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SIGNLESS LAPLACIAN DETERMINATIONS OF SOME GRAPHS WITH

INDEPENDENT EDGES

Let G be a simple undirected graph. Then the signless Laplacian matrix of G is defined as

DG + AG in which DG and AG denote the degree matrix and the adjacency matrix of G, respectively.

The graph G is said to be determined by its signless Laplacian spectrum (DQS, for short), if any

graph having the same signless Laplacian spectrum as G is isomorphic to G. We show that G ⊔ rK2

is determined by its signless Laplacian spectra under certain conditions, where r and K2 denote a

natural number and the complete graph on two vertices, respectively. Applying these results, some

DQS graphs with independent edges are obtained.
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INTRODUCTION

All graphs considered here are simple and undirected. All notions on graphs that are not

defined here can be found in [13, 16]. Let G be a simple graph with the vertex set V = V(G) =

{v1, . . . , vn} and the edge set E = E(G). Denote by di the degree of the vertex vi. The adjacency

matrix AG of G is a square matrix of order n, whose (i, j)-entry is 1 if vi and vj are adjacent

in G and 0 otherwise. The degree matrix DG of G is a diagonal matrix of order n defined as

DG = diag(d1, . . . , dn). The matrices LG = DG − AG and QG = DG + AG are called the

Laplacian matrix and the signless Laplacian matrix of G, respectively. The multiset of eigenvalues

of QG (resp. LG, AG) is called the Q-spectrum (resp. L-spectrum, A-spectrum) of G. For any

bipartite graph, its Q-spectrum coincides with its L-spectrum. Two graphs are Q-cospectral

(resp. L-cospectral, A-cospectral) if they have the same Q-spectrum (resp. L-spectrum, A-

spectrum). A graph G is said to be DQS (resp. DLS, DAS) if there is no other non-isomorphic

graph Q-cospectral (resp. L-cospectral, A-cospectral) with G. Let us denote the Q-spectrum

of G by SpecQ(G) = {[q1]
m1 , [q2]

m2 , . . . , [qn]mn}, where mi denotes the multiplicity of qi and

q1 ≥ q2 ≥ . . . ≥ qn.
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The join of two graphs G and H is a graph formed from disjoint copies of G and H by

connecting each vertex of G to each vertex of H. We denote the join of two graphs G and H by

G∇H. The complement of a graph G is denoted by G. For two disjoint graphs G and H, let

G ⊔ H denotes the disjoint union of G and H, and rG denotes the disjoint union of r copies of

G, i.e., rG = G ⊔ . . . ⊔ G
︸ ︷︷ ︸

r−times

.

Let G be a connected graph with n vertices and m edges. Then G is called unicyclic (resp.

bicyclic) if m = n (resp. m = n + 1). If G is a unicyclic graph containing an odd (resp. even)

cycle, then G is called odd unicyclic (resp. even unicyclic).

Let Cn, Pn, Kn be the cycle, the path and the complete graph of order n, respectively. Ks,t

the complete bipartite graph with s vertices in one part and t in the other.

Let us remind that the coalescence [21] of two graphs G1 with distinguished vertex v1 and G2

with distinguished vertex v2, is formed by identifying vertices v1 and v2 that is, the vertices v1

and v2 are replaced by a single vertex v adjacent to the same vertices in G1 as v1 and the same

vertices in G2 as v2. If it is not necessary v1 or v2 may not be specified.

The friendship graph Fn is a graph with 2n + 1 vertices and 3n edges obtained by the coales-

cence of n copies of C3 with a common vertex as the distinguished vertex; in fact, Fn is nothing

but K1∇nK2.

The lollipop graph, denoted by Hn,p, is the coalescence of a cycle Cp with arbitrary distin-

guished vertex and a path Pn−p with a pendent vertex as the distinguished vertex; for example

H11,6 is depicted in Figure 1 (b). We denote by T(a, b, c) the T-shape tree obtained by identifying

the end vertices of three paths Pa+2, Pb+2 and Pc+2. In fact, T(a, b, c) is a tree with one and only

one vertex v of degree 3 such that T(a, b, c)− {v} = Pa+1 ⊔ Pb+1 ⊔ Pc+1; for example T(0, 1, 1)

is depicted in Figure 1 (a).
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Figure 1: (a) The T-shape tree T(0, 1, 1) (b) The lollipop graph H11,6

