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matemáticas

Resumen. En este artículo se presentan apartes de la discusión sobre el pro-
blema de existencia de funciones de cada una de las clases de Baire. Primero
se plantea el problema histórico, introduciendo cuatro categorías existenciales
y luego se muestra la posición del matemático ruso Nikolái Luzin en términos
de la teoría de la tematización.
Palabras clave: Conjetura de Baire, funciones discontinuas, ontología mate-
mática, existencia en matemáticas.

1. Introduction

The existence of mathematical objects is a controversial question in the philosophy of
mathematics. For this issue, the historical problem posed by René Baire [2] in 1899 about
the existence of functions in each one of his classes of discontinuous functions is taken as
the initial reference. In 1905, Henri Lebesgue formulated in [19] a proof of the existence of
functions in each one of Baire’ s classes. In 1914, the Russian mathematicians Souslin and

0∗E-mail: ancbel@yahoo.es

Received: 31 October 2016, Accepted: 31 May 2017.
To cite this article: A. Chaves, L.C. Recalde, Nikolai Luzin and the problem of existence in mathematics,
Rev. Integr. Temas Mat. 35 (2017), No. 1, 71–82.

71



72 A. Chaves & L.C. Recalde

Luzin noticed an error in Lebesgue’ s proof of Baire’ s conjecture. From 1914 to 1927,
Luzin approached the problem of existence of Baire’ s classes in a direct way; in this
period he produced five papers on this topic.1 Luzin synthesized his investigations in Les

ensembles analytiques et leurs applications [25], whose preface is written by Lebesgue. In
this work, Luzin not only established important technical results but also made clear the
philosophical position that supports them. For Luzin, establishing the type of existence
that will be placed under consideration is urgent; in this sense he identifies four categories
of existence of mathematical objects [25, p. 55]:

1. Baire’ s constructive existence: it is present when objects are described through
processes in which only specific ordinals of the first and second classes2 of Cantorian
set theory are used.

2. Lebesgue’ s constructive existence: objects are described through processes that
use the totality of ordinals of the second class.

3. Cantor’ s existence: objects are determined from a generalization of the diagonal
method through which Cantor proved that R is nondenumerable.

4. Zermelo’ s existence: objects in which a choice function intervenes are adopted.
This implies the existence of sets in which not even one of their elements can be
exhibited in an individual manner.

This paper pursues two objectives. The first is to show the way in which Luzin introduced
the first three existential categories in his existence proof for Baire’ s classes. The second
objective aims at the analysis of Luzin’ s philosophical questions and his stance regarding
some modern philosophical trends; in the final section, a proposal is outlined that allows
holding the fourth existential category, Zermelo’ s existence, in relation to Luzin’ s set-
theoretic developments subsumed in Cavaillès and Gardies’ theory of thematization.

2. Luzin and Baire’ s conjecture

Historically, Baire’ s investigations revealed the need to establish the discontinuum as a
mathematical object.3

In his doctoral dissertation of 1899 (see [2, p. 116–118]), Baire introduced, in a purely
nominal manner, a function hierarchy that serves as evidence that the universe of discon-
tinuous functions is much larger than that of continuous ones. The fundamental problem
posed by this hierarchy is to prove that each one of its levels is nonempty.

1Luzin approaches the problem of the existence of Baire’ s classes in [20], [21] and [22]. In [23] and
[24] he establishes the conceptual bases of descriptive set theory.

2In modern terms, Cantor established the ordinals

0, 1, 2, . . . , n, . . . , ω, ω + 1, . . . , ω · 2, . . . , ωω , . . . ,Ω, . . .

Class I corresponds to the set of finite ordinals: {0, 1, 2, . . . , n, . . .}.
Class II corresponds to the set of contable ordinals: {ω, ω + 1, . . . , ω · 2, . . . , ωω , . . .}.
Class III corresponds to the set of ordinals with cardinal following to ordinals of class II: {Ω,Ω+1, . . . ,Ω ·
2, . . . ,Ωw, . . .}.

3The French tradition of the 19th century was dedicated to the exclusive study of continuous functions,
or piecewise continuous functions, considering that highly discontinuous functions would lack theoretical
interest. In [28] this is analized.
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Assuming that F = {f |f : [0, 1] −→ R}, Baire defines his classification in the following
way:

C0 = {f ∈ F |f is continuous }.

