \geq 16$, with equality if and only if G is a non-bipartite bicyclic graph with C_{4} as its induced subgraph.

Lemma 5 ([16]). Lete be any edge of a graph G of order n. Then

$$
q_{1}(G) \geq q_{1}(G-e) \geq q_{2}(G) \geq q_{2}(G-e) \geq \ldots \geq q_{n}(G) \geq q_{n}(G-e) \geq 0
$$

Lemma 6 ([21]). Let H be a proper subgraph of a connected graph G. Then $q_{1}(G)>q_{1}(H)$.
Lemma 7 ([21]). Let G be a graph with n vertices and m edges. Then $q_{1}(G) \geq \frac{4 m}{n}$, with equality if and only if G is regular.

Lemma 8 ([17]). For a graph $G, 0<q_{1}(G)<4$ if and only if all components of G are paths.
Lemma 9 ([36]). A regular graph is DQS if and only if it is DAS. A regular graph G is DAS (DQS) if and only if \bar{G} is DAS (DQS).

Lemma 10 ([19]). Let G be a k-regular graph of order n. Then G is DAS when $k \in$ $\{0,1,2, n-3, n-2, n-1\}$.

Lemma 11 ([15]). Let G be a k-regular graph of order n. Then $G \nabla K_{1}$ is DQS for $k \in\{1, n-2\}$, for $k=2$ and $n \geq 11$. For $k=n-3, G \nabla K_{1}$ is DQS if and only if \bar{G} has no triangles.

Lemma 12 ([30]). Let G be a k-regular graph of order n. Then $G \nabla K_{2}$ is DQS for $k \in\{1, n-2\}$. For $k=n-3, G \nabla K_{2}$ is DQS if and only if \bar{G} has no triangles.

Lemma 13 ([25]). The following hold for graphs with isolated vertices:
(i) Let T be a DLS tree of order n. Then $T \sqcup r K_{1}$ is DLS. If n is not divisible by 4, then $T \sqcup r K_{1}$ is DQS.
(ii) The graphs $\overline{P_{n}}$ and $\overline{P_{n}} \sqcup r K_{1}$ are DQS.
(iii) Let G be a graph obtained from K_{n} by deleting a matching. Then G and $G \sqcup r K_{1}$ are DQS.
(iv) A ($n-4$)-regular graph of order n is DAS (DQS) if and only if its complement is a 3regular DAS (DQS) graph.
(v) Let G be a $(n-3)$-regular graph of order n. Then $G \sqcup r K_{1}$ is DQS.

Now let us list some known families of DQS graphs.

Lemma 14. The following graphs are DQS.
(i) The graphs $P_{n}, C_{n}, K_{n}, K_{m, m}, r K_{n}, P_{n_{1}} \sqcup P_{n_{2}} \sqcup \ldots \sqcup P_{n_{k}}$ and $C_{n_{1}} \sqcup C_{n_{2}} \sqcup \ldots \sqcup C_{n_{k}}$ [36].
(ii) Any wheel graph $K_{1} \nabla C_{n}$, [26].
(iii) Every lollipop graph $H_{n, p}$, [41].
(iv) Every kite graph $K i_{n, n-1}$ for $n \geq 4$ and $n \neq 5$, [23].
(v) The friendship graph $F_{n},[38]$.
(vi) $\left(C_{n} \circ t K_{1}\right)$, for $n \notin\{32,64\}$ and $t \in\{1,2\},[14,32]$.
(vii) The line graph of a T-shape tree $T(a, b, c)$ except $T(t, t, 2 t+1)(t>1)$, [39].
(viii) The starlike tree with maximum degree 4, [34].
(ix) $U_{r, n-r}$ for $r \geq 3,[27]$.
(x) $\operatorname{CS}(n, \alpha)$ when $1 \leq \alpha \leq n-1$ and $\alpha \neq 3$, [22].
(xi) For $n \geq 2 c+1$ and $c \geq 0, \overline{S(n, c)}$ and $S(n, c)$ except for the case of $c=0$ and $n=4$, [29].
(xii) $K_{1, n-1}$ for $n \neq 4,[29]$.
(xiii) $G \nabla K_{m}$ where G is an $(n-2)$-regular graph on n vertices, and $\overline{K_{n}} \nabla K_{2}$ except for $n=3$, [28].
(xiv) All dumbbell graphs different from $D_{3 q, 0, q}$ and all theta graphs, [40].

