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Most plastics need to incorporate flame retardants to meet fire safety standards requirements. The amount and the type of flame retardants can 

differ, so that in waste plastics a large variety of polymers and flame retardants can be found. The recycling of plastics containing flame retardants 

is increasing. However, only plastics of the same polymer type and the same additive content can be recycled together. Three models based on 

different chemometrics techniques applied to hyperspectral imaging in the near infrared range were developed [partial least square-discriminant 

analysis, decision tree (DT) and hierarchical model (HM)]. Optimal results were obtained for all classification techniques. HM shows the highest 

error at all levels due to the noisy spectra of the black plastics. However, DT classification gave outstanding results, considering that the sensitivity 

was higher than 0.9 in all cases. Thus, the application of DT with hyperspectral imaging could be used to sort plastic samples with respect to the 

type of polymer and the flame retardant used with a high degree of accuracy in an automated way. These findings are highly valuable for the plastic 

and waste management industries.

Keywords: waste recycling, plastics recycling, NIR hyperspectral imaging, polymer, flame retardants, decision tree, hierarchical classification, 
partial least square-discrimination analysis

Introduction
Most plastics need to incorporate flame retardants 
(FR) to meet fire safety standard requirements. FRs are 
organic compounds used to increase the resistance to 
ignition, reduce flame spreading, suppress smoke forma-
tion and prevent a polymer from dripping.1 The amount 
and the type of FRs can differ, so that in waste plas-
tics a large variety of polymers and FRs can be found. 

Among all, Brominated FRs (BFR) are cost-effective and 
offer a high degree of processability, making them the 
most commonly used FRs in plastics. In Europe, the recy-
cling of polymers from all categories is increasing, which 
includes plastics containing FRs. However, only plastics 
of the same polymer type and with a close match in addi-
tive content can be recycled together.
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The identification of BFRs in plastics has been success-
fully accomplished using many methods, such as Raman 
spectroscopy,2 laser-induced breakdown spectrometry 
(LIBS),3 X-ray fluorescence (XRF)4 and chromatography.5 
However, many of these methods are slow, expensive 
and difficult to implement in a real-time framework, 
which make them unsuitable for automated sorting. On 
the other hand, near infrared (NIR) spectroscopy is exten-
sively used for automated sorting due to its fast scanning 
abilities and relatively low cost.

Hyperspectral imaging (HSI) is an imaging technique 
that started in the 1970s with applications mainly in 
remote sensing.6,7 In the last decade, this technique has 
been applied in many other disciplines.8–15 The main 
feature of this technique is its ability to measure a whole 
spectrum for every single pixel in which the image (i.e., 
the sample) is divided.16,17 The interest in HSI has recently 
grown because of the faster, more reliable and robust 
evolution of the optical devices available and the imple-
mentation of powerful, accurate and robust computer 
vision algorithms for processing those.18,19

HSI is inherently linked to data analysis, especially, 
to chemometrics techniques. Thus, the success of HSI 
cannot be understood without referring to the implemen-
tation of powerful algorithms to handle all data generated 
for a single image. Chemometrics is a well-known disci-
pline that allows the extraction of information initially 
hidden in the data in a multivariate way. Many reviews 
have been published pointing out the main multivar-
iate or statistical methods that can be applied in HSI for 
different purposes.20–23 However, sometimes it becomes 
cumbersome to know exactly which multivariate method 
is the most appropriate for every single purpose. Among 
the main chemometrics techniques for classification 
purposes, partial least square-discriminant analysis (PLS-
DA), decision trees (DT) and artificial neural networks 
(ANN)24–27 are very well known.28 Recent studies have 
shown the good performances in classification of algo-
rithms based on tree structures such as DT or random 
forest,26,29,30 in comparison with classical techniques of 
classification such as K-NN, rules based systems (RBS), 
ANN or deep learning methods.

