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Abstract

The prevalence of type 2 diabetes mellitus (T2DM) is increasing worldwide, especially 
as a result of our aging society, high caloric intake and sedentary lifestyle. Besides the 
well-known complications of T2DM on the cardiovascular system, the eyes, kidneys 
and nerves, bone strength is also impaired in diabetic patients. Patients with T2DM 
have a 40–70% increased risk for fractures, despite having a normal to increased bone 
mineral density, suggesting that other factors besides bone quantity must account for 
increased bone fragility. This review summarizes the current knowledge on the complex 
effects of T2DM on bone including effects on bone cells, bone material properties and 
other endocrine systems that subsequently affect bone, discusses the effects of T2DM 
medications on bone and concludes with a model identifying factors that may contribute 
to poor bone quality and increased bone fragility in T2DM.

Introduction

The prevalence of diabetes mellitus is increasing worldwide 
with diabetes-related complications accounting for 
up to 60–70% of health-care costs related to diabetes  
(1, 2). Besides the well-known renal and cardiovascular 
complications, the increased risk for fragility fractures has 
recently been recognized as an important complication of 
both type 1 and type 2 diabetes mellitus (T1DM, T2DM) 
(3, 4, 5). While type 1 diabetics have low bone mineral 
density and a six- to sevenfold higher risk for fractures, 
type 2 diabetics have normal to high bone mineral density 
and up to threefold higher fracture risk (6, 7, 8). Despite 
the similarity of chronic hyperglycemia, T1DM and T2DM 
have distinct pathophysiological mechanisms, which 
may differently affect bone metabolism. In both cases, 
the underlying mechanisms of poor bone strength are not 
well understood. Considering that T2DM accounts for the 

majority of diabetes cases (>90%), this review will focus 
on summarizing the current knowledge on mechanisms 
that contribute to bone fragility in T2DM.

Mechanisms that lead to bone fragility in T2DM are 
manifold and encompass direct and indirect effects of 
T2DM on bone. Several studies have shown that T2DM 
in humans and animals is associated with suppressed 
bone formation and with negative effects on the 
mechanosensing properties of osteocytes, while effects on 
bone resorption are less consistently described. In humans, 
biochemical markers and bone histomorphometry reveal a 
low bone turnover in T2DM (9, 10, 11, 12, 13). In animals, 
however, low bone formation is also a characteristic of 
T2DM, while bone resorption parameters are usually 
increased (14, 15, 16, 17, 18). At a structural level, the 
accumulation of advanced glycation end (AGE) products 
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under diabetic conditions has been proposed to alter 
collagen structure and contribute to impaired material 
properties. Along those lines, patients with T2DM have 
increased cortical porosity, which may further contribute 
to reduced bone strength (Fig. 1). Besides these direct 
effects of high glucose levels on bone, the increased risk of 
fractures may also be explained by the presence of diabetic 
complications on the eyes, kidney and nerves, decreased 
physical activity, lower vitamin D levels and higher risk 
of falls. In particular microvascular impairment, which 
may also affect the bone vasculature, and increased 
bone marrow adiposity (19) (Fig. 1) may be key factors 
that contribute to skeletal alterations and translate into 
a higher incidence of fractures, delayed fracture healing 
and delayed osseointegration.

Structural and material properties of bone 
in T2DM

Patients with T2DM have a particularly high risk to 
fracture their hip, wrists and feet, and fracture risk further 
increases with disease duration, insulin intake and 
poor control of hyperglycemia (6, 20, 21, 22). While in 
postmenopausal osteoporosis there is a clear association 
between low bone mineral density and high risk of 
fracture; most studies in diabetics paradoxically report 
either similar bone mineral density or 5–10% increase in 
bone mineral density of patients with T2DM compared to 
nondiabetic controls (7). At a microstructural level, MRI 
and high-resolution peripheral quantitative computer 
tomography studies indicate increased cortical porosity, 