It is easy to see that $K_{1,3}$ and $K_{3} \sqcup K_{1}$ are Q-cospectral, i.e., $\operatorname{Spec}_{Q}\left(K_{1,3}\right)=\operatorname{Spec}_{Q}\left(K_{3}\right)=$ $\left\{[4]^{1},[1]^{2},[0]^{1}\right\}$. Therefore, $S(n, c)$ is not DQS when $c=0$ and $n=4$, since $S(n, 0)$ is nothing but $K_{1, n-1}$.

2 Main Results

We first investigate spectral characterizations of the union of a tree and several complete graphs K_{2}.

Theorem 1. Let T be a DLS tree of order n. Then $T \sqcup r K_{2}$ is DLS for any positive integer r. Moreover, if n is odd and $r=1$, then $T \sqcup r K_{2}$ is DQS.

Proof. For $n, r \in\{1,2\}$ see Lemma 13 (i) and Lemma 14 (i). So, one may suppose that $n, r \geq 3$. Let G be any graph L-cospectral with $T \sqcup r K_{2}$. By Lemma $1, G$ has $n+2 r$ vertices, $n-1+r$ edges and $r+1$ components. So each component of G is a tree. Suppose that $G=G_{0} \sqcup G_{1} \sqcup$ $\ldots \sqcup G_{r}$, where G_{i} is a tree with n_{i} vertices and $n_{0} \geq n_{1} \geq \ldots \geq n_{r} \geq 2$. For $n_{i}, n_{r} \in\{1\}$ see Lemma 13 (i) and Lemma 14 (i). Hence we consider $n, n_{i}, r \geq 2$. Since G is L-cospectral with $T \sqcup r K_{2}$, by Lemma 3, we get

$$
n_{0} n_{1} \ldots n_{r}=P_{L}\left(G_{0}\right) \ldots P_{L}\left(G_{r}\right)=P_{L}\left(G_{0} \sqcup \ldots \sqcup G_{r}\right)=P_{L}(G)=P_{L}(T) P_{L}\left(K_{2}\right)^{r}=n 2^{r} .
$$

We claim that $n_{r}=2$. Suppose not and so $n_{r} \geq 3$. This means that $n_{0} \geq n_{1} \geq \ldots \geq n_{r} \geq 3$. Hence $n 2^{r}=n_{0} n_{1} \ldots n_{r} \geq 3^{r+1}$ or $n\left(\frac{2}{3}\right)^{r} \geq 3$. Now, if $r \rightarrow \infty$, then $0 \geq 3$, a contradiction. So, we must have $n_{r}=2$. By a similar argument one can show that $n_{1}=\ldots=n_{r-1}=2$ and so $n_{0}=n$. Hence $G=G_{0} \sqcup r K_{2}$. Since G and $T \sqcup r K_{2}$ are L-cospectral, G_{0} and T are L-cospectral. Since T is DLS, we have $G_{0}=T$, and thus $G=T \sqcup r K_{2}$. Hence $T \sqcup r K_{2}$ is DLS.

Let H be any graph Q-cospectral with $T \sqcup r K_{2}$. By Lemma 1, H has $n+2 r$ vertices, $n-1+r$ edges and $r+1$ bipartite components. So one of the following holds:
(i) H has exactly $r+1$ components, and each component of H is a tree.
(ii) H has $r+1$ components which are trees, the other components of H are odd unicyclic.

In what follows we show that (ii) does not occur if n is odd and $r=1$. If (ii) holds, then by Lemma $4, P_{Q}(H)$ is divisible by 4 since H has a cycle of odd order as a component. Since T is a tree of order n, by Lemma 3, $P_{Q}(H)=P_{Q}(T) P_{Q}\left(K_{2}\right)^{r}=n 2^{r}$ is divisible by 4 , a contradiction. Therefore (i) must hold. In this case, H and $T \sqcup r K_{2}$ are both bipartite, and so they are also L-cospectral. By the previous part, $T \sqcup r K_{2}$ is DLS. So we have $H=T \sqcup r K_{2}$.

