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Abstract. In this work, we establish the existence of periodic orbits for a
seasonal saturated epidemiological model of a population consisting of sus-
ceptible, infectious and quarantined individuals (an SIQS model). To do so,
we use Leray-Schauder degree theory. We also provide numerical examples
of these solutions.
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Existencia de soluciones periódicas para modelos

epidemiológicos estacionales con cuarentena

Resumen. En este trabajo establecemos la existencia de órbitas periódicas
para un modelo epidemiológico estacional con cuarentena y tasa de incidencia
saturada. Para realizar lo anterior, usamos un esquema variacional basado en
la teoría de grado de Leray-Schauder. También presentamos algunos ejemplos
numéricos para ilustrar nuestros resultados analíticos.
Palabras clave: Grado de Leray-Schauder, modelos SIQS, órbitas periódicas,
número reproductivo básico.

1. Introduction

In epidemiological models it is of importance the consideration of possible ways of con-
trolling infectious diseases, such as vaccination or quarantine. Hence the addition of
a compartment consisting of quarantined individuals gives a way of exploring possible
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mitigation effects for controlling or eliminating the disease. We consider a disease model
in a population in the following way. At any given time, t, the total population N is
divided into three compartments with N(t) = S(t)+I(t)+Q(t) where S is the number of
individuals in the susceptible class, I is the number of individuals who are infectious but
not quarantined, and Q is the number of individuals who are quarantined. Based in the
autonomous bilinear model with quarantine of [5], we formulate a quarantined models
with seasonally-dependent saturated incidence rate given by

S′ = Λ− β(t)IS/(1 + k1I
n1 + k2I

n2 + k3S
m1In3)− dS + γI + ǫQ,

I ′ = β(t)IS/(1 + k1I
n1 + k2I

n2 + k3S
m1In3)− (γ + δ + d+ α)I,

Q′ = δI − (ǫ + d+ α)Q, (1)

where parameters Λ, δ, d and α are positive constants; γ, ki, ǫ are non-negative constants,
and ni,m1 ≥ 1, i = 1, 2, 3. The constant Λ is the recruitment rate of susceptibles
corresponding to births and immigration, d is the per capita natural mortality rate, δ is
the rate constant for individuals leaving the infective compartment I for the quarantine
compartment Q, α is the disease-related death rate constant in compartments I and
Q, and γ and ǫ are the rates at which individuals recover and return to susceptible
compartment S from compartments I and Q, respectively. In short, we call these models
as SIQS models.

The case of a bilinear autonomous SIQS model with β-constant was considered in [5],
where thresholds, equilibria, and their stability are studied. In [10] a bilinear non-
autonomous epidemic model with quarantine was studied and some conditions for thresh-
olds and eradication of the infectious disease were obtained. In this work, we assume
that the interactions between susceptible and infected individuals are modeled by the
incidence function β(t)IS/(1 + k1I

n1 + k2I
n2 + k3S

m1In3), where β(t) is a non constant
non-negative continuous T -periodic function. Since several time-dependent factors are
very important for the spread of diseases, with the use of a periodic incidence function
we can take into account the variability of diseases according to climate seasons, school
calendars, etc. Besides with the saturated term 1+k1I

n1+k2I
n2+k3S

m1In3 , we measure
the inhibition effect from the behavioral change of the susceptible or infected individu-
als when the number of infected increases. In the case autonomous (with β-constant),
several different saturated incidence rates have been proposed by authors, for example:
Capasso and Serio [2] introduced a saturated incidence function βSI

(1+kI) in an epidemic

model when they studied the cholera epidemic in 1973. Xiao and Ruan [12] proposed an
SIRS epidemic model with non-monotonic incidence function βSI

(1+kI2) . A general satura-

tion incidence function βIlS
(1+kIn) was proposed by Liu and coworkers [8], [9] and used by

a number of authors. A incidence function with form βIS
(1+k1I+k2I2) was studied in [6]. In

[1] was introduced a model with incidence function βIS
(1+k1I+k2SI) . So with our incidence

rate can analyze similar situations, but in the non-autonomous case.

In this paper we are interested in the existence of periodic orbits for system (1). To
do so, we shall use the Leray-Schauder degree theory, we reformulate the problem in a
functional setting, in our development we generalize the Katriel’s frame [7] to our context
of quarantined system with saturated incidence rate making appropriate adjustments.
In particular, we must adapt its scheme to three dimensional systems, use a Hurwitz
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Existence of periodic solutions for seasonal epidemic models with quarantine 39

condition to control the roots of a characteristic polynomial, also we need use a second
homotopy to deal with the term of saturation. In the study of epidemiological models
the analysis of periodic solutions is seen as an important goal as this periodicity reveals
the recurrence of an epidemic in a population. Hence, determining existence of such
solutions under different parameter configurations and incidence functions is crucial.