Figure 1
Effects of T2DM on bone homeostasis. T2DM 
negatively affects trabecular bone mass, while 
cortical bone mass is increased. (1) The number 
and function of bone-forming osteoblast is 
reduced. In addition, vitamin D serum levels are 
decreased, which alters calcium and phosphate 
homeostasis. (2) Osteoblasts derive from MSC 
that favor differentiating into fat-storing 
adipocytes in T2DM leading to bone marrow 
adiposity and increased expression of cytokines 
and chemokines as well as to an elevated amount 
of free unsaturated fatty acids. (3) This results in 
increased inflammation leading to accumulation 
of pro-inflammatory M1 macrophages and 
reduced switch into anti-inflammatory M2 
macrophages. (4) The network of osteocytes is 
reduced due to an increased apoptosis rate. They 
increase their expression of sclerostin, an 
inhibitor of osteoblast function, and RANKL, a 
promoter of osteoclastogensis. FGF-23, a 
phosphaturic hormone, is additionally increased. 
(5) Effects on osteoclasts are controversial in the 
literature, but T2DM is generally accepted to 
reduce bone turnover and thus also osteoclast 
function. (6) The amount of endothelial progenitor 
cells (EPC) is reduced in T2DM leading to vessel 
permeability. In addition, T2DM causes 
microhypoxia in bone niche, which in turn 
increases inflammation. (7) T2DM patients have 
an increased risk of falls and fractures due to 
reduced bone quality indicated by (8) an 
increased formation of advanced glycation 
end-products (AGEs) and (9) cortical porosity.
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especially in patients with fractures and/or microvascular 
disease (23, 24, 25). Accordingly, bone strength estimated 
by finite element modeling at the distal radius is lower 
in patients with T2DM and correlates negatively with 
cortical porosity (26). Finally, microindentation on the 
tibia of patients with T2DM revealed low bone material 
strength (27, 28, 29). Taken together these studies provide 
evidence that the biomechanical integrity of the skeleton 
is reduced in T2DM, and this is a result of an inferior 
microstructure and material properties of the bone tissue. 
Interestingly, the trabecular bone score, a parameter that 
evaluates the pixel gray-level variations in lumbar spine 
dual-energy X-ray absorptiometry images and is related 
to bone microarchitecture independent of bone mineral 
density, appears to pick up those microarchitectural 
differences, being consistently low in patients with T2DM 
(30, 31, 32).

The effect of T2DM on bone material properties may 
not be limited to porosity, as alterations in bone collagen 
also occur. It is unclear to date, however, whether these 
significantly contribute to a weakened bone material 
in diabetic patients. One alteration of collagen that is 
highly researched is the formation of AGEs. AGEs are 
modifications of proteins that become nonenzymatically 
glycated after exposure to sugars (33), and are elevated 
in individuals with hyperglycemia. AGE cross-links alter 
the properties of proteins such as collagen and laminin  
(34, 35) and, in bone, this leads to an increased brittleness 
of the otherwise elastic collagen fibers (36, 37) and reduces 
the tissue toughness (38, 39). AGEs can also interfere with 
osteoblast (40, 41) and osteoclast functions (42), and 
may also impair osteocyte response (43, 44). AGEs may 
therefore play an important role in both bone material 
properties and bone turnover in T2DM (45, 46, 47).

In animal models of T2DM, some studies have reported 
increased AGE content in the bone tissue (48, 49), while 
other studies have reported no difference in AGEs but 
alterations in the collagen structure (50) and increased 
collagen maturity (51). Since levels of AGEs in the bone 
tissue cannot be measured noninvasively in patients, 
surrogates, such as serum or urine levels, are typically used. 
Due to the fluorescent nature of AGEs, skin fluorescence 
has also been reported as a surrogate measure and has been 
associated with the reduction of bone material strength 
assessed with indentation tests (29). To date, relatively 
few studies have investigated the accumulation of AGEs 
in T2DM patients, in particular, in the bone tissue and 
those that have report conflicting results. Serum levels 
of the AGE pentosidine in T2DM patients have been 
reported to be higher than (52) and similar to (27, 53, 54) 

nondiabetic controls. A recent study that examined AGEs 
in the bone tissue from femoral neck specimens excised 
during total hip replacement surgery reported increasing 
trends of AGE levels in the cortex, but not trabecular bone 
from T2DM patients, despite no significant differences 
in serum levels of pentosidine or total AGEs between 
groups (27). Although the authors do report significant 
correlations between bone and serum AGEs in this study, 
these results highlight that surrogate measures may not 
be sufficient as diagnostic tools for assessing the material 
properties of T2DM bone. Nevertheless, pentosidine levels 
in the urine have also been associated with increased 
vertebral fracture prevalence in T2DM patients and lower 
trabecular bone score, but not in controls (53, 55), which 
along with the microstructural studies reporting increased 
porosity, suggests that a subset of T2DM patients may be 
at a particularly high risk of fracture.

Mechanisms of bone fragility in T2DM

In addition to the microstructural alterations in organic 
and inorganic bone components, T2DM directly affects 
the differentiation and function of bone cells, and 
modifies the bone microenvironment in such a way 
that secondary negative effects on bone cells occur (e.g. 
reduced blood flow in bone, increased presence of fat in 
the bone marrow, inflammation). The mechanisms of 
how T2DM exerts these negative effects on bone cells will 
be discussed in this article.