Therefore, a fast and reliable method to identify and 
distinguish both the polymer and the contained FRs is 
proposed in this manuscript by using NIR-HSI together 
with dedicated classification models. This approach can 
be the perfect methodology for real-time, automated 
sorting of plastics with critical additives, selecting and 

testing the best classification model on real samples of 
plastics in order to implement an economically reliable 
recycling process that meets the major requirement of 
the plastic industry.

Material and methods
Materials
The plastics used in this study were kindly provided by the 
INNOSORT consortium (http://innosort.teknologisk.dk/). 
Two different kinds of plastics were supplied: acrylonitrile 
butadiene styrene (ABS) and polystyrene (PS). For each 
one, two versions were analysed: Natural and Black (with 
the addition of 5 % of carbon black). A reference sample 
for each polymer (without BFRs addition) was analysed 
and labelled as REF. The remaining samples were doped 
in the manufacturing process with 10 % of different BFRs 
according to the corresponding legislation. The types 
of BFR were: 1,2,5,6,9,10-hexabromo-cyclododecane 
(labelled as HBCD), Pentabromophenyl ether (labelled as 
deca-BDE) and 3,5-tetrabromobisphenol A (labelled as 
TBBPA). These plastics were produced in a disk shape 
(of around 50 mm of diameter and 3 mm thickness). For 
each type of plastic, two replicates were provided, one of 
them for calibration and the other one for testing (Table 
1). Figure 1 shows the false colour image of the samples 
of plastics (Figure 1A), the use of these images for calibra-
tion (black samples) or test (dark grey samples) purposes 
(Figure 1B) and the identification of each group and sub-
group of plastics (Figure 1C). A false colour image is a 
representation of the hyperspectral image in which the 
spectra are divided into three intervals. Then, the average 
value of the spectral signal is calculated for each interval 
at each pixel. Therefore, a false RGB can be constructed 
by mimicking each interval as one of the RGB channels. 
This is a qualitative, but very valuable, way of displaying 
hyperspectral images. Real samples from commercial 
sources were used as an external validation set. These 
were blind random pieces of different types of plastic 
and from different brands (Figure 2A). The composition 
of these real plastics are specified in Figure 2B.

Hyperspectral imaging
Images obtained from near infrared reflectance spectros-
copy hyperspectral imaging (NIRS-HSI) were collected 
with the UmBio Inspector hyperspectral camera 
(UmBio, AB, Umea, Sweden) in the wavelength range 

http://innosort.teknologisk.dk/
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of 1100–2250 nm with a spectral resolution of 4.85 nm 
(115 bands). The camera was placed at a right angle with 
respect to the sample (90°). The samples were illuminated 
with diffuse white light at an angle of 45° to the sample. 
The final pixel resolution was 300 µm. This configuration 
had been evaluated and optimised previously31 and the 
calibration of the camera was performed by subtracting 
the ratio between the full reflectance of a Spectralon 
plate and the dark current collected with the objective 
closed according to the literature.32,33

The hyperspectral image data processing was performed 
using HYPER-Tools,34 an in-house library working under 
MATLAB (The Mathworks, Inc., Natick, Massachusetts, 
USA).

Experimental work-flow
The spectra were pre-processed to remove outliers and 
noise (first derivative Savitzky–Golay35). The training 
samples were evaluated and classified by applying three 
different classification models in a pixel by pixel fashion 
and analysing sample by sample. Thus, once the best 
classification model was obtained, this model was evalu-
ated on the NIRS-HSI of the real samples of plastic in 

order to evaluate the polymers, the versions and the 
BFRs doping the plastics of these real samples.

Classification models
Two different datasets were obtained, one for calibra-
tion (CAL) and the other for testing the models (TEST). 
Therefore, to create the calibration model, a matrix X 
(M × N) where M is the number of spectra and N is the 
number of wavelengths, and the corresponding Y matrix 
containing the identity belonging to each class,36 are 
needed.

Partial least square-discriminant analysis
Partial least square (PLS)25,37 together with discriminant 
analysis (PLS-DA) is a supervised discriminant method 
that predicts whether a sample belongs to a specific class. 
PLS-DA was performed in the PLS-toolbox (Eigenvector 
Research Inc., Manson, WA, USA) for MATLAB (The 
Mathworks Inc., Natick, Massachusetts, USA). This seems 
a very complicated combination of software. Nevertheless, 
the two of them (HYPER-Tools and PLS-toolbox) work 
under the MATLAB environment, and all their utilities 
can be used in an automated way by means of in-house 
generated scripts.