A kite graph Kin,w is a graph obtained from a clique Kw and a path Pn−w is the coalescence

of Kw with an arbitrary distinguished vertex and a path Pn−w+1 with a pendent vertex as the

distinguished vertex. A tree is called starlike if it has exactly one vertex of degree greater than

two. We denote by Ur,n−r the graph obtained by attaching n − r pendent vertices to a vertex of

Cr. In fact, Ur,n−r is the coalescence of K1,n−r−1 and Pn−w+1 where distinguished vertices are

the vertex of degree n − r and a pendent vertex, respectively. A graph is a cactus, or a treelike

graph, if any pair of its cycles has at most one common vertex [35]. If all cycles of the cactus

G have exactly one common vertex, then G is called a bundle [12]. Let S(n, c) be the bundle

with n vertices and c cycles of length 3 depicted in Figure 2, where n ≥ 2c + 1 and c ≥ 0.

By the definition, it follows that S(n, c) = K1∇(cK2 ⊔ (n − 2c − 1)K1). In fact S(n, c) is the

coalescence of Fc and K1,n−2c−1 where the distinguished vertices are the vertex of the degree

2c and the vertex of the degree n − 2c − 1, respectively.
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Figure 2: The bundle S(n, c)

Let G be a graph with n vertices, H be a graph with m vertices. The corona of G and H,

denoted by G ◦ H, is the graph with n + mn vertices obtained from G and n copies of H by

joining the i-th vertex of G to each vertex in the i-th copy of H (i ∈ {1, . . . , n}); for example

C4 ◦ 2K1 is depicted in Figure 3.

Figure 3: C4 ◦ 2K1

A complete split graph CS(n, α), is a graph on n vertices consisting of a clique on n− α vertices

and an independent set on the remaining α (1 ≤ α ≤ n− 1) vertices in which each vertex of the

clique is adjacent to each vertex of the independent set. The dumbbell graph, denoted by Dp,k,q, is

a bicyclic graph obtained from two cycles Cp, Cq and a path Pk+2 by identifying each pendant

vertex of Pk+2 with a vertex of a cycle, respectively. The theta graph, denoted by Θr,s,t, is the

graph formed by joining two given vertices via three disjoint paths Pr, Ps and Pt, respectively,

see Figure 4.

Figure 4: The graphs Dp,k,q and Θr,s,t

The problem ”which graphs are determined by their spectrum?” was posed by Günthard

and Primas [24] more than 60 years ago in the context of Hückel’s theory in chemistry. In

the most recent years mathematicians have devoted their attention to this problem and many
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papers focusing on this topic are now appearing. In [36] van Dam and Haemers conjectured

that almost all graphs are determined by their spectra. Nevertheless, the set of graphs that are

known to be determined by their spectra is too small. So, discovering infinite classes of graphs

that are determined by their spectra can be an interesting problem. Cvetković, Rowlinson and

Simić in [17–20] discussed the development of a spectral theory of graphs based on the signless

Laplacian matrix, and gave several reasons why it is superior to other graph matrices such as

the adjacency and the Laplacian matrix. It is interesting to construct new DQS (DLS) graphs

from known DQS (DLS) graphs. Up to now, only some graphs with special structures are

shown to be determined by their spectra (DS, for short) (see [1–11, 15, 17, 19, 22, 23, 25–34, 38–41]

and the references cited in them). About the background of the question ”Which graphs are

determined by their spectrum?”, we refer to [36, 37]. For a DQS graph G, G∇K2 is also DQS

under some conditions [30]. A graph is DLS if and only if its complement is DLS. Hence we

can obtain DLS graphs from known DLS graphs by adding independent edges. In [25] it was

shown that G ⊔ rK1 is DQS under certain conditions. In this paper, we investigate signless

Laplacian spectral characterization of graphs with independent edges. For a DQS graph G, we

show that G ⊔ rK2 is DQS under certain conditions. Applying these results, some DQS graphs

with independent edges are obtained.

1 PRELIMINARIES

In this section, we give some lemmas which are used to prove our main results.

Lemma 1 ([17, 19]). Let G be a graph. For the adjacency matrix of G, the following can be

deduced from the spectrum.