Direct effects on bone cells

Osteoblasts and bone formation parameters
Osteoblasts derive from mesenchymal stromal cells (MSC) 
and are essential for bone formation as they synthesize 
collagen and mineralize the organic matrix. T2DM 
individuals have high serum glucose concentrations, 
elevated post-load insulin levels and a high body mass 
index (56). In homeostasis, insulin promotes osteoblast 
differentiation leading to an increased expression of the 
carboxylated form of osteocalcin. Similarly, mouse models 
showed that glucose is an important source of energy for 
osteoblasts to allow for the production of collagen fibers 
(57). As previously reviewed, in T2DM, however, high 
levels of glucose suppress osteoblast differentiation (58). 
Also, carboxylated osteocalcin serum concentrations are 
reduced and inversely associated with fasting glucose 
levels and insulin resistance (reviewed in 59). In line, a 
reduced osteoid volume, osteoid thickness and osteoblast 
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surface was detected in iliac crest bone samples in male 
and female T2DM individuals (11). Furthermore, the 
serum bone formation markers procollagen type 1 
N-terminal propeptide and alkaline phosphatase (ALP) 
have been found mostly unaltered or reduced in type 2 
diabetic individuals, even though increased levels of ALP 
have also been reported (reviewed in 9, 60, 61, 62, 63, 64).

As mentioned above, high glucose concentrations 
lead to the creation of AGEs in bone matrix. Human 
osteoblasts treated with high glucose concentration  
and/or AGEs show a reduced expression of pro-osteogenic 
markers such as Runx2 and Osterix (65, 66). More critically, 
AGEs increase the rate of apoptosis of osteoblasts and its 
precursor cells (67, 68).

Wnt signaling and the bone morphogenetic 
pathway (BMP) are critical for osteoblast differentiation. 
Osteogenic cell lines show reduced Wnt activity, which is 
associated with reduced osteogenic differentiation, after 
stimulation with high glucose concentrations (69, 70, 
71). Wnt signaling is also one of the key pathways that 
regulate the osteoblast vs adipocyte fate decision of MSCs. 
In T2DM, osteogenesis is reduced while adipogenesis is 
increased resulting in bone marrow adiposity due to 
increased PPARγ signaling, which is at least partially Wnt-
dependent (reviewed in 4, 72, 73, 74, 75). Other pathways 
determining osteoblast vs adipocyte fate in T2DM are 
discussed in section ‘Indirect T2DM effects on bone cells’. 
Besides reduced Wnt signaling, a decreased expression 
of BMP-2 and osteopontin was also found in osteoblasts 
obtained from type 2 diabetic rats (76). In accordance with 
suppressed Wnt signaling in vitro, serum concentrations of 
the Wnt inhibitors, sclerostin and DKK-1, are increased in 
T2DM (12, 77) as are serum levels of active transforming 
growth factor β (TGF-β), which is associated with the 
development of diabetic nephropathy (78). Culturing 
pre-osteoblasts in this T2DM serum leads to reduced ALP 
activity and diminished matrix mineralization (66, 79).

Finally, the fatty acid composition has a large 
impact on osteoblast function. Nonesterified fatty acids 
induce apoptosis in osteoblasts, which is associated with 
downregulation of peroxisome proliferator-activated 
receptor γ coactivator 1-α (PGC-1α) and upregulation of 
the muscle ring finger protein-1. Depletion of muscle ring 
finger protein-1 or upregulation of PGC-1α in diabetic mice 
restored bone mass to WT level without affecting T2DM 
(80). Not only the amount but also the saturation of fatty 
acids affects osteoblast function. T2DM has an increased 
amount of saturated compared to monounsaturated fatty 
acids leading to reduced osteoblast differentiation and 

mineralization capacity as well as increased apoptosis rate 
due to their lipotoxic effect (81).

Taken together, T2DM exerts direct negative effects 
on osteoblasts via several molecular mechanisms (Fig. 1). 
Moreover, it favors the fate decision of MSCs to turn into 
adipocytes, which further impairs osteoblast function, 
bone formation and bone mass.

Osteocytes
During bone formation, a proportion of osteoblasts 
embed themselves into the bone matrix they produced 
and differentiate into mechanosensing osteocytes. For the 
exchange of oxygen and nutrients, they are connected via 
canaliculi and form a sophisticated network through the 
bone (82). This network is impaired in T2DM and even 
under high-fat diet conditions (83). The osteocyte density 
is reduced and the number of empty lacunae is increased 
likely due to increased osteocyte apoptosis under high 
glucose conditions. This subsequently leads to an 
impaired mechanosensing response to oscillatory shear 
stress in vitro (44, 84). Osteocytes coordinate osteoblast 
and osteoclast function via secretion of the Wnt inhibitor 
sclerostin and the promoter of osteoclastogenesis, receptor 
activator of NF-κB ligand (RANKL), respectively (85, 86). 
In vitro, high concentration of glucose and incubation 
with AGEs increase both sclerostin and RANKL expression 
(44). In T2DM patients, sclerostin serum levels are 
elevated and associated with glycated hemoglobin levels 
and insulin resistance (87, 88). Lastly, osteocytes regulate 
phosphate homeostasis by expression of fibroblast growth 
factor-23. This factor is also involved in the progression 
of atherosclerosis through its effects on endothelial cell 
function and is a predictor of cardiovascular disease risk 
(89, 90). Accordingly, fibroblast growth factor-23 serum 
concentrations are increased in T2DM patients that have 
high risk for developing cardiovascular diseases (91).