2. Existence of periodic orbits

The total population size N is variable with N ′ = Λ− dN − α(I +Q). Following [5] we
can see that, in the absence of disease, the population size N approaches the carrying
capacity Λ/d. The differential equation for N implies that solutions of (1) starting in
the positive orthant R3

+ either approach, enter, or remain in the subset of R3 defined by

Σ := {(S, I,Q) | S ≥ 0, I ≥ 0, Q ≥ 0, S + I +Q ≤ Λ/d}.

Thus it suffices to consider solutions in the region Σ.

The system (1) always has the disease-free equilibrium (S0, I0, Q0) = (Λ/d, 0, 0). The
basic reproductive number R0 has been defined as the average number of secondary
infections that occur when one infective is introduced into a completely susceptible host
population. When β is constant, it is easily computed by the van den Driessche and
Watmough approach [11]: for system (1) we have that

R0 :=
1

γ + δ + d+ α

∂f

∂I
(S0, I0, Q0);

a direct calculation yields

R0 =
β(Λ/d)

γ + δ + d+ α
.

Motivated by this, we consider R0 for system (1) as follows:

R0 :=
(Λ/d)β

γ + δ + d+ α
, where β :=

1

T

∫ T

0

β(t)dt.

We write

β(t) = β + β0(t), where

∫ T

0

β0(t)dt = 0.

The proof of the existence of periodic orbits for systems of type (1) will be done in two
steps. First, we consider the bilinear case ki = 0,

S′ = Λ− β(t)IS − dS + γI + ǫQ,

I ′ = β(t)IS − (γ + δ + d+ α)I,

Q′ = δI − (ǫ+ d+ α)Q, (2)

and prove the existence of solutions on this system. Then, we construct an homotopy
between (2) and (1).
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For λ ∈ [0, 1] we define the homotopy

S′ = Λ− βλIS − dS + γI + ǫQ,

I ′ = βλIS − (γ + δ + d+ α)I,

Q′ = δI − (ǫ+ d+ α)Q, (3)

where βλ := β + λβ0(t).

To show the existence of a positive periodic solution, we shall use the Leray-Schauder
degree theory. To do so, we need to reformulate our system as a functional problem
defined on an adequate Banach space where periodic solutions correspond to the zeroes
of convenient family of operators. Then, we need to find an open bounded subset on the
Banach space such that the family of operators does not support zeroes on the boundary
of such open set. After that, we can proceed to determine the Leray-Schauder degree
and, if applicable, establish the existence of periodic solutions. In our methods, we are
following the approach used in [7], but we establish suitable modifications for the non-
linear incidence case, in particular, we need to use a double homotopy, in the first we
work with the linear incidence case, so, we must adapt its scheme to three dimensional
systems unlike [7] where it was possible to reduce the problem to a two-dimensional
system; after that, for to estimate the Leray-Schauder degree we use a Hurwitz condition
to control the roots of a characteristic polynomial; later in our context, we shall use a
second homotopy to deal with the saturation term.

We start the proof by introducing for l = 0, 1 the Banach spaces

Cl
T := {(S, I,Q) : S, I,Q ∈ Cl(R,R), S(t+ T ) = S(t), I(t+ T ) = I(t), Q(t+ T ) = Q(t)}.

Let L : C1
T → C0

T and Nλ : C0
T → C0

T be the operators given by

L(S, I,Q) := (S′ + dS, I ′ + (γ + δ + d+ α)I, Q′ + (ǫ + d+ α)Q), (4)

and
Nλ(S, I,Q) := (Λ + γI + ǫQ− βλIS, βλIS, δI).

Since L is invertible we define

Fλ(S, I,Q) := (S, I,Q)− L−1 ◦Nλ(S, I,Q). (5)

Since C1
T is compactly embedded in C0

T , we can think of L−1 as going from C0
T to C0

T ;
therefore, L−1 ◦ Nλ : C0

T → C0
T is a compact operator. In a similar fashion, we can

consider Fλ : C0
T → C0

T . Thus, (5) is a functional reformulation of problem (3); in
particular, periodic solutions of (3) correspond to zeroes of Fλ.