Hence $T \sqcup r K_{2}$ is DQS when n is odd and $r=1$.
Remark 1. Some DLS trees are given in [25] and references therein. We can obtain some DLS (DQS) trees with independent edges from Theorem 1.

Lemma 14 and Theorem 1 imply the following corollary.
Corollary 1. For an odd positive integer n, we have the following
(i) Let T be a starlike tree of order n and with maximum degree 4. Then $T \sqcup K_{2}$ is DQS.
(ii) $P_{n} \sqcup K_{2}$ is DQS .
(iii) For $n \neq 4, K_{1, n-1} \sqcup K_{2}$ is DQS.
(iv) Let \mathcal{L} be the line graph of a T-shape tree $T(a, b, c)$ except $T(t, t, 2 t+1)(t>1)$. Then $\mathcal{L} \sqcup K_{2}$ is DQS if $a+b+c-3$ is odd.

Theorem 2. Let G be a DQS odd unicyclic graph of order $n \geq 7$. Then $G \sqcup r K_{2}$ is DQS for any positive integer r.

Proof. Let H be any graph Q-cospectral with $G \sqcup r K_{2}$. By Lemma 1(5), 0 is not an eigenvalue of G since it is an odd unicyclic. So by Lemma 4 , we have $4=\operatorname{det}\left(Q_{G}\right)=P_{Q}(G)$. Moreover,

$$
P_{Q}(H)=P_{Q}\left(G \sqcup r K_{2}\right)=P_{Q}(G) P_{Q}\left(K_{2}\right)^{r}=\operatorname{det}\left(Q_{G}\right) 2^{r}=4 \cdot 2^{r}=2^{r+2} .
$$

By Lemma 1, H has $n+2 r$ vertices, $n+r$ edges and r bipartite components. So one of the following holds:
(i) H has exactly r components each of which is a tree.
(ii) H has r components which are trees, the other components of H are odd unicyclic.

We claim that (i) does not hold, otherwise, we may assume that $H=H_{1} \sqcup \ldots \sqcup H_{r}$, where H_{i} is a tree with n_{i} vertices and $n_{1} \geq \ldots \geq n_{r} \geq 1$. It follows from Lemma 3 that

$$
n_{1} \ldots n_{r}=P_{Q}\left(H_{1}\right) \ldots P_{Q}\left(H_{r}\right)=P_{Q}(H)=4 \cdot 2^{r}=2^{r+2}
$$

So $n_{1} \ldots n_{r}=2^{r+2}, n_{1} \leq 8$. Since G contains a cycle, say C, by Lemma 7 we have

$$
\begin{equation*}
q_{1}(H)=q_{1}(G) \geq q_{1}(C)=4 \tag{1}
\end{equation*}
$$

Let $\Delta(H)$ be the maximum degree of H. If $\Delta(H) \leq 2$, then all components of H are paths, hence by Lemma $8, q_{1}(H)<4$, contradicting Eq. (1). So $\Delta(H) \geq 3$. From $n_{1} \leq 8$ and $n_{1} \ldots n_{r}=4 \cdot 2^{r}=2^{(r+2)}$, we may assume that $H_{1}=K_{1,7}, H_{2}=\ldots=H_{r}=K_{2}$. Since $H=K_{1,7} \sqcup(r-1) K_{2}$ has $n+2 r$ vertices, we get $n=6$, a contradiction to $n \geq 7$.
If (ii) holds, then we may assume that $H=U_{1} \sqcup \ldots \sqcup U_{c} \sqcup H_{1} \sqcup \ldots \sqcup H_{r}$, where U_{i} is odd unicyclic, H_{i} is a tree with n_{i} vertices. By Lemmas 3 and $4,4 \cdot 2^{r}=P_{Q}(H)=4^{c} n_{1} \ldots n_{r}$. So $c=1, H_{1}=\ldots=H_{r}=K_{2}$. Since $H=U_{1} \sqcup r K_{2}$ and $G \sqcup r K_{2}$ are Q-cospectral, U_{1} and G are Q-cospectral. Since G is DQS, we have $U_{1}=G, H=G \sqcup r K_{2}$.