Osteoclasts
For a healthy bone status, bone formation by osteoblasts 
and bone resorption by osteoclasts needs to be balanced. 
In T2DM, osteoblast function is disturbed and osteoclast 
activity is altered leading to impaired bone remodeling. 
However, the literature on osteoclasts is controversial. 
Serum levels of the bone resorption marker collagen type 
I C-terminal telopeptide (CTX) are reported to have either 
increased or decreased in T2DM cohorts (reviewed in 60). 
A meta-analysis of 66 studies however revealed an overall 
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low bone turnover with low levels of CTX in diabetic 
patients (13). In type 2 diabetic rodents (TallyHo mice 
and ZDF rats), bone resorption parameters are mostly 
increased (serum CTX or TRAP, histological numbers of 
osteoclasts) (16, 17, 76, 92).

Culturing osteoclast-like Raw264.7 cells in high 
glucose concentration reduces the expression of 
osteoclast-specific genes including nuclear factor of 
activated T cells, cytoplasmic 1, tartrate-resistant acid 
phosphatase and osteoclast-associated receptor. In 
addition, high glucose decreases cell proliferation and 
cell size due to suppression of the formation of the 
osteoclast-specific actin ring (70). When mimicking 
hyperglycemia and hyperinsulinemia combined, 
osteoclast differentiation and gene expression of marker 
genes are downregulated (93).

For osteoclastogenesis to occur, RANKL must activate 
its receptor RANK located at the surface of pre-osteoclasts. 
Osteoprotegerin (OPG) acts as a decoy receptor of 
RANKL and thereby inhibits osteoclast differentiation. 
Both, RANKL and OPG are highly expressed by 
osteoblasts and osteocytes. Osteoblasts cultured in high 
glucose concentration increase both RANKL and OPG 
expression (70, 94) while the direct effect of RANKL 
on osteoclastogenesis is reduced (95). In addition, 
incubation of osteocyte-like MLO-Y4-A2 cells with high 
glucose concentration and AGEs highly increases RANKL 
expression (44).

Besides osteogenic cells, other cells contribute to 
RANKL and OPG production under certain, for example, 
inflammatory conditions. T2DM patients suffer from 
body and bone marrow adiposity (reviewed in 72) which 
is associated with increased TNFα serum level (96). 
Human bone marrow adipocytes express more RANKL 
and less OPG when additionally treated with TNFα 
resulting in an increased resorption capacity of osteoclasts 
(97). In addition, TNFα can induce osteoclastogenesis in 
combination with macrophage colony-stimulating factor 
only (98) and also potently increases osteoclastogenesis 
when low RANKL concentrations are present (99).

Finally, T2DM is associated with a higher amount 
of saturated fatty acids that reduce osteoclastogenesis, 
but increase osteoclast survival by production of 
macrophage inflammatory protein 1α leading to 
activation of NF-κB (100, 101). Taken together, several 
diabetes-derived factors have an impact on osteoclasts, 
yet, sometimes in opposing ways. Thus, current data do 
not allow forming a general statement on the role of 
T2DM on osteoclasts.

Indirect T2DM effects on bone cells

Bone marrow adiposity and MSC fate
Recently, bone marrow fat was discovered as an endocrine 
organ (72, 102). Even though it is known to impact 
energy homeostasis and bone turnover via secretion of 
adiponectin, still its origin, detailed characterization and 
function remain largely elusive. Studies in T2DM patients 
show controversial results. The vertebral bodies of type 
2 diabetic men and postmenopausal women show a 
higher marrow adipose tissue (MAT) content compared to 
controls. MAT is negatively correlated with bone mineral 
density and positively with visceral adipose tissue and 
HbA1c values (74, 103). However, two other studies with 
T2DM patients showed no difference in MAT. Nonetheless, 
MAT was associated with HbA1c in one study (104) and 
with fractures in another (103, 105). High MAT mass is 
further associated with increased PPARγ signaling and 
accordingly treatment of T2DM patients aged with the 
PPARγ agonist pioglitazone increased MAT in vertebra and 
femur (73).

Similar to humans, bone marrow adiposity increases 
in rodents with T2DM. Among others, diabetic ZDF rats 
and TallyHo mice show an increased bone marrow fat 
mass (up to 50-fold) compared to nondiabetic controls 
in vertebra and long bone, while bone mass is decreased 
(17, 76, 106, 107). In addition, feeding C57BL/6 mice 
with high-fat diet over several months results in an 
accumulation of bone marrow adiposity and a reduced 
bone mass (108). Interestingly, control of blood glucose 
affects MAT. While fat volume in the vertebra is unaltered 
by insulin therapy in diabetic ZDF rats, the adipocyte area, 
but not the size of adipocytes in the tibia, is reduced (107).