(1) The number of vertices.

(2) The number of edges.

(3) Whether G is regular.

For the Laplacian matrix, the following follows from the spectrum:

(4) The number of components.

For the signless Laplacian matrix, the following follow from the spectrum:

(5) The number of bipartite components, i.e., the multiplicity of the eigenvalue 0 of the sign-

less Laplacian matrix is equal to the number of bipartite components.

(6) The sum of the squares of degrees of vertices.

Lemma 2 ([17]). Let G be a graph with n vertices, m edges, t triangles and the vertex degrees

d1, d2, . . . , dn. If Tk =
n

∑
i=1

qi(G)k, then we have

T0 = n, T1 =
n

∑
i=1

di = 2m, T2 = 2m +
n

∑
i=1

d2
i , T3 = 6t + 3

n

∑
i=1

d2
i +

n

∑
i=1

d3
i .
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For a graph G, let PL(G) and PQ(G) denote the product of all nonzero eigenvalues of LG

and QG, respectively. Note that PL(K2) = PQ(K2) = 2. We assume that PL(G) = PQ(G) = 1 if

G has no edges.

Lemma 3 ([16]). For any connected bipartite graph G of order n, we have PQ(G) = PL(G) =

nτ(G), where τ(G) is the number of spanning trees of G. Especially, if T is a tree of order n,

then PQ(T) = PL(T) = n.

Lemma 4 ([32]). Let G be a graph with n vertices and m edges.

(i) det(QG) = 4 if and only if G is an odd unicyclic graph.

(ii) If G is a non-bipartite connected graph and m > n, then det(QG) ≥ 16, with equality if

and only if G is a non-bipartite bicyclic graph with C4 as its induced subgraph.

Lemma 5 ([16]). Let e be any edge of a graph G of order n. Then

q1(G) ≥ q1(G − e) ≥ q2(G) ≥ q2(G − e) ≥ . . . ≥ qn(G) ≥ qn(G − e) ≥ 0.

Lemma 6 ([21]). Let H be a proper subgraph of a connected graph G. Then q1(G) > q1(H).

Lemma 7 ([21]). Let G be a graph with n vertices and m edges. Then q1(G) ≥ 4m
n , with equality

if and only if G is regular.

Lemma 8 ([17]). For a graph G, 0 < q1(G) < 4 if and only if all components of G are paths.

Lemma 9 ([36]). A regular graph is DQS if and only if it is DAS. A regular graph G is DAS

(DQS) if and only if G is DAS (DQS).

Lemma 10 ( [19]). Let G be a k-regular graph of order n. Then G is DAS when k ∈

{0, 1, 2, n − 3, n − 2, n − 1}.

Lemma 11 ([15]). Let G be a k-regular graph of order n. Then G∇K1 is DQS for k ∈ {1, n − 2},

for k = 2 and n ≥ 11. For k = n − 3, G∇K1 is DQS if and only if G has no triangles.

Lemma 12 ([30]). Let G be a k-regular graph of order n. Then G∇K2 is DQS for k ∈ {1, n − 2}.

For k = n − 3, G∇K2 is DQS if and only if G has no triangles.

Lemma 13 ([25]). The following hold for graphs with isolated vertices:

(i) Let T be a DLS tree of order n. Then T ⊔ rK1 is DLS. If n is not divisible by 4, then T ⊔ rK1

is DQS.

(ii) The graphs Pn and Pn ⊔ rK1 are DQS.

(iii) Let G be a graph obtained from Kn by deleting a matching. Then G and G ⊔ rK1 are DQS.

(iv) A (n − 4)-regular graph of order n is DAS (DQS) if and only if its complement is a 3-

regular DAS (DQS) graph.

(v) Let G be a (n − 3)-regular graph of order n. Then G ⊔ rK1 is DQS.

Now let us list some known families of DQS graphs.
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Lemma 14. The following graphs are DQS.

(i) The graphs Pn, Cn, Kn, Km,m, rKn, Pn1 ⊔ Pn2 ⊔ . . . ⊔ Pnk
and Cn1 ⊔ Cn2 ⊔ . . . ⊔ Cnk

, [36].

(ii) Any wheel graph K1∇Cn, [26].

(iii) Every lollipop graph Hn,p, [41].