Decision trees
DT is a decision modelling tool that graphically displays 
the classification process of a given input for given 
output class labels.38 This method is one of the learning 
algorithms that generate classification models in the form 
of a tree structure. It is based on the “divide and conquer” 
strategy.39 Data subsets were created by decomposing 
the whole dataset into smaller datasets. The final model 
is a tree structure with decision nodes and leaf nodes.

DT was applied in this study by using the free software 
Waikato Environment for Knowledge Analysis (WEKA) 
(http://www.cs.waikato.ac.nz/ml/weka; last accessed 
May 2018).

The J48 decision tree-inducing algorithm is a WEKA 
implementation of the well-known C4.5 decision tree.40 
According to Anyanwu and Shiva41 and Priyam et al.,42 
J48 provides better accuracy and efficiency than other 
decision tree algorithms. Therefore, J48 was used as the 
DT in the present study. A confidence factor of 0.5 and 
minimum bucket size of 30 were applied.26,38 The bucket 
size is the minimum number of samples that can be classi-
fied in any leaf of the DT. Usually this value should be one-
third of the batch size, which is the number of instances 

Plastic type Version Flame retardants

ABS

Natural

REF
HBCD
Deca-BCD
TBBPA

Black

REF
HBCD
Deca-BCD
TBBPA

PS

Natural

REF
HBCD
Deca-BCD
TBBPA

Black

REF
HBCD
Deca-BCD
TBBPA

Table 1. Plastic types (ABS, Acrylonitrile Butadiene Styrene 
and PS, Polystyrene), versions (Natural and Black) and flame 
retardants (REF, Reference; HBCD, 1,2,5,6,9,10-Hexabromo 
cyclododecane; Deca-BDE, Pentabromophenyl ether; and 
TBBPA, 3,5-Tetrabromobisphenol A) used in the calibration 
and test set.

http://www.cs.waikato.ac.nz/ml/weka
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Figure 1. Calibration and test set of plastics for this study. A) False colour image of the plastics. B) Calibration (black) 
and Validation (grey) samples of plastics. C) Description of the plastic samples, type of plastics, version of these plastics 
( Natural or Black) and type of flame retardants.

Figure 2. A) False colour image of the real samples of plastics. B). Composition of the real samples of plastics: P1 (ABS-
Black-HBCD), P2 (ABS-Black-REF), P3 (ABS-Natural-HBCD), P4 (ABS-Natural-REF), P5 (PS-Black-Deca-BDE), P6 (PS-
Black-TBBPA), P7 (PS-Natural-REF) and P8 (PS-Natural-TBBPA).
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to process if batch prediction is being performed. Since, 
the batch size is 100 for the DT, 30 is an appropriate size 
for the minimum bucket size.

Hierarchical model of classification
A hierarchical model for classifying the plastic samples 
was developed in the present study. In each level of 
classification, PLS-DA was applied as the classification 
technique.37

A hierarchical model of classification is a decision tool 
that maps the input sample as a function of the output 
categories. This classification occurs first on a low-level, 
from highly specific characteristics of the input samples. 
The classifications of the individual sample are combined 
systematically, and the sample is classified on a higher 
level iteratively until one output is produced.43,44 This 
hierarchical model was performed in the PLS-toolbox 
(Eigenvector Research Inc., Manson, WA, USA) for 
MATLAB (The Mathworks Inc., Natick, MA, USA).