Mechanistically, high glucose concentrations prime 
MSCs to reprogram autocrine Wnt signaling resulting in 
an increased WNT11 expression and activation of PKC 
leading to an elevated adipogenesis (109). Further, Wnt5a 
plays an important role in MSC fate decision. Wnt5a-
deficient mice express less LRP5/6 leading to a reduced 
Wnt/β-catenin signaling, which consequently reduces 
osteoblastogenesis while increasing adipogenesis (110). 
Similar pro-osteogenic and anti-adipogenic effects were 
detected for the Wnt ligands Wnt6, Wnt10a and Wnt10b 
(111, 112). In line, blocking β-catenin signaling leads to 
bone marrow adiposity and low bone mass (113). Recently, 
other factors were identified to control MSC fate decision. 
The nuclear transcription factor I-C increases adipogenesis 
when being overexpressed and thereby reduces 
osteoblastogenesis and vice versa when its expression is 

This work is licensed under a Creative Commons 
Attribution-NonCommercial 4.0 International License.https://doi.org/10.1530/EC-18-0456

https://ec.bioscientifica.com © 2019 The authors
Published by Bioscientifica Ltd

Downloaded from Bioscientifica.com at 07/17/2021 07:30:15AM
via free access

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1530/EC-18-0456
https://ec.bioscientifica.com


A-K Picke et al. Diabetes and bone R60

PB–R16

8:3

inhibited (114). In addition, the cell surface protein Thy-1 
– also known as cluster of differentiation 90 – controls 
MSC differentiation by promoting osteoblastogenesis 
and decreasing whole body adipogenesis in vivo (115). In 
patients with osteoporosis and obesity, both characterized 
by altered bone homeostasis, serum concentrations of 
soluble THY-1 are reduced indicating clinical relevance 
of this factor (115). Therefore, bone marrow adipogenesis 
in T2DM must result from multifactorial reasons such as 
altered Wnt signaling, modified expression of adipokines, 
transcription factors and surface proteins as well as 
augmented glucose and insulin signaling (116).

Inflammation
Type 2 diabetic patients are overweight and adiposity 
gives rise to low-grade inflammation that negatively 
affects whole body metabolism and bone homeostasis 
(60). In T2DM patients, serum levels of pro-inflammatory 
cytokine interleukin 6 (IL-6) and high-sensitivity 
C-reactive protein are increased, which is associated with 
reduced concentration of osteocalcin (117). TNFα, IL-1 
and TGF-β levels are also highly increased in overweight 
and insulin resistance indicating latent inflammation 
in T2DM (reviewed in 118, 119). Further, the amount 
of saturated fatty acids is increased (81). Stimulation 
of human osteoblasts with saturated fatty acids highly 
increases expression of IL-6 and the chemokines IL-8, 
and monocyte chemoattractant protein-1 (120). Finally, 
hypoxia is a novel mechanism participating in insulin 
resistance in adipose tissue of obese patients that 
exacerbates the pro-inflammatory activity of adipocytes 
(121, 122, 123).

Inflammation activates immune defense by 
mobilization of macrophages. Increased body and bone 
marrow fat in T2DM attract monocytes via elevated 
chemokine expression such as leukotriene B4, macrophage 
inflammatory proteins, macrophage migration inhibitory 
factor and monocyte-chemotactic protein 3. In fat 
depots, they differentiate into pro-inflammatory M1 
macrophages and further express pro-inflammatory 
cytokines resulting in macrophage accumulation and 
activation of inflammatory reactions. This disturbs 
macrophage polarization leading to a reduced switch 
from pro-inflammatory M1 to anti-inflammatory M2 
macrophages, which are important for tissue surveillance, 
remodeling functions and maintaining insulin sensitivity 
of white adipose tissue (reviewed in 124) (Fig. 1).

Microangiopathy in bone
A healthy status of vascularization is mandatory to provide 
all body cells with nutrients and oxygen. Also within 
the bone microenvironment, angiogenesis is important 
and in fact linked to osteogenesis (125). In diabetic 
mice, the blood flow and microvascular density in bone 
marrow is reduced and the amount of endothelial cells 
is decreased. They are functionally impaired as shown by 
a diminished capacity to migrate and to form networks, 
which leads to microangiopathy and increased vessel 
permeability (126, 127). RhoA-Rho-associated kinase 
signaling has been implicated in reduced vessel function 
as a result of reduced stem cell viability, mobilization and 
via elevated oxidative stress (128, 129). In line with that, 
T2DM patients have a reduced abundance of endothelial 
progenitor cells in the blood (130, 131, 132, 133). In 
human endothelial progenitor cells, levels of cell survival 
regulating microRNA miR-155 are increased resulting in 
elevated apoptosis, which is triggered by high glucose 
concentrations (132, 134). To mobilize endothelial 
progenitor cells from the bone marrow, nitric oxide 
synthase (eNOS) is necessary. Under diabetic conditions 
endothelial progenitor cells synthesize less nitric oxide 
due to a damaged eNOS-caveolin-1 complex (135, 136). 
This endothelial dysfunction is also associated with 
increased Dickkopf-1 serum levels that further negatively 
affect osteoblast differentiation (77).