Remark 2. Note that $C_{4} \sqcup 2 P_{3}$ and $C_{6} \sqcup 2 K_{2}$ are Q-cospectral, i.e., $\operatorname{Spec}_{Q}\left(C_{4} \sqcup 2 P_{3}\right)=$ $\operatorname{Spec}_{Q}\left(C_{6} \sqcup 2 K_{2}\right)=\left\{[4]^{1},[3]^{2},[2]^{2},[1]^{2},[0]^{3}\right\}$. It follows that the condition "odd unicyclic of order $n \geq 7^{\prime \prime}$ is essential in Theorem 2.

Remark 3. Some DQS unicyclic graphs are given in [25] and references therein. We can obtain some DQS graphs with independent edges from Theorem 2.

Theorem 3. Let G be a DQS graph of order $n \geq 5$. If G is non-bipartite bicyclic graph with C_{4} as its induced subgraph, then $G \sqcup r K_{2}$ is DQS for any positive integer r.

Proof. Let H be any graph Q-cospectral with $G \sqcup r K_{2}$. By Lemma 4, we have

$$
P_{Q}(H)=P_{Q}\left(G \sqcup r K_{2}\right)=P_{Q}(G) P_{Q}\left(K_{2}\right)^{r}=P_{Q}(G) 2^{r} .
$$

By Lemma 1(5), 0 is not an eigenvalue of G since it is non-bipartite. So by Lemma 4 , we have $16=\operatorname{det}\left(G_{Q}\right)=P_{Q}(G)$ and thus $P_{Q}(H)=16 \cdot 2^{r}$.

By Lemma 1, H has $n+2 r$ vertices, $n+1+r$ edges and r bipartite components. So H has at least $r-1$ components which are trees. Suppose that $H_{1}, H_{2}, \ldots, H_{r}$ are r bipartite components of H, where H_{2}, \ldots, H_{r} are trees. If H_{1} contains an even cycle, then by Lemmas 4 and 5, we have $P_{Q}(H) \geq P_{Q}\left(H_{1}\right) \geq 16$, and $P_{Q}(H)=16 \cdot\left(2^{r-1}\right)=2^{r-3}$ if and only if $H=C_{4} \sqcup(r-1) K_{2}$. By $P_{Q}(H)=16 \cdot\left(2^{r-1}\right)=2^{r-3}$, we have $H=C_{4} \sqcup(r-1) K_{2}$. Since H has $n+2 r$ vertices, we get $n=2$, a contradiction (G contains C_{4}). Hence $H_{1}, H_{2}, \ldots, H_{r}$ are trees. Since H has $n+2 r$ vertices, $n+1+r$ edges and r bipartite components, H has a non-bipartite component H_{0} which is a bicyclic graph. Lemmas 4 and 5 imply that $P_{Q}(H) \geq P_{Q}\left(H_{0}\right) \geq 16$, and $P_{Q}(H)=16 \cdot 2^{r}$ if and only if $H=H_{0} \sqcup r K_{2}$ and H_{0} contains C_{4} as its induced subgraph. By $P_{Q}(H)=16 \cdot 2^{r}$, we have $H=H_{0} \sqcup r K_{2}$. Since H and $G \sqcup r K_{2}$ are Q-cospectral, H_{0} and G are Q-cospectral. Taking into account that G is DQS, we conclude that $H_{0}=G$ and $H=G \sqcup r K_{2}$. Hence $G \sqcup r K_{2}$ is DQS.

Remark 4. Some DQS bicyclic graphs are given in [25] and references therein. We can obtain DQS graphs with independent edges from Theorem 3.