Statistical assessment of the results
The statistical assessment of the classification perfor-
mance can also be carried out by using different classi-
fiers.45–47 In our case, the model was statistically eval-
uated by using the sensitivity (Equation 1), specificity 
(Equation 2) and class error (Equation 3) for the calibra-
tion (CAL) and the test (TEST) sets:

 TPSensitivity =
TP +FN

 (1)

 TNSpecificity =
FP + TN

 (2)

 Sensitivity + SpecificityClass error =1–
2

 (3)

In the equations, TP and TN stand for True Positive 
and True Negative, respectively, accounting for the 
pixels that have been correctly assigned as belonging 
(TP) or not belonging (TN), to a specific class. FP and 
FN stand for False Positive and False Negative, respec-
tively, accounting for the pixels that have been wrongly 
assigned as belonging (FP) or not belonging (FN), to a 
specific class.

Results and discussion
The pre-processed spectra from the different samples 
are shown in Figure 3. Differences can be seen among 

the spectra of different type of polymers, ABS (green 
spectra) and PS (red spectra). Figure 3B shows differ-
ences among the spectra with different versions of 
plastic, Black (red spectra) and Natural (green spectra). 
Figure 3C shows differences among the spectra with 
different FRs used in the plastic, HBCD (green spectra), 
TBBPA (yellow spectra), Deca-BDE (red spectra) and 
Reference (blue spectra).

Results from PLS-DA
Table 2 shows the statistical results of the classifica-
tion models based on PLS-DA built upon the spectral 
information from each pixel (i.e., classifying pixel by 
pixel, independently). The best results were obtained 
for classifying between Natural and Black versions of 
the plastics, since the classification model obtained 
a perfect percentage of classification. Good results 
were obtained for classifying between ABS and PS 
plastics, since the sensitivity and specificity were 
higher than 0.7548 for the calibration and test sets. 
For the classification of the FRs used in the plastics, 
only deca-BDE and TBBPA achieved sensitivity and 
specificity higher than 0.7548 for both calibration and 
test set. REF and HBCD classes reached sensitivity 
lower than 0.75 in both sets.48 The reason for this 
performance could be for the high similarity between 
the spectral features characterising the FRs in the 
ABS and PS plastics.49

The previous results obtained pixel by pixel can then 
be summarised to classify per sample (i.e., per disk of 
plastic). In this case, the classification of each sample 
will be based on the most representative type of plastic, 
version of plastic and FRs present among the pixels of 
each specific sample. Table 3 shows these results. The 
results showed a similar performance of this approach 
with respect to the one classifying pixel by pixel. The 
best results were reached for classifying between Black 
and Natural plastic versions, with all samples classified 
correctly. For the type of plastic, good results were 
achieved, except for one PS sample that was wrongly 
classified as ABS. For the classification among FRs, five 
samples out of sixteen were wrongly classified.

These results show the ability of linear classification 
to discriminate between types of plastic and versions of 
plastic with HSI. Nevertheless, this technique presents 
problems for discriminating among the FRs added to the 
plastic, mainly due to the similarity among the spectra of 
the different FRs.49
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Figure 3. NIRS-HSI for classification of 
A) type of polymer, PS (red samples) 
and ABS (blue samples), B) version of 
plastic, Black (red samples) and Natural 
(blue samples) and C) type of flame 
retardant, HBCD (red samples), TBBPA 
(yellow samples), Deca-BDE (green 
samples) and REF (blue samples).
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Results on decision trees
From all the classification techniques based on tree struc-
tures, DT was selected in this work as the classification 
technique, since DT is one of the simplest tree structures 
and J48 DT is one of the most efficient algorithms.41,42

Table 4 shows the statistical results of the classifica-
tion models based on DT using the pixel information one 
by one. For classifying the types of plastics, very good 
results were achieved (sensitivity and specificity higher 
than 0.97 for the calibration sets and higher than 0.96 
for the test set). In general, better results were reached 
for PS than ABS. For classifying the versions of the plas-
tics, very good results were also obtained (sensitivity and 
specificity higher 0.99 for calibration and test sets). For 
the FRs, very good results were reached for the calibra-
tion and test sets (specificity higher than 0.96, and sensi-
tivity higher than 0.94 for calibration set and higher than 
0.93 for test set). Moreover, very good results for the 
class error were achieved for all cases (lower than 0.05, 
for the calibration and test sets).