In addition, T2DM alters adipokine expression. 
Adiponectin confers protection of endothelial cells and 
its serum concentration is reduced in diabetic individuals, 
which may lead to microangiopathy (reviewed in 137). In 
vivo, the decreased endothelial progenitor cell mobilization 
from bone marrow leads to less cell recruitment in 
ischemic tissue. Therefore, fewer endothelial progenitor 
cells participate in neovascularization in peripheral 
tissues, leading to organ dysfunction and impaired 
regeneration potential, such as seen in fracture healing 
in T2DM patients (138). These findings indicate that 
vascular dysfunction in diabetes has its origin in the bone 
marrow by depleting the stem cell niche.

Treatment of diabetic bone disease

Two strategies can be envisaged to treat diabetic bone 
disease. First, to control blood glucose levels and prevent 
secondary effects of T2DM, and second, by directly 
blocking bone resorption and restoring osteoblast 
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function. Both options will be discussed in this  
article (Table 1).

Effects of antidiabetic treatments on bone

Metformin
Metformin is taken orally and decreases production of 
hepatic glucose via inhibition of mitochondrial respiratory 
chain complex 1, while increasing insulin sensitivity 
and stimulating glucose uptake by activation of AMP-
activated protein kinase ((139), reviewed in 140). In vitro 
and in vivo, metformin increases osteogenic induction 
and further enhances bone repair in rodents. In T2DM 
patients, metformin does not alter bone mineral density 
or fracture risk at spine, forearm or hip (reviewed in  
6, 140, 141, 142). Recently, it was shown that metformin 
therapy for 18 months does not alter spinal or hip bone 
mass, while trabecular bone score decreases in T2DM 
patients. Further, serum bone turnover markers P1NP and 
CTX are decreased by metformin (30, 143).

Thiazolidinediones
Thiazolidinediones (TZD) improve glycemic control 
and insulin sensitivity in T2DM. A common agent is 
rosiglitazone that activates PPARγ and improves insulin 
sensitivity in adipocytes by promoting adipogenesis and 
the accumulation of triglycerides into lipid droplets, 
thereby increasing adipose tissue amount (140). In vivo, 
TZD administration leads to bone marrow adiposity and 
reduces osteoblastogenesis resulting in bone loss. In line, 
T2DM patients with TZD treatment have increased bone 
marrow fat in the fourth lumbar vertebral body, reduced 

osteoblastogenesis and an increased fracture risk at the 
hip and wrist, which is generally more prominent in 
women (73, 144, reviewed in 140, 143). It is interesting 
to note that TZD treatment is not associated with risk 
of fracture in men (meta-analysis). However, recently 
it was detected that rosiglitazone administration is not 
associated with alterations in bone turnover markers, 
while reducing bone formation in combination with 
metformin (143).

Insulin
T2DM is characterized by increased serum glucose and 
insulin concentration due to insulin resistance. With 
disease progression, insulin production decreases and 
patients need to be additionally treated with insulin. 
Daily insulin treatment of T2DM rats improved glycemic 
control, but did not improve trabecular bone mass while 
cortical bone mass increased, suggesting site-specific effects 
of insulin on bone. Additionally, bone defect regeneration 
improved up to control level after insulin administration 
(107). Human studies are lacking to evaluate the effect of 
insulin treatment on bone mass in T2DM. Nevertheless, 
studies show that T2DM patients treated with insulin 
have an unaltered to increased fracture risk at the hip, 
while men seem to be more prone than women (reviewed 
in 140, 145, 146). It is clear that insulin treatment has a 
positive effect on bone metabolism. Thus, the increased 
fracture risk may be explained by the higher rate of falls 
caused by hypoglycemic events. It is also worth to note 
that patients on insulin treatment may also have longer 
duration of disease and are more likely to have developed 
diabetes complications.

Table 1 Effect of antidiabetic and anti-osteoporosis treatments on bone.

 
Treatment

Animal in vivo studies Human in vivo studies
Bone formation Bone resorption BMD Fracture healing Bone formation Bone resorption BMD Fracture risk

Antidiabetic treatment
 Metformin ↑ ↓ ↑* ↑ ↓/= ↓/= ↑/= ↓/=
 Thiazolidinediones ↓ ↑ ↓/= ? ↓/=/↑ ↑/=/↑ ↓/= ↑/=
 Insulin ↑ = ↑/= ↑ = = = ↑/=
 Sulphonyl urea ↑ ↓ ↑ ? ↑/= ↓/= = ↑
 Incretins ↓ ↓ ↑/= ? ↓/= ↓/= ↑/= ↓/=
 SGLT2 = ↑/= = ? = ↑/= = ↑/=
Anti-osteoporosis treatment
 Bisphosphonates ↓* ↓* =* ↑*1 ↓ ↓ ↑/= ↓
 Anti-RANKL Ab ↓* ↓* ↑* ↑*1 ↓*1 ↓*1 ↑*1 ↓*1