We consider the open sets

D := {(S, I,Q) ∈ C0
T : S > 0, I > 0, Q > 0, S + I +Q < Λ/d}

and
G := {(S, I,Q) ∈ D : min

[0,T ]
S(t) < r(Λ/d)},
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Existence of periodic solutions for seasonal epidemic models with quarantine 41

for a fixed r.

Recall that the existence of a solution for F1 in G via Leray-Schauder degree is guaranteed
if deg(F0, G) 6= 0 and Fλ is an admissible homotopy, i.e., 0 /∈ Fλ(∂G), ∀λ ∈ [0, 1]. The
next result says that Fλ is admissible.

Lemma 2.1. If R0 > 1 and r is such that 1
R0

< r < 1, then for any λ ∈ [0, 1] there are
no solutions (S, I,Q) of (3) on ∂G.

Proof. First note that (S0, I0, Q0) is the only solution of (3) on ∂D for any λ ∈ [0, 1]. If
(S, I,Q) ∈ ∂G, then (S, I,Q) /∈ ∂D, so

(S, I,Q) ∈ D and S(t) ≥ r(Λ/d), ∀t. (6)

By integrating the second equation in (3) on the interval [0, T ], we have that

∫ T

0

I ′

I
dt+ (γ + δ + d+ α)T =

∫ T

0

βλSdt,

but
∫ T

0
I′

I
dt = 0 because I is T -periodic; using the inequality (6) one gets

γ + δ + d+ α =
1

T

∫ T

0

βλSdt ≥ r(Λ/d)β.

Now, from our hypothesis,

γ + δ + d+ α ≥ r(Λ/d)β > β(Λ/d)
1

R0
= γ + δ + d+ α, (7)

which is a contradiction. �XXX

By Theorem 2 in [5], when λ = 0, the system (3) has exactly two periodic orbits in Σ
being these: S0 = Λ/d, I0 = 0, Q0 = 0 and

S1 =
Λ/d

R0
, I1 =

Λ(1− 1
R0

)

(d+ α)[1 + δ
ǫ+d+α

]
, Q1 =

δI1
ǫ+ d+ α

,

which in fact are critical points.

We recall that a polynomial is Hurwitz if its eigenvalues have negative real parts. It is well
known that if the characteristic polynomial of a linear differential equation is Hurwitz,
then any solution converges to the origin, therefore the unique possible periodic solution
that a linear system with Hurwitz characteristic polynomial can have is the origin. The
following lemma, which is a direct consequence of the Routh-Hurwitz stability criterion,
gives us a characterization so that a cubic polynomial is Hurwitz.

Lemma 2.2. The polynomial p(z) = a0z
3 + a1z

2 + a2z + a3 is Hurwitz if and only if ai
have the same sign and a1a2 − a3a0 > 0.

The following result determine the degree of F0 on G.
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Proposition 2.3. For the open set G, we have that deg(F0, G) 6= 0.

Proof. Note that if R0 > 1, then (S1, I1, Q1) is the unique periodic solution of
F0(S, I,Q) = 0 in G. So, to establish the degree deg(F0, G) 6= 0 we need only to
prove that DF0(S1, I1, Q1) is invertible. We have that F0 is a compact perturbation of
the identity, so by the Fredholm alternative it is enough to prove that

Ker(DF0(S1, I1, Q1)) = {0}. (8)

Consider (U, V,W ) ∈ C0
T so that (U, V,W ) ∈ Ker(DF0(S1, I1, Q1)); by the definition of

F0, we get that L(U, V,W ) = DN0(S1, I1, Q1)(U, V,W ), since

N0(S, I,Q) = (Λ + γI + ǫQ− β̄IS, β̄IS, δI).

Then, we obtain

DN0(S1, I1, Q1)(U, V,W ) = (γV + ǫW − β̄(S1V + I1U), β̄(S1V + I1U), δV ).

Using the definition of

L(U, V,W ) = (U ′ + dU, V ′ + (γ + δ + d+ α)V,W ′ + (ǫ + d+ α)W ),

we get

(U ′, V ′,W ′) = (−dU + γV + ǫW − β̄(S1V + I1U),−(γ + δ + d+ α)V + β̄(S1V + I1U),

−(ǫ+ d+ α)W + δV ).

Rewriting and substituting S1, we have





U ′

V ′

W ′



 =





−(d+ β̄I1) −(δ + d+ α) ǫ
β̄I1 0 0
0 δ −(ǫ+ d+ α)









U
V
W



 . (9)

Thus any possible periodic element (U, V,W ) ∈ Ker(DF0(S1, I1, Q1)) is in fact a solution
of the linear system (9). Therefore it would be enough for us to see that the characteristic
polynomial of (9) is Hurwitz.