(iv) Every kite graph Kin,n−1 for n ≥ 4 and n 6= 5, [23].

(v) The friendship graph Fn, [38].

(vi) (Cn ◦ tK1), for n /∈ {32, 64} and t ∈ {1, 2}, [14, 32].

(vii) The line graph of a T-shape tree T(a, b, c) except T(t, t, 2t + 1) (t > 1), [39].

(viii) The starlike tree with maximum degree 4, [34].

(ix) Ur,n−r for r ≥ 3, [27].

(x) CS(n, α) when 1 ≤ α ≤ n − 1 and α 6= 3, [22].

(xi) For n ≥ 2c + 1 and c ≥ 0, S(n, c) and S(n, c) except for the case of c = 0 and n = 4, [29].

(xii) K1,n−1 for n 6= 4, [29].

(xiii) G∇Km where G is an (n − 2)-regular graph on n vertices, and Kn∇K2 except for n = 3,

[28].

(xiv) All dumbbell graphs different from D3q,0,q and all theta graphs, [40].

It is easy to see that K1,3 and K3 ⊔ K1 are Q-cospectral, i.e., SpecQ(K1,3) = SpecQ(K3) =

{[4]1, [1]2, [0]1}. Therefore, S(n, c) is not DQS when c = 0 and n = 4, since S(n, 0) is nothing

but K1,n−1.

2 MAIN RESULTS

We first investigate spectral characterizations of the union of a tree and several complete

graphs K2.

Theorem 1. Let T be a DLS tree of order n. Then T ⊔ rK2 is DLS for any positive integer r.

Moreover, if n is odd and r = 1, then T ⊔ rK2 is DQS.

Proof. For n, r ∈ {1, 2} see Lemma 13 (i) and Lemma 14 (i). So, one may suppose that n, r ≥ 3.

Let G be any graph L-cospectral with T ⊔ rK2. By Lemma 1, G has n + 2r vertices, n − 1 + r

edges and r + 1 components. So each component of G is a tree. Suppose that G = G0 ⊔ G1 ⊔

. . . ⊔ Gr, where Gi is a tree with ni vertices and n0 ≥ n1 ≥ . . . ≥ nr ≥ 2. For ni, nr ∈ {1} see

Lemma 13 (i) and Lemma 14 (i). Hence we consider n, ni, r ≥ 2. Since G is L-cospectral with

T ⊔ rK2, by Lemma 3, we get

n0n1 . . . nr = PL(G0) . . . PL(Gr) = PL(G0 ⊔ . . . ⊔ Gr) = PL(G) = PL(T)PL(K2)
r = n2r.
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We claim that nr = 2. Suppose not and so nr ≥ 3. This means that n0 ≥ n1 ≥ . . . ≥ nr ≥ 3.

Hence n2r = n0n1 . . . nr ≥ 3r+1 or n(
2

3
)r ≥ 3. Now, if r → ∞, then 0 ≥ 3, a contradiction. So,

we must have nr = 2. By a similar argument one can show that n1 = . . . = nr−1 = 2 and so

n0 = n. Hence G = G0 ⊔ rK2. Since G and T ⊔ rK2 are L-cospectral, G0 and T are L-cospectral.

Since T is DLS, we have G0 = T, and thus G = T ⊔ rK2. Hence T ⊔ rK2 is DLS.

Let H be any graph Q-cospectral with T ⊔ rK2. By Lemma 1, H has n + 2r vertices, n − 1+ r

edges and r + 1 bipartite components. So one of the following holds:

(i) H has exactly r + 1 components, and each component of H is a tree.

(ii) H has r + 1 components which are trees, the other components of H are odd unicyclic.

In what follows we show that (ii) does not occur if n is odd and r = 1. If (ii) holds, then by

Lemma 4, PQ(H) is divisible by 4 since H has a cycle of odd order as a component. Since T is

a tree of order n, by Lemma 3, PQ(H) = PQ(T)PQ(K2)
r = n2r is divisible by 4, a contradiction.

Therefore (i) must hold. In this case, H and T ⊔ rK2 are both bipartite, and so they are also

L-cospectral. By the previous part, T ⊔ rK2 is DLS. So we have H = T ⊔ rK2.

Hence T ⊔ rK2 is DQS when n is odd and r = 1.