Table 5 shows the results for the classification of the 
plastics per samples, i.e. classifying disk by disk, as a 
function of type of plastic, version of plastic and FRs 
present in the samples. In this case, this approach pres-
ents perfect results for all the classification problems.

Results on hierarchical model
A hierarchical classification model was performed. Figure 
4 shows the hierarchical classification model described.

For that, based on the results obtained by the single 
PLS-DA model (Table 2 and Table 3), the best results 
were obtained when discriminating between the two 
versions of the plastics (Natural and Black). For this 
reason, the classification of the plastics by their versions 
was chosen as the first PLS-DA model (P1). Once the 
plastics had been classified as Natural or Black, the next 
step was to classify them as a function of their polymer 
(ABS and PS). This step implied two PLS-DA models, one 
of them for Natural plastics (P2) and the other for Black 
plastics (P3). At this stage, we had classified four groups 

Type of plastic Version Flame retardants
ABS PS NATURAL BLACK REF HBCD Deca-BDE TBBPA

Sensitivity (CAL) 0.943 0.878 1.000 1.000 0.539 0.709 0.822 0.833
Sensitivity (TEST) 0.941 0.876 1.000 1.000 0.527 0.660 0.760 0.801
Specificity (CAL) 0.878 0.943 1.000 1.000 0.874 0.994 0.869 0.897
Specificity (TEST) 0.876 0.941 1.000 1.000 0.851 0.987 0.860 0.884
Class error (CAL) 0.089 0.089 0.000 0.000 0.294 0.148 0.154 0.134
Class error (TEST) 0.091 0.091 0.000 0.000 0.311 0.176 0.189 0.157

Table 2. Results per pixels for the calibration (CAL) and test (TEST) set of plastics using PLS-DA as the chemometrics technique 
for classifying the type of plastic (ABS, Acrylonitrile Butadiene Styrene and PS, Polystyrene), version (Natural and Black) and 
flame retardants (REF, Reference; HBCD, 1,2,5,6,9,10-Hexabromo cyclododecane; Deca-BD, Pentabromophenyl ether; and 
TBBPA, 3,5-Tetrabromobisphenol A).

Type of plastic Version Flame retardants
ABS PS NATURAL BLACK REF HBCD Deca-BDE TBBPA

Sensitivity (CAL) 1.000 0.875 1.000 1.000 0.500 0.750 0.750 0.750
Sensitivity (TEST) 1.000 0.875 1.000 1.000 0.500 0.750 0.750 0.750
Specificity (CAL) 0.875 1.000 1.000 1.000 1.000 0.833 0.917 0.833
Specificity (TEST) 0.875 1.000 1.000 1.000 1.000 0.833 0.917 0.833
Class error (CAL) 0.063 0.063 0.000 0.000 0.250 0.208 0.167 0.208
Class error (TEST) 0.063 0.063 0.000 0.000 0.250 0.208 0.167 0.208

Table 3. Results per sample for the calibration (CAL) and test (TEST) set of plastics using PLS-DA as the chemometrics tech-
nique for classifying for the type of plastic (ABS, Acrylonitrile Butadiene Styrene and PS, Polystyrene), version (Natural and 
Black) and flame retardants (REF, Reference; HBCD, 1,2,5,6,9,10-Hexabromo cyclododecane; Deca-BDE, Pentabromophenyl 
ether; and TBBPA, 3,5-Tetrabromobisphenol A).
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Figure 4. Hierarchical model developed for 
 classifying plastic samples with FR additives.

