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Abstract

Aims/hypothesis: The macrophage-specific glycoprotein sCD163 has emerged as a 
biomarker of low-grade inflammation in the metabolic syndrome and related disorders. 
High sCD163 levels are seen in acute sepsis as a result of direct lipopolysaccharide-
mediated shedding of the protein from macrophage surfaces including Kupffer cells. 
The aim of this study was to investigate if low-grade endotoxinemia in human subjects 
results in increasing levels of sCD163 in a cortisol-dependent manner.
Methods: We studied eight male hypopituitary patients and eight age- and gender-
matched healthy controls during intravenous low-dose LPS or placebo infusion 
administered continuously over 360 min. Furthermore, we studied eight healthy 
volunteers with bilateral femoral vein and artery catheters during a 360-min infusion 
with saline and low-dose LPS in each leg respectively.
Results: Systemic low-grade endotoxinemia resulted in a gradual increase in sCD163 
from 1.65 ± 0.51 mg/L (placebo) to 1.92 ± 0.46 mg/L (LPS) at 220 min, P = 0.005 and from 
1.66 ± 0.42 mg/L (placebo) to 2.19 ± 0.56 mg/L (LPS) at 340 min, P = 0.006. A very similar 
response was observed in hypopituitary patients: from 1.59 ± 0.53 mg/L (placebo) 
to 1.83 ± 0.45 mg/L (LPS) at 220 min, P = 0.021 and from 1.52 ± 0.53 mg/L (placebo) 
to 2.03 ± 0.44 mg/L (LPS) at 340 min, P < 0.001. As opposed to systemic treatment, 
continuous femoral artery infusion did not result in increased sCD163.
Conclusion: Systemic low-grade endotoxinemia resulted in increased sCD163 to levels seen 
in the metabolic syndrome in both controls and hypopituitary patients. This suggests a 
direct and cortisol-independent effect of LPS on the shedding of sCD163. We observed no 
effect of local endotoxinemia on levels of serum sCD163.

Introduction

CD163 is a cortisol-regulated monocyte and macrophage-
specific surface glycoprotein and the extracellular 
portion of CD163 circulates in blood as a soluble protein 
(sCD163) (1).

sCD163 is highly elevated in acute infections including 
bacteremia and sepsis (2, 3, 4) and in inflammatory liver 
diseases (5, 6, 7, 8).

In vitro, lipopolysaccharide (LPS, endotoxin) induces 
ectodomain shedding of sCD163 by TLR-4 stimulation 
of the metalloproteinase TACE (9). LPS is a constituent 
of the outer membrane of the cell wall of gram-negative 
bacteria. LPS acts as a mediator of both acute and chronic 
inflammation (10, 11, 12, 13) and is an important 
mediator of gram-negative sepsis (14).
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In vivo, high doses of LPS (from 2 ng/kg to 4 ng/kg) 
are used as a human model of the initial phase of sepsis 
(15), and in these settings, LPS administration increases 
plasma CD163 within minutes to the high levels seen in 
sepsis (9, 16).

Small, but significant, increases in sCD163 are seen 
in conditions of low-grade inflammation, such as obesity, 
insulin resistance and type 2 diabetes mellitus (T2D) 
(17, 18, 19, 20), but it is not known if these changes are 
directly linked to low-grade endotoxinemia or they are 
indirect, since LPS acts through a number of cytokines 
and also activates the hypothalamo-pituitary axis (HPA) 
and stimulates the release of stress hormones (e.g. cortisol) 
into the blood (21, 22, 23).

Since CD163 is strongly expressed in tissues such as 
liver, spleen and lungs, and only moderately expressed on 
monocytes, it has been suggested that the major fraction 
of the shedded sCD163 originates from the tissues, but 
this has not been thoroughly investigated in clinical 
experiments.

In two placebo-controlled human trials we, therefore, 
aimed (1) to compare the effects of LPS on levels of 
sCD163 in hypopituitary patients (HP) (in the absence of 
pituitary stress hormone responses) and control subjects 
(CTR) by infusing LPS systemically (intravenously) (‘the 
systemic study’) and (2) to investigate the local effect of 
LPS on levels of sCD163 in healthy volunteers by infusing 
LPS into the femoral artery with collection of blood from 
the femoral vein (‘the leg study’).

Methods

The systemic study

The study had a randomized placebo-controlled design 
with two different study days. We studied eight HP and 
eight matched control subjects (CTR) on two occasions 
separated by a minimum of1  month: (1) during 
continuous isotonic saline infusion (placebo day) and  
(2) during continuous Escherichia coli endotoxin infusion 
of 0.06 ng/kg/h (LPS day) intravenously for 6 h, as 
previously described (24). Blood was sampled at 0, 60, 220 
and 340 min for sCD163 analysis.