Remark 1. Some DLS trees are given in [25] and references therein. We can obtain some DLS

(DQS) trees with independent edges from Theorem 1.

Lemma 14 and Theorem 1 imply the following corollary.

Corollary 1. For an odd positive integer n, we have the following

(i) Let T be a starlike tree of order n and with maximum degree 4. Then T ⊔ K2 is DQS.

(ii) Pn ⊔ K2 is DQS.

(iii) For n 6= 4, K1,n−1 ⊔ K2 is DQS.

(iv) Let L be the line graph of a T-shape tree T(a, b, c) except T(t, t, 2t + 1) (t > 1). Then

L ⊔ K2 is DQS if a + b + c − 3 is odd.

Theorem 2. Let G be a DQS odd unicyclic graph of order n ≥ 7. Then G ⊔ rK2 is DQS for any

positive integer r.

Proof. Let H be any graph Q-cospectral with G ⊔ rK2. By Lemma 1(5), 0 is not an eigenvalue of

G since it is an odd unicyclic. So by Lemma 4, we have 4 = det(QG) = PQ(G). Moreover,

PQ(H) = PQ(G ⊔ rK2) = PQ(G)PQ(K2)
r = det(QG)2

r = 4 · 2r = 2r+2.

By Lemma 1, H has n + 2r vertices, n + r edges and r bipartite components. So one of the

following holds:

(i) H has exactly r components each of which is a tree.

(ii) H has r components which are trees, the other components of H are odd unicyclic.
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We claim that (i) does not hold, otherwise, we may assume that H = H1 ⊔ . . . ⊔ Hr, where Hi

is a tree with ni vertices and n1 ≥ . . . ≥ nr ≥ 1. It follows from Lemma 3 that

n1 . . . nr = PQ(H1) . . . PQ(Hr) = PQ(H) = 4 · 2r = 2r+2.

So n1 . . . nr = 2r+2, n1 ≤ 8. Since G contains a cycle, say C, by Lemma 7 we have

q1(H) = q1(G) ≥ q1(C) = 4. (1)

Let ∆(H) be the maximum degree of H. If ∆(H) ≤ 2, then all components of H are paths,

hence by Lemma 8, q1(H) < 4, contradicting Eq. (1). So ∆(H) ≥ 3. From n1 ≤ 8 and

n1 . . . nr = 4 · 2r = 2(r+2), we may assume that H1 = K1,7, H2 = . . . = Hr = K2. Since

H = K1,7 ⊔ (r − 1)K2 has n + 2r vertices, we get n = 6, a contradiction to n ≥ 7.

If (ii) holds, then we may assume that H = U1 ⊔ . . . ⊔ Uc ⊔ H1 ⊔ . . . ⊔ Hr, where Ui is odd

unicyclic, Hi is a tree with ni vertices. By Lemmas 3 and 4, 4 · 2r = PQ(H) = 4cn1 . . . nr. So

c = 1, H1 = . . . = Hr = K2. Since H = U1 ⊔ rK2 and G ⊔ rK2 are Q-cospectral, U1 and G are

Q-cospectral. Since G is DQS, we have U1 = G, H = G ⊔ rK2.

Remark 2. Note that C4 ⊔ 2P3 and C6 ⊔ 2K2 are Q-cospectral, i.e., SpecQ(C4 ⊔ 2P3) =

SpecQ(C6 ⊔ 2K2) = {[4]1, [3]2, [2]2, [1]2, [0]3}. It follows that the condition ”odd unicyclic of

order n ≥ 7” is essential in Theorem 2.

Remark 3. Some DQS unicyclic graphs are given in [25] and references therein. We can obtain

some DQS graphs with independent edges from Theorem 2.

Theorem 3. Let G be a DQS graph of order n ≥ 5. If G is non-bipartite bicyclic graph with C4

as its induced subgraph, then G ⊔ rK2 is DQS for any positive integer r.

Proof. Let H be any graph Q-cospectral with G ⊔ rK2. By Lemma 4, we have

PQ(H) = PQ(G ⊔ rK2) = PQ(G)PQ(K2)
r = PQ(G)2r .

By Lemma 1(5), 0 is not an eigenvalue of G since it is non-bipartite. So by Lemma 4, we have

16 = det(GQ) = PQ(G) and thus PQ(H) = 16 · 2r.