Type of plastic Version Flame retardants
ABS PS NATURAL BLACK REF HBCD Deca-BDE TBBPA

Sensitivity (CAL) 0.976 0.977 0.997 0.998 0.943 0.945 0.965 0.959
Sensitivity (TEST) 0.962 0.964 0.992 0.993 0.937 0.938 0.958 0.951
Specificity (CAL) 0.977 0.976 0.998 0.997 0.973 0.986 0.988 0.991
Specificity (TEST) 0.964 0.962 0.993 0.992 0.968 0.980 0.983 0.985
Class error (CAL) 0.024 0.024 0.003 0.003 0.042 0.035 0.024 0.025

Table 4. Results per pixel for the calibration (CAL) and test (TEST) set of plastics by using DT as the chemometrics technique for 
classifying the type of plastic (ABS, Acrylonitrile Butadiene Styrene and PS, Polystyrene), version (Natural and Black) and flame 
retardants (REF, Reference; HBCD, 1,2,5,6,9,10-Hexabromo cyclododecane; Deca-BDE, Pentabromophenyl ether; and TBBPA, 
3,5-Tetrabromobisphenol A).

Type of plastic Version Flame retardants
ABS PS NATURAL BLACK REF HBCD Deca-BDE TBBPA

Sensitivity (CAL) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Sensitivity (TEST) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Specificity (CAL) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Specificity (TEST) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Class error (CAL) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table 5. Results per sample for the calibration (CAL) and test (TEST) set of plastics by using DT as the chemometrics technique 
for classifying for type of plastic (ABS, Acrylonitrile Butadiene Styrene and PS, Polystyrene), version (Natural and Black) and 
flame-retardants (REF, Reference; HBCD, 1,2,5,6,9,10-Hexabromo cyclododecane; Deca-BDE, Pentabromophenyl ether; and 
TBBPA, 3,5-Tetrabromobisphenol A).
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of plastics (NATURAL-ABS, NATURAL-PS, BLACK-ABS 
and BLACK-PS). Thus, the next step was to classify as a 
function of the FRs. For the group NATURAL-ABS, we 
could not build a hierarchical model able to discriminate 
among all the FRs at once. We had to insert an interme-
diate step with a model discriminating between HBCD, 
TBBPA and the remaining FRs (Deca-BDE and REF) (P4). 
Then, these last samples were classified based on the 
FRs content, in a following ad hoc step (P8). A similar 
approach was adopted for the group NATURAL-PS 
where the same problems as in the previous case were 
encountered. As previously explained, the classification 
was divided into two subsequent steps, the first one 
discriminating among HBCD, TBBPA and the remaining 
FRs (Deca-BDE and REF) (P5), and the second dividing 
these remaining samples among Deca-BDE and REF 
(P9). In the case of BLACK-ABS samples, the proposed 
model discriminated all samples as a function of the 
FRs at once (P6). Finally, for the BLACK-PS samples, 
our PLS-DA model discriminated the plastics at first in 
two sub-groups as a function of FRs contained (P7): 
one of them with the samples containing HBCD and 
Deca-BDE as FR, and the other one with the samples 
containing TBBPA and REF. In both cases, a subsequent 
PLS-DA model was carried out, to discriminate between 
HBCD and Deca-BDE (P10) and between TBBPA and 
REF (P11).

Table 6 shows the statistical results of our hierarchical 
classification model applied to the data pixel by pixel, and 
Table 7 shows the same approach applied per sample, i.e. 
classifying disk by disk.

Very good results (Sensitivity > 0.750)48 was obtained 
for the classification of the plastics according to their 
version (BLACK and NATURAL) (P1) in both cases (Table 
6 and Table 7). The classification as a function of the 
polymer (ABS and PS) (P2 and P3) led to good classifica-
tion results with Sensitivity higher than 0.750,48 both 
for the classification by pixel (Table 6) and by sample 
(Table 7).

For classifying the four classes (BLACK-ABS, BLACK-PS, 
NATURAL-ABS and NATURAL-PS) according to the 
specific FRs (P4, P5, P6, P7, P8, P9, P10 and P11), better 
results were achieved for the Natural plastics than for 
the Black plastics. For the Natural versions of the plas-
tics (P4, P5, P8 and P9), good results of classification 
were achieved (Sensitivity > 0.900). However, for the 
Black versions of the plastics (P6, P7, P10 and P11), the 
results were not very satisfactory (Sensitivity > 0.500). 