 Intermittent PTH ↑ ↓ ↑ ↑ ↑ ↓ ↑ ↓
 Anti-sclerostin Ab# ↑ ↓ ↑ ↑ ↑*1 ↓*1 ↑*1 ↓*1

*Only tested in type 1 diabetes; *1only tested in nondiabetics; #not yet approved.
↓, decreased; ↑, increased; ?, not investigated; =, unaltered; BMD, bone mineral density; PTH, parathyroid hormone; SGLT2, sodium-glucose cotransporter 2.
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Sulphonyl urea
These medications have been used for more than 40 years, 
are inexpensive and still largely used in the diabetes 
clinic. Mechanism of action is based on increased release 
of insulin from the beta cell that is independent from 
glucose serum levels, implying a high risk of hypoglycemic 
events. Preclinical studies have excluded a direct effect 
of sulphonylureas at the bone level and, therefore, have 
been considered a safe option. However, more recent 
data have shown almost a doubled risk of hip fracture 
in treated patients, likely caused by higher frequency of 
hypoglycemic (146, 147, 148) events.

Incretins
Glucose-dependent insulinotropic polypeptide (GIP) and 
glucagon-like peptide-1 (GLP-1) are two gastrointestinal 
hormones known as incretins, ‘INtestine SeCRETion 
Insulin’, secreted in response to nutrient intake. In order 
to compensate for low incretin effect in T2DM patients, 
two different therapeutic options have been developed, 
either by inhibiting dipeptidyl dipeptidase-4, an enzyme 
that rapidly inactivates GIP and GLP-1 (sitagliptin, 
vildagliptin, saxagliptin, linagliptin, alogliptin), or by 
GLP-1 mimetic drugs (liraglutide, exenatide, dulaglutide, 
albiglutide, lixisenatide). These medications improve 
glucose control with low risk of hypoglycemic events and 
can be safely used in the long term.

GLP-1 receptor knock-out mice show increased 
osteoclast numbers, bone resorption rate, bone fragility 
and low calcitonin levels, which increases after treatment 
with a GLP-1 receptor agonist (149). Treatment with GLP-1 
analogues under normal or high glucose conditions in 
ovariectomized rats and mice for 16 weeks promoted bone 
formation and lowered bone resorption with a significant 
increase in femoral bone mineral density and strength 
(150, 151, 152, 153, 154). In T2DM rodents, GLP-1 and 
exendin-4 treatment reduced serum bone remodeling 
marker while increasing bone mass only partially (155, 
156, 157). Despite these promising preclinical results, 
clinical data have only shown a neutral effect on bone 
mineral density and no prospective data are available for 
fracture risk. In an attempt to fill this gap, different meta-
analyses on randomized controlled trials, where fractures 
were noted as possible side effects, have been published 
with inconsistent results (158, 159, 160, 161). These 
studies are limited by different fracture definitions across 
studies and lack of radiographic control of the events. 
Women treated with liraglutide for 52  weeks lost 12% 
of initial body weight, had improved total, pelvic and 

arm/leg bone mineral content and P1NP levels, although 
methodological concerns have been raised (162). Risk 
of fracture has been shown to be neutral (HR 1.00  
(95% CI 0.83–1.19)) in a large clinical trial investigating 
the cardiovascular safety of saxagliptin vs placebo (163). 
In conclusion, although more clinical evidence is needed, 
GLP-1 agonists and dipeptidyl dipeptidase-4 inhibitors 
seem to have a safe bone health profile.

Sodium-glucose cotransporter inhibitors
These new generation drugs selectively inhibit the 
renal sodium-glucose cotransporter 2 (SGLT2, the key 
transporter mediating glucose reabsorption by the 
kidney), thereby increasing urinary glucose excretion 
(164, 165). The first three SGLT2 inhibitors released in 
the market, namely canagliflozin, empagliflozin and 
dapagliflozin, have proven not only an antidiabetic 
effect but also significant reduction in cardiovascular risk, 
implying a wide use in both T1DM and T2DM. While  
in vivo and in vitro studies have not been consistent, 
clinical data have raised concerns on bone safety (4, 166). 
In fact, SGLT2 inhibitors increase phosphate tubular 
reabsorption and serum concentrations of parathyroid 
hormone and, in turn, bone (167). In two different 
randomized, double-blind, placebo-controlled studies, 
dapagliflozin has shown neutral effects on bone turnover 
and bone density (168, 169). A post hoc analysis from 
the EMPAREG study has also shown neutral effects on 
fracture risk for empagliflozin (170).

Data are less reassuring for canaglifozin which 
has been associated with higher bone loss, increased 
bone resorption and a higher incidence of fractures 
compared to non-canagliflozin treatment (2.7 vs 1.9% 
respectively) (171, 172). Although data on dapagliflozin 
and empagliflozin show a safe bone profile, data on 
canagliflozin are concerning and more studies are needed 
to clarify a possible class effect and reasons for discrepancy 
in terms of safety profile among these medications.