By Lemma 1, H has n + 2r vertices, n + 1 + r edges and r bipartite components. So H

has at least r − 1 components which are trees. Suppose that H1, H2, . . . , Hr are r bipartite

components of H, where H2, . . . , Hr are trees. If H1 contains an even cycle, then by Lemmas

4 and 5, we have PQ(H) ≥ PQ(H1) ≥ 16, and PQ(H) = 16 · (2r−1) = 2r−3 if and only if

H = C4 ⊔ (r − 1)K2. By PQ(H) = 16 · (2r−1) = 2r−3, we have H = C4 ⊔ (r − 1)K2. Since H has

n + 2r vertices, we get n = 2, a contradiction (G contains C4). Hence H1, H2, . . . , Hr are trees.

Since H has n + 2r vertices, n + 1 + r edges and r bipartite components, H has a non-bipartite

component H0 which is a bicyclic graph. Lemmas 4 and 5 imply that PQ(H) ≥ PQ(H0) ≥ 16,

and PQ(H) = 16 · 2r if and only if H = H0 ⊔ rK2 and H0 contains C4 as its induced subgraph.

By PQ(H) = 16 · 2r, we have H = H0 ⊔ rK2. Since H and G⊔ rK2 are Q-cospectral, H0 and G are

Q-cospectral. Taking into account that G is DQS, we conclude that H0 = G and H = G ⊔ rK2.

Hence G ⊔ rK2 is DQS.

Remark 4. Some DQS bicyclic graphs are given in [25] and references therein. We can obtain

DQS graphs with independent edges from Theorem 3.
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Lemma 15. Let G be a connected graph. Then there is no subgraph of G with the Q-spectrum

identical to SpecQ(G) ∪
{

[2]1
}

. Moreover, if G is of order at least 3, then q1(G) ≥ 3.

Proof. Suppose by the contrary that there is a subgraph of G, say G′, such that SpecQ(G
′) =

SpecQ(G)∪
{

[2]1
}

. But, in this case |E(G′)| = |E(G)|+ 1 and |V(G′)| = |V(G)|+ 1. Therefore

there exists a vertex v of G′ with the degree one such that G′ − v = G. This means that

G is a proper subgraph of the connected graph G′ and so by Lemma 6, q1(G
′) > q1(G), a

contradiction. If G is a connected graph of order at least 3, it has K3 or K1,2 as its subgraph.

Moreover, SpecQ(K3) = {[4], [1]2} and SpecQ(K1,2) = {[3], [1], [0]}. Therefore by Lemma 5,

q1(G) ≥ 3.

Theorem 4. Let G be a connected non-bipartite graph with n ≥ 3 vertices which is DQS. Then

for any positive integer r, G ⊔ rK2 is DQS.

Proof. Let H be a graph Q-cospectral with G ⊔ rK2. Then by Lemmas 1 and 2, H has n +

2r vertices, n + 1 + r edges and exactly r bipartite components. We perform mathematical

induction on r. Suppose that H is a graph Q-cospectral with G ⊔ K2. Then

SpecQ(H) = SpecQ(G) ∪ SpecQ(K2) = SpecQ(G) ∪
{

[2]1, [0]1
}

.

Since G is a connected non-bipartite graph, by Lemma 1, it has not 0 as its signless Laplacian

eigenvalue. Therefore, H has exactly one bipartite component. Therefore, by Lemma 15 we get

H = G ⊔ K2. Now, let the assertion holds for r; that is, if SpecQ(G1) = SpecQ(G) ∪ SpecQ(rK2),

then G1 = G ⊔ rK2. We show that it follows from SpecQ(K) = SpecQ(G) ∪ SpecQ((r + 1)K2)

that K = G ⊔ (r + 1)K2. Obviously, K has 2 vertices, one edge and one bipartite component

more than G1. So, we must have K = G1 ⊔ K2. Now, the inductive hypothesis holds the

proof.

Lemma 11 and Theorem 4 imply the following corollary.

Corollary 2. For a k-regular graph G of order n, (G∇K1)⊔ rK2 is DQS if either of the following

conditions holds:

(i) k ∈ {1, n − 2},

(ii) k = 2 and n ≥ 11,

(iii) k = n − 3 and G has no triangles.