Denoting by A = (aij) the above matrix, we have that its characteristic polynomial is
given by

p(λ) = −λ3 + tr(A)λ2 −mλ+ det(A), (10)

where m := M11 + M22 + M33, the sum of the minors for the elements of the main
diagonal. We have

tr(A) = −(d+ β̄I1 + ǫ+ d+ α), (11)

det(A) = −β̄I1

∣

∣

∣

∣

−(δ + d+ α) ǫ
δ −(ǫ+ d+ α)

∣

∣

∣

∣

= −β̄I1[(δ+d+α)(ǫ+d+α)− δǫ] (12)

= −β̄I1(d+ α)(δ + ǫ+ d+ α)

[Revista Integración, temas de matemáticas
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and

m =

∣

∣

∣

∣

0 0
δ −(ǫ+ d+ α)

∣

∣

∣

∣

+

∣

∣

∣

∣

−(d+ β̄I1) ǫ
0 −(ǫ+ d+ α)

∣

∣

∣

∣

+

∣

∣

∣

∣

−(d+ β̄I1) −(δ + d+ α)
β̄I1 0

∣

∣

∣

∣

;

hence,

m = (d+β̄I1)(ǫ+d+α)+β̄I1(δ+d+α) = β̄I1(δ+ǫ+d+α)+β̄I1(d+α)+d(ǫ+d+α). (13)

Note that tr(A),−m and det(A) are negative, thus all coefficients of the characteristic
polynomial are negative; therefore, to apply Lemma 2.2 we need to verify that

tr(A)(−m) − det(A)(−1) > 0, i.e., tr(A)(−m) > − det(A). (14)

So,

tr(A)(−m) = [d+ β̄I1 + ǫ+(d+α)][β̄I1(δ+ ǫ+ d+α)+ β̄I1(d+α) + d(ǫ+ d+α)] (15)

= β̄I1(d+ α)(δ + ǫ+ d+ α) + (d+ β̄I1 + ǫ)[β̄I1(δ + ǫ+ d+ α)]

+[d+ β̄I1 + ǫ + (d+ α)][β̄I1(d+ α) + d(ǫ+ d+ α)]

= − det(A)+(d+β̄I1+ǫ)[β̄I1(δ+ǫ+d+α)]+[d+β̄I1+ǫ+(d+α)][β̄I1(d+α)+d(ǫ+d+α)].

Thus the inequality (14) is valid, and by Lemma 2.2 the characteristic polynomial of
system (9) is Hurwitz. So the periodic element (U, V,W ) is solution of (9) and as any
solution of this system converges to the origin by having a characteristic Hurwitz poly-
nomial, then the only option is that (U, V,W ) = (0, 0, 0), which proves the result. �XXX

Thus we have established our first result

Theorem 2.4. If R0 > 1, then the system (2) admits a non-trivial periodic solution.

Proof. Using the invariance of the Leray-Schauder degree under homotopy by Lemma
2.1 and Proposition 2.3 we obtain that deg(F1, G) 6= 0, then the system (2) admits a
non-trivial periodic solution, which proves Theorem 2.4. �XXX

2.1. Saturated case

We now establish the existence of periodic solutions in the case of saturated system (1),
when k > 0. Assume that R0 > 1 + k1(

Λ
d
)n1 + k2(

Λ
d
)n2 + k3(

Λ
d
)m1+n3 ; then, by taking

(and for the rest of the work) in Theorem 2.4

r :=
1

1 + k1(
Λ
d
)n1 + k2(

Λ
d
)n2 + k3(

Λ
d
)m1+n3

,

we obtain that deg(F1, G) 6= 0.

For τ ∈ [0, 1] we define the homotopy

S′ = Λ− β(t)IS/(1 + τB)− dS + γI + ǫQ,

I ′ = β(t)IS/(1 + τB)− (γ + δ + d+ α)I,

Q′ = δI − (ǫ + d+ α)Q, (16)
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where B := k1I
n1 + k2I

n2 + k3S
m1In3 . We consider the operator Mτ : C0

T → C0
T given

by
Mτ (S, I,Q) := (Λ + γI + ǫQ− β(t)IS/(1 + τB), β(t)IS/(1 + τB), δI).