Lemma 15. Let G be a connected graph. Then there is no subgraph of G with the Q-spectrum identical to $\operatorname{Spec}_{Q}(G) \cup\left\{[2]^{1}\right\}$. Moreover, if G is of order at least 3 , then $q_{1}(G) \geq 3$.
Proof. Suppose by the contrary that there is a subgraph of G, say G^{\prime}, such that $\operatorname{Spec}_{Q}\left(G^{\prime}\right)=$ $\operatorname{Spec}_{Q}(G) \cup\left\{[2]^{1}\right\}$. But, in this case $\left|E\left(G^{\prime}\right)\right|=|E(G)|+1$ and $\left|V\left(G^{\prime}\right)\right|=|V(G)|+1$. Therefore there exists a vertex v of G^{\prime} with the degree one such that $G^{\prime}-v=G$. This means that G is a proper subgraph of the connected graph G^{\prime} and so by Lemma $6, q_{1}\left(G^{\prime}\right)>q_{1}(G)$, a contradiction. If G is a connected graph of order at least 3 , it has K_{3} or $K_{1,2}$ as its subgraph. Moreover, $\operatorname{Spec}_{Q}\left(K_{3}\right)=\left\{[4],[1]^{2}\right\}$ and $\operatorname{Spec}_{Q}\left(K_{1,2}\right)=\{[3],[1],[0]\}$. Therefore by Lemma 5, $q_{1}(G) \geq 3$.

Theorem 4. Let G be a connected non-bipartite graph with $n \geq 3$ vertices which is DQS. Then for any positive integer $r, G \sqcup r K_{2}$ is DQS.

Proof. Let H be a graph Q-cospectral with $G \sqcup r K_{2}$. Then by Lemmas 1 and $2, H$ has $n+$ $2 r$ vertices, $n+1+r$ edges and exactly r bipartite components. We perform mathematical induction on r. Suppose that H is a graph Q-cospectral with $G \sqcup K_{2}$. Then

$$
\operatorname{Spec}_{Q}(H)=\operatorname{Spec}_{Q}(G) \cup \operatorname{Spec}_{Q}\left(K_{2}\right)=\operatorname{Spec}_{Q}(G) \cup\left\{[2]^{1},[0]^{1}\right\} .
$$

Since G is a connected non-bipartite graph, by Lemma 1, it has not 0 as its signless Laplacian eigenvalue. Therefore, H has exactly one bipartite component. Therefore, by Lemma 15 we get $H=G \sqcup K_{2}$. Now, let the assertion holds for r; that is, if $\operatorname{Spec}_{Q}\left(G_{1}\right)=\operatorname{Spec}_{Q}(G) \cup \operatorname{Spec}_{Q}\left(r K_{2}\right)$, then $G_{1}=G \sqcup r K_{2}$. We show that it follows from $\operatorname{Spec}_{Q}(K)=\operatorname{Spec}_{Q}(G) \cup \operatorname{Spec}_{Q}\left((r+1) K_{2}\right)$ that $K=G \sqcup(r+1) K_{2}$. Obviously, K has 2 vertices, one edge and one bipartite component more than G_{1}. So, we must have $K=G_{1} \sqcup K_{2}$. Now, the inductive hypothesis holds the proof.

Lemma 11 and Theorem 4 imply the following corollary.
Corollary 2. For a k-regular graph G of order $n,\left(G \nabla K_{1}\right) \sqcup r K_{2}$ is DQS if either of the following conditions holds:
(i) $k \in\{1, n-2\}$,
(ii) $k=2$ and $n \geq 11$,
(iii) $k=n-3$ and \bar{G} has no triangles.

Lemma 12 and Theorem 4 imply the following corollary.
Corollary 3. Let G be a k-regular graph of order n. Then $\left(G \nabla K_{2}\right) \sqcup r K_{2}$ is DQS for $k \in$ $\{1, n-2\}$. For $k=n-3,\left(G \nabla K_{2}\right) \sqcup r K_{2}$ is DQS if \bar{G} has no triangles.

Lemma 13 and Theorem 4 imply the following corollary.
Corollary 4. Let G be a non-bipartite graph obtained from K_{n} by deleting a matching. Then $G \sqcup r K_{2}$ is DQS.