Lemma 12 and Theorem 4 imply the following corollary.

Corollary 3. Let G be a k-regular graph of order n. Then (G∇K2) ⊔ rK2 is DQS for k ∈

{1, n − 2}. For k = n − 3, (G∇K2) ⊔ rK2 is DQS if G has no triangles.

Lemma 13 and Theorem 4 imply the following corollary.

Corollary 4. Let G be a non-bipartite graph obtained from Kn by deleting a matching. Then

G ⊔ rK2 is DQS.

Remark 5. Some 3-regular DAS graphs are given in [25] and references therein. We can obtain

DQS graphs with independent edges from Corollary 4.
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Lemmas 9 and 10 and Theorem 4 imply the following corollary.

Corollary 5. Let G be a k-regular connected non-bipartite graph of order n. Then G ⊔ rK2 is

DQS if either of the following holds

(i) k ∈ {2, n − 1, n − 2, n − 3}.

(ii) k = n − 4 and G is DAS.

Lemma 14 and Theorem 4 imply the following corollary.

Corollary 6. Let G be any of the following graphs. Then G ⊔ rK2 is DQS.

(i) The graphs Cn (n is odd), Kn (n ≥ 4).

(ii) The graphs Pn (n ≥ 5).

(iii) The wheel graph K1∇Cn.

(iv) Every lollipop graph Hn,p when p is odd and n ≥ 8.

(v) The kite graph Kin,n−1 for n ≥ 4 and n 6= 5.

(vi) The friendship graph Fn.

(vii) (Cn ◦ tK1), when n is odd and n /∈ {32, 64} and t ∈ {1, 2}.

(viii) Ur,n−r if r(≥ 3) is odd and n ≥ 7.

(ix) CS(n, α) when 1 ≤ α ≤ n − 1 and α 6= 3.

(x) S(n, c) and its complement where n ≥ 2c + 1 and c ≥ 1.

(xi) H∇Km where H is an (n − 2)-regular graph on n vertices, and Kn∇K2 except for n = 3.

(xii) The dumbbell graphs Dp,k,q (p or q is odd) different from D3q,0,q and all non-bipartite

theta graphs Θr,s,t.
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[38] Wang J.F., Belardo F., Huang Q.X., Borovićanin B., On the two largest Q-eigenvalues of graphs. Discrete Math.

2010, 310 (21), 2858–2866. doi: 10.1016/j.disc.2010.06.030

[39] Wang G., Guo G., Min L. On the signless Laplacian spectral characterization of the line graphs of T-shape trees.

Czechoslovak Math. J. 2014, 64 (2), 311–325.

[40] Wang J.F., Belardo F., Huang Q.X., Marzi E.M.L. Spectral characterizations of dumbbell graphs. Electron. J. Com-

bin. 2010, 17, #R42.

[41] Zhang Y., Liu X., Zhang B., Yong X. The lollipop graph is determined by its Q-spectrum. Discrete Math. 2009, 309

(10), 3364–3369. doi: 10.1016/j.disc.2008.09.052

Received 29.01.2018

Revised 06.04.2018

Шарафдiнi Р., Абдiан А.З. Беззнаковi лапласiановi визначення деяких графiв з незалежними верши-

нами // Карпатськi матем. публ. — 2018. — Т.10, №1. — C. 185–196.

Нехай G простий ненапрямлений граф. Тодi беззнакова лапласiанова матриця G визнача-

ється як DG + AG, де DG i AG позначають матрицю степенiв i матрицю сумiжностi графу G

вiдповiдно. Граф G називають визначеним своїм беззнаковим лапласiановим спектром (ско-

рочення DQS), якщо будь-який граф, що має такий самий беззнаковий лапласiановий спектр

як G, є iзоморфним до G. У роботi показано, що G ⊔ rK2 визначений своїм беззнаковим ла-

пласiановим спектром за певних умов, де r i K2 позначають натуральне число i повний граф

на двох вершинах вiдповiдно. Застосовуючи цi результати ми отримали деякi DQS графи з

незалежними вершинами.

Ключовi слова i фрази: спектральна характеризацiя, беззнаковий лапласiановий спектр, ко-

спектральнi графи, об’єднання графiв.