This fact could be due to the high noise present in 
the spectra of the Black plastics where light scattering 
phenomena occur. This is also true for some of the 
Natural plastics that appear black due to particular kind 
of FR used, even if no carbon black was used for their 
preparation.50,51

Comparing the different models developed in this study, 
the best results were obtained for the model based on DT 
(Table 4 and Table 5) following by the results of the hier-
archical classification model (Table 6 and Table 7) and the 
worst results were obtained for PLS (Table 2 and Table 3). 
These results are in reasonable agreement with previous 
studies26,29,30 that showed the best classification results 
for tree-structure-based models and the accuracy of clas-
sification techniques based on tree structures.

Other studies aimed at classifying plastics52–54 showed 
similar performances to the PLS-DA and hierarchical clas-
sification model results, therefore inferior to the ones 
obtained here with the DT approach.

Application on real samples
Once the best classification model was determined, this 
was applied to the real samples, namely, the different 
waste plastics of different common brands (Figure 2A), in 
order to evaluate the polymer used for these plastics, and 
whether they contained carbon black and FRs (Figure 
2B). This is an important step, since this model would 
be used in recycling processes for the waste recycling 
and plastic industries that will rely on its accuracy for 
economic benefits.

At first, the classification model developed in this study 
was applied on the real samples in order to discrimi-
nate between the polymers of the plastics (ABS and PS). 
Figure 5A illustrates this classification.

The DT model classified the real samples of plastics into 
ABS samples (blue samples) and PS samples (red samples) 
correctly. The DT model, classified the different samples 
and applied the classification model per whole sample.

After that, the DT classification model was applied on 
the real samples to discriminate between the version of 
the plastics (BLACK and NATURAL), i.e. for classifying 
the plastics as a function of whether the plastics contain 
carbon black. Figure 5B shows this classification.

In Figure 5B, we can see how the DT model classified 
the real samples of plastics among Black samples (red) 
and Natural samples (blue). In addition, in this case, the 
DT model classified the different samples as a whole, and 
not pixel by pixel, and the results were 100 % correct.
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Finally, Figure 5C illustrates the DT classification model 
applied to the real samples to discriminate between the 
specific FRs used for doping the plastic (HBCD, TBBPA, 
Deca-BDE and REF).

For this task, again, the DT model analysed the real 
samples of plastics as whole, not pixel by pixel, and it clas-
sified them among REF samples (blue samples), TBBPA 

samples (yellow samples), Deca-BDE (green samples) 
and HBCD samples (red samples). In both cases, we can 
observe that the FRs used by the plastic industries are 
in accord with the fire safety standard required. Once 
again, the DT model classified the different samples 
100 % correctly as a function of the FRs for doping the 
plastics.