Remark 5. Some 3-regular DAS graphs are given in [25] and references therein. We can obtain DQS graphs with independent edges from Corollary 4.

Lemmas 9 and 10 and Theorem 4 imply the following corollary.
Corollary 5. Let G be a k-regular connected non-bipartite graph of order n. Then $G \sqcup r K_{2}$ is DQS if either of the following holds
(i) $k \in\{2, n-1, n-2, n-3\}$.
(ii) $k=n-4$ and G is DAS.

Lemma 14 and Theorem 4 imply the following corollary.
Corollary 6. Let G be any of the following graphs. Then $G \sqcup r K_{2}$ is DQS .
(i) The graphs $C_{n}\left(n\right.$ is odd), $K_{n}(n \geq 4)$.
(ii) The graphs $\overline{P_{n}}(n \geq 5)$.
(iii) The wheel graph $K_{1} \nabla C_{n}$.
(iv) Every lollipop graph $H_{n, p}$ when p is odd and $n \geq 8$.
(v) The kite graph $K i_{n, n-1}$ for $n \geq 4$ and $n \neq 5$.
(vi) The friendship graph F_{n}.
(vii) $\left(C_{n} \circ t K_{1}\right)$, when n is odd and $n \notin\{32,64\}$ and $t \in\{1,2\}$.
(viii) $U_{r, n-r}$ if $r(\geq 3)$ is odd and $n \geq 7$.
(ix) $\operatorname{CS}(n, \alpha)$ when $1 \leq \alpha \leq n-1$ and $\alpha \neq 3$.
(x) $S(n, c)$ and its complement where $n \geq 2 c+1$ and $c \geq 1$.
(xi) $H \nabla K_{m}$ where H is an $(n-2)$-regular graph on n vertices, and $\overline{K_{n}} \nabla K_{2}$ except for $n=3$.
(xii) The dumbbell graphs $D_{p, k, q}$ (p or q is odd) different from $D_{3 q, 0, q}$ and all non-bipartite theta graphs $\Theta_{r, s, t}$.

AcKNOWLEDGMENTS

The authors are very grateful to the anonymous referees whose valuable suggestions and comments helped to improve the presentation of the results of this paper.