HP
As previously described (24), seven HP underwent 
operation for nonfunctioning pituitary adenoma and one 
patient for craniopharyngioma and all patients developed 
panhypopituitary insufficiency afterward. All patients 

received substitution therapy with hydrocortisone, 
thyroxine, testosterone and growth hormone. In addition, 
one patient received desmopressin therapy. Average 
treatment length was 9 years. All HP were healthy (beside 
their pituitary deficiencies) and did not receive other 
medications that may influence the results.

HP did not take growth hormone and desmopressin 
medication the last day before the study and 
hydrocortisone was discontinued on the study day. HP 
received i.v. hydrocortisone 80 mg (13 mg/h) continuously 
during the experiment (t = 0–360 min) to avoid acute 
cortisol deficiency. This high dosage was based on pilot 
experiments with lesser doses which induced signs of 
cortisol deficiency (low blood pressure, nausea, vomiting).

The leg study

As previously described (25), catheters were inserted into 
the femoral artery and vein of both legs in eight healthy 
male volunteers, and arterial catheters were used for 
infusion of either LPS (0.025 ng/kg/h) or placebo (saline), 
respectively in each leg, in a single-blinded randomized 
manner. Blood samples were taken from both venous 
catheters at 0, 60, 170 and 350 min for sCD163 analysis.

Both studies were approved by the Central Denmark 
Region Ethics Committee (M-2010-0076), in accordance 
with the Declaration of Helsinki. The study protocol was 
registered at www.clinicaltrials.gov (NCT01452958).

Consent has been obtained from each patient or 
subject after full explanation of the purpose and nature of 
all procedures used.

ELISA for sCD163
We determined serum concentrations of sCD163 in 
duplicate samples that had been stored for up to 3 years 
at −80°C by use of an in-house sandwich ELISA on a 
BEP-2000 ELISA-analyzer (Dade Behring, Germany) (22). 
In each run, we co-analyzed control samples and serum 
standards with concentrations traceable to purified 
CD163. The inter-assay imprecision was <5% CV. The 
limit of detection was 6.25 µg/L. Soluble CD163 is robust 
to thawing and prolonged freezing (22).

Hyperinsulinemic–euglycemic clamp
As previously described (24), the study consisted of a  
240-min basal period, followed by a 120-min 
hyperinsulinemic–euglycemic clamp period in the 
systemic study, and 180-min basal period and 180-min 
clamp period in the leg study (25).
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Infusion rates of insulin during the clamp period 
(Insulin Actrapid; Novo-Nordisk) were 1.0 mU/kg/min 
i.v. Systemic plasma glucose was clamped at 5 mmol/L 
by a variable infusion of 20% glucose and arterial plasma 
glucose concentrations were measured at least every ten 
minutes (Beckman Instruments, Palo Alto, CA, USA).

Statistics
Data are presented as mean ± s.e.m. Statistical analysis was 
performed using paired t-tests comparing the effect of 
LPS vs placebo, unless otherwise stated. In the absence of 
normal distribution, P values were calculated by Wilcoxon 
signed-rank test. Normal distribution was assessed by 
inspection of QQ-plots.

Results

Effects of continuous systemic LPS infusion on serum 
concentrations of sCD163 (The systemic study)

Continuous intravenous LPS infusion in healthy 
controls resulted in an increase in sCD163 at 220 min 
(1.92 ± 0.46 mg/L LPS day vs 1.65 ± 0.51 mg/L placebo 
day, P = 0.005), and a further increase at 340 min 
(2.19 ± 0.56 mg/L LPS day vs 1.66 ± 0.42 mg/L placebo day, 
P = 0.006) (Fig. 1A). A similar increase was observed in HP 
at 220 min (1.83 ± 0.45 mg/L LPS day vs 1.59 ± 0.53 mg/L 
placebo day, P = 0.021) and at 340 min (2.03 ± 0.44 mg/L 
LPS day vs 1.52 ± 0.53 mg/L placebo day, P < 0.001) 
(Fig. 1B).

Effects of continuous local LPS infusion on serum 
concentrations of sCD163 (The leg study)

In contrast to the systemic LPS infusion, concentrations 
of sCD163 in the femoral vein were not significantly 
increased by local LPS infusion (Fig. 2).

Cortisol levels

As previously described (24), overall TW ANOVA for 
repeated measurements revealed a main LPS effect 
to increase cortisol levels (P < 0.001) in CTR and the 
difference was significant both during the first 240 min 
(‘basal period’): 88 ± 9 ng/mL (placebo) vs 138 ± 17 ng/mL 
(LPS), P = 0.017, and after 360 min (insulin stimulation 
– ‘clamp’) of the experiment: 94 ± 11 ng/mL (placebo) vs 
211 ± 20 ng/mL, P = 0.002.