Classes
Sensitivity 

(CAL)
Sensitivity 

(TEST)
Specificity 

(CAL)
Specificity 

(TEST)
Class error 

(CAL)
Class error 

(TEST)
P1 Natural and Black 1.000 1.000 1.000 1.000 0.000 0.000

P2
Natural → ABS 
and PS

1.000 1.000 1.000 1.000 0.000 0.000

P3
Black → ABS and 
PS

0.923 0.903 0.923 0.903 0.077 0.097

P4

Natural → 
ABS → HBCD, 
TBBPA and 
DecaBDE+REF

0.951 0.946 0.973 0.972 0.038 0.041

P5

Natural → 
PS → HBCD, 
TBBPA and 
DecaBDE+REF

0.929 0.916 0.953 0.948 0.059 0.068

P6

Black → ABS → 
HBCD, TBBPA, 
DecaBDE and 
REF

0.837 0.789 0.895 0.833 0.134 0.189

P7

Black → PS 
→ HBCD + 
DecaBDE and 
TBBPA + REF

0.924 0.916 0.924 0.916 0.076 0.084

P8
Natural → ABS 
→ DecaBDE and 
REF

1.000 0.994 1.000 0.994 0.000 0.006

P9
Natural → PS → 
DecaBDE and 
REF

0.979 0.972 0.979 0.972 0.021 0.028

P10
Black → PS 
→ HBCD and 
DecaBDE

0.892 0.882 0.892 0.882 0.108 0.118

P11
Black → PS → 
TBBPA and REF

0.976 0.976 0.976 0.976 0.024 0.024

Table 6. Results per pixel for the calibration (CAL) and test (TEST) sets of plastics using hierarchical classification model as 
the chemometrics technique for classifying for the type of plastic (ABS, Acrylonitrile Butadiene Styrene and PS, Polystyrene), 
version (Natural and Black) and flame retardants (REF, Reference; HBCD, 1,2,5,6,9,10-Hexabromo cyclododecane; Deca-BDE, 
Pentabromophenyl ether; and TBBPA, 3,5-Tetrabromobisphenol A).
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Conclusions
Three classification models were developed in this 
study based on the combination of chemometrics 
techniques and HSI. All, these methods were suit-
able for classifying the plastic samples, but the best 
results were achieved with DT as the classification 
technique.

The results indicate that the application of DT with HSI 
could be used for sorting plastic samples with respect 
to their type of plastic (polymer), version of plastics 
(colour) and the FRs used for doping the plastic, with a 
high degree of accuracy and in an automated way. These 
findings are highly valuable for the plastic industries and 
for the waste recycling industries. These results are even 

Classes
Sensitivity 

(CAL)
Sensitivity 

(TEST)
Specificity 

(CAL)
Specificity 

(TEST)
Class error 

(CAL)
Class error 

(TEST)
P1 Natural and Black 1.000 1.000 1.000 1.000 0.000 0.000

P2
Natural → ABS 
and PS

1.000 1.000 1.000 1.000 0.000 0.000

P3
Black → ABS and 
PS

0.875 0.750 0.875 0.750 0.125 0.250

P4

Natural → 
ABS → HBCD, 
TBBPA and 
DecaBDE+REF

1.000 0.750 1.000 0.750 0.000 0.250

P5

Natural → 
PS → HBCD, 
TBBPA and 
DecaBDE+REF

1.000 0.750 1.000 0.750 0.000 0.250

P6

Black → ABS → 
HBCD, TBBPA, 
DecaBDE and 
REF

0.750 0.500 0.750 0.500 0.250 0.500

P7

Black → PS 
→ HBCD + 
DecaBDE and 
TBBPA + REF

0.500 0.250 0.500 0.250 0.500 0.750

P8
Natural → ABS 
→ DecaBDE and 
REF

1.000 0.500 1.000 1.000 0.000 0.000

P9
Natural → PS → 
DecaBDE and 
REF

1.000 1.000 1.000 1.000 0.000 0.000

P10
Black → PS 
→ HBCD and 
DecaBDE

0.500 0.500 0.500 0.500 0.500 0.500

P11
Black → PS → 
TBBPA and REF

0.500 0.500 0.500 0.500 0.500 0.500

Table 7. Results per sample for the calibration (CAL) and test (TEST) set of plastics using hierarchical classification model as the 
chemometrics technique for classifying the type of plastic (ABS, Acrylonitrile Butadiene Styrene and PS, Polystyrene), version 
(Natural and Black) and flame retardants (REF, Reference; HBCD, 1,2,5,6,9,10-Hexabromo cyclododecane; Deca-BDE, Penta-
bromophenyl ether; and TBBPA, 3,5-Tetrabromobisphenol A).
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Figure 5. NIRS-HSI of the 
real samples of plastics and 
their classification as a func-
tion of: A) Type of polymer, 
PS (red samples) and ABS 
(blue samples). B) Versions of 
plastic, Black (red samples) 
and Natural (blue samples). 
C) Type of flame-retardant, 
HBCD (red samples), TBBPA 
(yellow samples), Deca-BDE 
(green samples) and REF (blue 
samples); by using a DT clas-
sification model for the whole 
sample.
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more remarkable, considering that the applications of the 
models on real samples, led to correct classification of 
100 %, notwithstanding the differences in texture, shape 
and orientation of these last samples.

Therefore, a new method, fast, robust and reliable to 
identify and distinguish the polymers and the contained 
substances could be of high value to the plastic and 
waste recycling industries, saving both time and money.
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