References

[1] Abdian A.Z., Mirafzal S.M. On new classes of multicone graph determined by their spectrums. Alg. Struc. Appl. 2015, 2 (1), 23-34.
[2] Abdian A.Z. Graphs which are determined by their spectrum. Konuralp J. Math. 2016, 4 (2), 34-41.
[3] Abdian A.Z. Two classes of multicone graphs determined by their spectra. J. Math. Ext. 2016, 10 (4), 111-121.
[4] Abdian A.Z. Graphs cospectral with multicone graphs $K_{w} \nabla L(P)$. TWMS. J. App. Eng. Math. 2017, 7 (1), 181-187.
[5] Abdian A.Z. The spectral determination of the multicone graphs $K_{w} \nabla P$. arXiv:1706.02661
[6] Abdian A.Z., Mirafzal S.M. The spectral characterizations of the connected multicone graphs $K_{w} \nabla$ LHS and $K_{w} \nabla$ LGQ(3,9). Discrete Math. Algorithms Appl. 2018, 10 (2), 1850019. doi: 10.1142/S1793830918500192
[7] Abdian A.Z., Mirafzal S.M. The spectral determinations of the connected multicone graphs $K_{w} \nabla m P_{17}$ and $K_{w} \nabla$ mS. Czechoslovak Math. J. 2018. doi: 10.21136/CMJ.2018.0098-17
[8] Abdian A.Z. The spectral determinations of the multicone graphs $K_{w} \nabla m C_{n}$. arXiv preprint. arXiv:1703.08728.
[9] Abdian A.Z., Beineke Lowell. W., Behmaram A. On the spectral determinations of the connected multicone graphs $K_{r} \nabla s K_{t}$. arXiv preprint. arXiv:1806.02625.
[10] Abdian A.Z., Behmaram A., Fath-Tabar G.H. Graphs determined by signless Laplacian spectra. arXiv:1806.10004.
[11] Mirafzal S.M., Abdian A.Z. The spectral determinations of some classes of multicone graphs. J. Discrete Math. Sci. Crypt. 2018, 21 (1), 179-189.
[12] Borovićanin B., Petrović M. On the index of cactuses with n vertices. Publ. Inst. Math. (Beograd) (N.S.) 2006, 79 (93), 13-18.
[13] Brouwer A.E., Haemers W.H. Spectra of graphs. In: Axler S., Casacuberta C. (Eds.) Universitext, 1. SpringerVerlag, New York, 2012.
[14] Bu C., Zhou J., Li H., Wang W. Spectral characterizations of the corona of a cycle and two isolated vertices. Graphs Combin. 2014, 30 (5), 1123-1133.
[15] Bu C., Zhou J. Signless Laplacian spectral characterization of the cones over some regular graphs. Linear Algebra Appl. 2012, 436 (9), 3634-3641. doi: 10.1016/j.laa.2011.12.035
[16] Cvetković D., Rowlinson P., Simić S., An introduction to the theory of graph spectra. In: Leary I. (Eds.) London Mathematical Society Student Texts, 75. Cambridge University Press, Cambridge, 2010.
[17] Cvetković D., Rowlinson P., Simić S. Signless Laplacians of finite graphs. Linear Algebra Appl. 2007, 423 (1), 155-171. doi: 10.1016/j.laa.2007.01.009
[18] Cvetković D., Simić S. Towards a spectral theory of graphs based on the signless Laplacian, I. Publ. Inst. Math. (Beograd) (N.S.) 2009, 85 (99), 19-33. doi: 10.2298/PIM0999019C
[19] Cvetković D., Simić S. Towards a spectral theory of graphs based on the signless Laplacian, II. Linear Algebra Appl. 2010, 432 (9), 2257-2272. doi: 10.1016/j.laa.2009.05.020
[20] Cvetković D., Simić S. Towards a spectral theory of graphs based on the signless Laplacian, III. Appl. Anal. Discrete Math. 2010, 4 (1), 156-166. doi: 10.2298/AADM1000001C
[21] Cvetković D., Doob M., Sachs H. Spectra of graphs: theory and applications. J. A. Barth, Heidelberg, 1995.
[22] Das K.C., Liu M. Complete split graph determined by its (signless) Laplacian spectrum. Discrete Appl. Math. 2016, 205, 45-51. doi: 10.1016/j.dam.2016.01.003
[23] Das K.C., Liu M. Kite graphs determined by their spectra. Appl. Math. Comput. 2017, 297, 74-78. doi: 10.1016/j.amc.2016.10.032
[24] Günthard Hs.H., Primas H. Zusammenhang von graphtheorie und mo-theotie von molekeln mit systemen konjugierter bindungen. Helv. Chim. Acta 1956, 39 (6), 1645-1653. doi: 10.1002/hlca.19560390623
[25] Huang S., Zhou J., Bu C. Signless Laplacian spectral characterization of graphs with isolated vertices. Filomat 2016, 30 (14), 3689-3696. doi: 10.2298/FIL1614689H
[26] Liu M. Some graphs determined by their (signless) Laplacian spectra. Czechoslovak Math. J. 2012, 62 (4), 11171134. doi: 10.1007/s10587-012-0067-9
[27] Liu M., Shan H., Das K.C. Some graphs determined by their (signless) Laplacian spectra. Linear Algebra Appl. 2014, 449, 154-165. doi: 10.1016/j.laa.2014.02.027
[28] Liu X., Lu P. Signless Laplacian spectral characterization of some joins. Electron. J. Linear Algebra 2015, 30, 443454. doi: 10.13001/1081-3810.1942
[29] Liu M., Liu B., Wei F. Graphs determined by their (signless) Laplacian spectra. Electron. J. Linear Algebra 2011, 22, 112-124. doi: 10.13001/1081-3810.1428
[30] Xu L.Z., He C.X. On the signless Laplacian spectral determination of the join of regular graphs. Discrete Math. Algorithm. Appl. 2014, 6 (4), 1450050. doi: 10.1142/S1793830914500505
[31] Merris R. Laplacian matrices of graphs: a survey. Linear Algebra Appl. 1994, 197-198, 143-176. doi: 10.1016/0024-3795(94)90486-3
[32] Mirzakhah M., Kiani D. The sun graph is determined by its signless Laplacian spectrum. Electron. J. Linear Algebra 2010, 20, 610-620. doi: 10.13001/1081-3810.1397
[33] Mirafzal S.M., Abdian A.Z. Spectral characterization of new classes of multicone graphs. Stud. Univ. Babeş-Bolyai Math. 2017, 62 (3), 275-286. doi: 10.24193/subbmath.2017.3.01
[34] Omidi G.R., Vatandoost E. Starlike trees with maximum degree 4 are determined by their signless Laplacian spectra. Electron. J. Linear Algebra 2010, 20, 274-290. doi: 10.13001/1081-3810.1373
[35] Radosavljević Z., Ras̆ajski M. A class of reflexive cactuses with four cycles. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. 2003, 14, 63-84.
[36] van Dam E.R., Haemers W.H. Which graphs are determined by their spectrum? Linear Algebra. Appl. 2003, 373, 241-272. doi: 10.1016/S0024-3795(03)00483-X
[37] van Dam E.R., Haemers W.H. Developments on spectral characterizations of graphs. Discrete Math. 2009, 309 (3), 576-586. doi: 10.1016/j.disc.2008.08.019
[38] Wang J.F., Belardo F., Huang Q.X., Borovićanin B., On the two largest Q-eigenvalues of graphs. Discrete Math. 2010, 310 (21), 2858-2866. doi: 10.1016/j.disc.2010.06.030
[39] Wang G., Guo G., Min L. On the signless Laplacian spectral characterization of the line graphs of T-shape trees. Czechoslovak Math. J. 2014, 64 (2), 311-325.
[40] Wang J.F., Belardo F., Huang Q.X., Marzi E.M.L. Spectral characterizations of dumbbell graphs. Electron. J. Combin. 2010, 17, \#R42.
[41] Zhang Y., Liu X., Zhang B., Yong X. The lollipop graph is determined by its Q-spectrum. Discrete Math. 2009, 309 (10), 3364-3369. doi: 10.1016/j.disc.2008.09.052