Cortisol levels in HP remained unaltered both  
during the first 240 min: 315 ± 35 ng/mL (placebo) vs 
315 ± 31 ng/mL (LPS), P = 0.902, and after 360 min: 
342 ± 37 ng/mL (placebo) vs 339 ± 35 ng/mL (LPS), P = 0.774. 
Main LPS effect to increase cortisol levels (TW ANOVA for 
repeated measurements) was also unaltered (P = 0.858). 
Cortisol levels were not measured in the leg study.

Glucose levels

The systemic study
As previously described (24), systemic plasma glucose 
was approximately at 5 mmol/L both in CTR and HP, and 
there was no difference between placebo and LPS days.

Figure 1
(A) sCD163 serum concentrations (mg/L) during continuous venous  
LPS/placebo (saline) infusion in eight healthy men. (B) sCD163 serum 
concentrations (mg/L) during continuous venous LPS/placebo (saline) 
infusion in eight hypopituitary men. Black bars = LPS infusion day, white 
bars = placebo infusion day. *P value <0.05 LPS vs placebo, #P value <0.05 
compared to 0 min. P values were calculated by paired t-test and 
signed-rank test (where appropriate).
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In CTR, glucose levels were 5.4 ± 0.1 mmol/L 
(placebo) vs 5.1 ± 0.1 mmol/L (LPS), P = 0.383, during 
the first 240 min, and after 360 min glucose levels were 
4.9 ± 0.1 mmol/L (placebo) vs 4.9 ± 0.1 mmol/L (LPS), 
P = 0.872.

In HP glucose levels were 5.7 ± 0.3 mmol/L (placebo) vs 
5.5 ± 0.1 mmol/L (LPS), P = 0.459, during the first 240 min, 
and after 360 min, glucose levels were 5.0 ± 0.1 mmol/L 
(placebo) vs 5.1 ± 0.1 mmol/L (LPS), P = 0.347.

The leg study
As previously described (25), overall TW ANOVA for 
repeated measurements revealed a main LPS effect to 
decrease glucose differences (P = 0.015) in the leg, although 
glucose arterio-venous differences during the clamp only 
reached borderline significance (P = 0.068) when tested 
separately.

Discussion

This study answers an important question in relation 
to the low-grade inflammation biomarker sCD163. We 
show in a randomized controlled design that low-dose 
systemic LPS directly and within hours increases sCD163 
in plasma independently of a cortisol response. sCD163 
is regarded as an important biomarker of low-grade 
inflammation which reflects insulin resistance and is 
related to increased diabetes risk. In our systemic study 
we mimicked low-grade inflammation by infusion of low-
dose LPS and found a 25% consistent increase in sCD163, 

which is equivalent to the increase observed in obesity 
and diabetes. This increase did not depend on activation 
of the HPA axis, indicating a direct effect of LPS on 
monocytes and macrophages as seen in the in vitro and 
sepsis situations. In vitro, the cellular CD163 expression 
is upregulated by glucocorticoid after 12–24 h, and it is 
a possibility that our relatively short observation period 
failed to detect a more delayed cortisol effect. The HP 
patients in the study received 80 mg Solu-cortef over the 
6 h – the same dosage during the placebo days and during 
the LPS days, however, with no effect on sCD163 on the 
placebo days. Taken together, our data demonstrate that 
the changes in sCD163 seen in low-grade inflammatory 
conditions may be directly mediated by low levels of LPS. 
We cannot, however, exclude that over time, regulatory 
mechanisms such as HPA activation may contribute to 
further increased CD163 expression and shedding.

The leg study shows no increase in venous sCD163 
neither in the infused nor noninfused leg. Since there is 
no increase in sCD163 in the noninfused leg, this may 
indicate that only a minor fraction of the locally injected 
LPS reaches the systemic circulation. The lack of increase 
in the LPS-injected leg suggests that monocytes and tissue 
macrophages in the leg do not substantially contribute to 
the increase in sCD163 seen after systemic administration.

The strengths of our study include the randomized 
and placebo-controlled design and the inclusion of 
systemic vs local low-grade endotoxinemia. Moreover, we 
investigated the cortisol-independent effects of low-grade 
endotoxinemia on sCD163.

The study originates from a randomized study 
comparing saline infusion with LPS-induced 
inflammation’s effect on human metabolism during 
amino acids, fat and glucose tracers (isotopes) and insulin 
stimulation in the last part of the experiments. We do not, 
however, have any reason to believe that either tracers or 
insulin have affected sCD163 response.
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Figure 2
sCD163 serum concentrations during continuous intra-arterial  
LPS/placebo (saline) infusion in human leg. Black bars = LPS leg, white 
bars = placebo leg. *P value <0.05 LPS vs placebo, #P value <0.05 
compared to 0 min. P values were calculated by paired t-test and 
signed-rank test (where appropriate).
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