Taking L as (4), we define

Hτ (S, I,Q) := (S, I,Q)− L−1 ◦Mτ (S, I,Q). (17)

Thus, (17) is a functional reformulation of problem (1); in particular, periodic solutions
of (1) correspond to zeroes of Hτ . Note that H0 = F1, therefore deg(H0, G) 6= 0. Recall
that the existence of a solution for H1 in G is guaranteed via Leray-Schauder degree if
deg(H0, G) 6= 0 and Hτ is an admissible homotopy, i.e., 0 /∈ Hτ (∂G), ∀τ ∈ [0, 1]. So we
need only establish that Hτ is an admissible homotopy.

Lemma 2.5. If R0 > 1 + k1(
Λ
d
)n1 + k2(

Λ
d
)n2 + k3(

Λ
d
)m1+n3 , then for any τ ∈ [0, 1] there

are no solutions (S, I,Q) of (16) on ∂G.

Proof. Note that if (S, I,Q) ∈ ∂G, then (S, I,Q) /∈ ∂D; therefore,

(S, I,Q) ∈ D and S(t) ≥ r(Λ/d), ∀t; (18)

recall that r = 1
1+k1(

Λ
d
)n1+k2(

Λ
d
)n2+k3(

Λ
d
)m1+n3

.

Multiplying by (1 + τB)/I and integrating the second equation in (16) on the interval
[0, T ], we have that

(1 + k1(
Λ

d
)n1 + k2(

Λ

d
)n2 + k3(

Λ

d
)m1+n3)(γ + δ + d+ α)T ≥

∫ T

0

βSdt.

Now, from our hypothesis,

γ+δ+d+α ≥
(Λ/d)β

(1 + k1(
Λ
d
)n1 + k2(

Λ
d
)n2 + k3(

Λ
d
)m1+n3)

> β(Λ/d)
1

R0
= γ+δ+d+α, (19)

which is a contradiction. Hence Hτ is an admissible homotopy. �XXX

By combining our observations we get:

Theorem 2.6. If R0 > 1 + k1(
Λ
d
)n1 + k2(

Λ
d
)n2 + k3(

Λ
d
)m1+n3 , then there is at least one

T -periodic orbit of (1) whose components are positive.

2.2. Examples

We now provide numerical evidence of the existence of periodic solutions.

Example 2.7.

S′ = Λ− β(t)IS − dS + γI + ǫQ,

I ′ = β(t)IS − (γ + δ + d+ α)I,

Q′ = δI − (ǫ+ d+ α)Q, (20)
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where parameters are determined by Λ = 22, d = 0.0001, γ = 15, δ = 0.095,
ǫ = 0.28999 and α = 0.026. The incidence function is determined by
β(t) = 0.15 (1 + 0.92 cos(2πt)).
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Figure 1. (A) SIQS model. The initial conditions are S0 = 1000, I0 = 100 and Q0 = 10.

Example 2.8.

S′ = Λ− β(t)IS/(1 + kI)− dS + γI + ǫQ,

I ′ = β(t)IS/(1 + kI)− (γ + δ + d+ α)I,

Q′ = δI − (ǫ + d+ α)Q, (21)

where parameters are determined by Λ = 22, d = 0.001, γ = 0.8, δ = 0.2,
ǫ = 0.19, k = 0.8 and α = 0.029. The incidence function is determined by
β(t) = 0.8 (1 + 0.92 cos(2πt)).
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Figure 2. (B) The initial conditions are S0 = 1000, I0 = 100 and Q0 = 20.

Example 2.9.

S′ = Λ− β(t)IS/(1 + kI3)− dS + γI + ǫQ,

I ′ = β(t)IS/(1 + kI3)− (γ + δ + d+ α)I,

Q′ = δI − (ǫ+ d+ α)Q, (22)
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where parameters are determined by Λ = 1.5, d = 0.0001, γ = 0.2, δ = 0.199,
ǫ = 0.19, k = 0.0009 and α = 0.005. The incidence function is determined by
β(t) = 0.5 (1 + 2 cos(2πt)).
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Figure 3. (B) The initial conditions are S0 = 1000, I0 = 200 and Q0 = 200.

3. Conclusions

Public health policies have consequences in the behaviour of infectious diseases; in par-
ticular, the strategy of quarantine. Feng and Thieme pointed out in [3], [4], that the
quarantine process could contribute to sustained oscillations in diseases by combining
with other factors such as seasonal variation in the contact rates, stochastic effects, and
density dependent demographics.

In our work, we establish analytically the occurrence of sustained oscillations in the
some epidemiological model with the quarantine and periodic contact rate. We exhibit
numerical evidence of the existence of such periodic solutions by means of numerical
simulations of convenient SIQS epidemiological models.
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