Received 29.01.2018
Revised 06.04.2018

Шарафдіні Р., Абдіан А.З. Беззнакові лапласіанові визначення делких графів з незалежними вериинами // Карпатські матем. публ. - 2018. — Т.10, №1. - С. 185-196.

Нехай G простий ненапрямлений граф. Тоді беззнакова лапласіанова матриця G визначається як $D_{\mathrm{G}}+A_{\mathrm{G}}$, де D_{G} і A_{G} позначають матрицю степенів і матрицю суміжності графу G відповідно. Граф G називають визначеним своїм беззнаковим лапласіановим спектром (скорочення DQS), якщо будь-який граф, що має такий самий беззнаковий лапласіановий спектр як $G, є$ ізоморфним до G. У роботі показано, що $G \sqcup r K_{2}$ визначений своїм беззнаковим лапласіановим спектром за певних умов, де r і K_{2} позначають натуральне число і повний граф на двох вершинах відповідно. Застосовуючи ці результати ми отримали деякі DQS графи з незалежними вершинами.

Ключові слова і фрази: спектральна характеризація, беззнаковий лапласіановий спектр, коспектральні графи, об'єднання графів.

[^0]: ${ }^{1}$ Department of Mathematics, Persian Gulf University, Bushehr 7516913817, Iran
 ${ }^{2}$ Department of the mathematical Science, College of Science, Lorestan University, Lorestan, Khoramabad 41566, Iran
 E-mail: sharafdini@pgu.ac.kr (Sharafdini R.), aabdian67@gmail.com (Abdian A.Z.)

[^1]: У $\Delta \mathrm{K} 519.17$
 2010 Mathematics Subject Classification: 05C50.