Anti-osteoporosis treatments

Bisphosphonates
Bisphosphonates are the first-line option to treat 
osteoporosis in postmenopausal women and men. 
Bisphosphonates bind to mineralized matrix with a 
high affinity and inhibit the resorption capacity of 
osteoclasts. This reduces bone turnover, increases bone 
mass and decreases fracture risk (reviewed in 173). Elderly 
postmenopausal, osteoporotic women with T2DM that 
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are treated with alendronate and calcium/vitamin D 
supplements are resistant against therapy effects shown by 
decreased total hip, femur neck and femur bone mineral 
density, while spine bone mineral density is unaltered 
(174). In contrast, when osteoporosis had been diagnosed 
recently, T2DM women benefited from bisphosphonate 
treatment by increased bone mineral density at the lumbar 
spine. However, bone remodeling markers such as CTX 
and ALP are decreased in T2DM, osteoporotic women with 
increased spine bone mineral density (reviewed in 175). 
In addition, treatment with bisphosphonates has a similar 
anti-fracture efficacy in diabetes patients compared with 
nondiabetic regarding non-vertebral fractures (reviewed in 
176). Thus, even though bisphosphonate further suppress 
bone turnover, they may still be an effective therapy for 
patients with T2DM.

Denosumab
Denosumab is a monoclonal antibody targeted against 
RANKL, the key cytokine to drive osteoclastogenesis, 
which has been approved for the treatment of osteoporosis. 
Through its mechanism of action, inhibition of RANKL 
reduced bone resorption and therefore increased bone 
mass in rodents (177). In addition, the blockade of RANKL 
has been tested in preclinical models to improve glycemic 
status. A post hoc analysis of the freedom trial has shown 
that denosumab significantly lowers fasting serum 
glucose in naive patients with T2DM throughout the 
3 years of observation vs placebo (178). Considering that 
the study was not designed for diabetes-related outcomes, 
more studies are needed to test efficacy of denosumab on 
glucose control. Nonetheless, phase II studies are ongoing 
to better define denosumab as a safe option to treat bone 
fragility in type 2 diabetic patients.

Intermittent PTH treatment
Intermittent PTH administration is commonly used 
in the clinics to treat osteoporosis by enhancing bone 
remodeling, especially osteoblast function, resulting in 
enhanced trabecular bone parameters (179). In T2DM rats, 
intermittent parathyroid hormone treatment increases 
trabecular bone mass due to elevated bone formation and 
enhances bone defect regeneration (14).

Post hoc analyses from the dance study have shown 
that teriparatide decreases risk of fracture in diabetics 
similar to nondiabetic patients (180). However, the results 
on bone mineral density were surprising, showing a 
significantly greater effect of teriparatide at the femoral 

neck in diabetics vs nondiabetics. These data are supported 
by a recent study from Langdahl et al. (181), who found 
that teriparatide reduces vertebral, non-vertebral and 
femur fractures in diabetics. Given the mechanism of 
action, teriparatide should be the first-line treatment in 
diabetic patients after a fragility fracture. Improving bone 
formation but also gradually increasing bone resorption 
appears as an ideal order to reverse the low bone turnover 
state typical of long-term diabetes.

Anti-sclerostin antibody
Sclerostin is a negative regulator of bone mass by 
inhibiting osteoblastogenesis. In vivo studies show that 
treatment with anti-sclerostin antibody improves bone 
mass in healthy rodents and monkeys as well as in type 
2 diabetic rats (reviewed in 182, 183). In diabetic ZDF 
rats, bone formation rate increases leading to an elevated 
bone mineral density and enhanced bone mechanical 
properties. In addition, bone defect healing was improved 
by anti-sclerostin antibody administration (15). In 
clinical trials, the anti-sclerostin antibody romosozumab 
increased bone mineral density and reduced fracture 
risk in postmenopausal women by increasing bone 
formation and transiently decreasing bone resorption. 
Therefore, this treatment option may be a good candidate 
for the treatment of diabetic bone disease. However, 
romosozumab treatment has been associated with an 
increased risk of cardiovascular events, which are common 
in T2DM patients, and therefore romosozumab needs to 
be critically tested for clinical use for T2DM (reviewed in 
183, 184).

Conclusion

Research over the past years has highlighted the 
detrimental effect of T2DM on bone quality and strength 
and has led to the acceptance of diabetic bone disease as 
a serious complication of long-standing T2DM. Despite 
recent progress in the understanding of the pathogenesis 
of diabetic bone disease, the mechanisms of action are far 
from being completely understood. Moreover, with the 
emergence of novel antidiabetic treatments, prospective 
studies are required to evaluate their effects on bone health 
and identify which treatments may require co-treatment 
with anti-osteoporosis medications. Thus, in light of the 
increasing prevalence of T2DM, more basic and clinical 
insights are required to maintain bone health of type 2 
diabetics.
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