C1 = {f ∈ F |f /∈ C0 and there is {fn} ⊂ C0 such that fn → f}.4

C2 = {f ∈ F |f /∈ C0 ∪ C1 and there is {fn} ⊂ C0 ∪ C1 such that fn → f}.

...

Cn = {f ∈ F |f /∈
n−1
⋃

k=0

Ck and there is {fn} ⊂
n−1
⋃

k=0

Ck such that fn → f}.

...

Cω = {f ∈ F |f /∈
⋃

k∈N

Ck and there is {fn} ⊂
⋃

k∈N

Ck such that fn → f}.

Cω+1 = {f ∈ F |f /∈
⋃

k∈N

Ck ∪ Cω and there is {fn} ⊂
⋃

k∈N

Ck ∪ Cω such that fn → f}.

...

In the same way Cω+2,Cω+3...C2ω ,... are defined.

It is not difficult to show that when a sequence {fλ} that converges to f ∈ F is explicitly
given, so that fλ belongs to some Cα, with α ∈ Class I ∪ Class II, then f ∈ Cα for an
ordinal α of class I or II.

Baire conjectured that it was possible to prove that each one of these classes was
nonempty; this is what we will, from now on, call Baire’ s conjecture or simply the

conjecture.

In [2, chapter 2], Baire characterized the functions of C1 through the following result:
T1: Let f : [0, 1] −→ R be a discontinuous function. f ∈ C1 if and only if it is pointwise
discontinuous in respect to all perfect sets5.

For C2, Baire established the following conjecture:

T2: Let it f : [0, 1] −→ R /∈ C0 ∪ C1. f ∈ C2 if and only if it is pointwise discontinuous
about each perfect set, subtracting at most a set of first category from each perfect set.

Baire proved T1, while for T2 he only managed to prove the necessary-condition part,
conjecturing the sufficient condition; he even thought that this result could be generalized
for higher classes.

Baire then established constructive processes for the first four classes. Furthermore, for
each of these classes, he exhibited concrete examples. In these constructive processes,
particularly in the theorem of characterization of these four classes, is where the so-
called Baire’ s constructive existence is present. This existential category was taken up
by Luzin, when collecting and using Baire’ s results in [25].

4fn → f denotes pointwise convergence.
5f : I ⊂ R → R is pointwise discontinuous, if for all (a, b) ⊂ I, there is c ∈ (a, b) such that f is

continuous at c. So, if f is continuous then f is pointwise discontinuous. On the other hand, P ⊂ R is
perfect, if P = P ′, where P ′ is the set of accumulation points of P .
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Baire did not establish constructive processes for higher classes; nevertheless, at the end
of his thesis, he suggested a way to solve the general problem:

The theory of point sets plays an important role in these methods; it
can also be said that, in the order of ideas in which we have worked, every
problem related to the theory of functions drives us to certain issues regarding
set theory, and, as long as these last issues are advanced, it can be possible
to somehow solve that problem. [2, p. 169]

In this quote, Baire recognized that the theory of sets is the ideal tool to approach the
problem of classification of discontinuous functions, just as Lebesgue also assumed in
[19].

Based on the B-measurable sets6, Lebesgue established a one-to-one correspondence be-
tween analytically representable functions and B-measurable functions. This led him to a
proof of the validity of the conjecture and to the construction of a function that escaped
Baire’ s classification.

In 1914 Souslin and Luzin detected that Lebesgue used in his proof the flawed result that
the projection of B-measurable sets is B-measurable. This finding left the conjecture as
an open problem that was approached by the Russian school, headed by Luzin.

In [25] Luzin proved the validity of the conjecture. For his proof, he used the set-
theoretic machinery derived from his predecessors’ contributions; in the same text, the
same machinery also serves as the basis to define analytic sets 7.

To prove the validity of the conjecture, Luzin started by assuming the definitions of
Baire-de la Vallée Poussin classes:

K0,K1,K2, ...,Kn, ...Kω, ...,Kα, ... |Ω , 8

where,

K0 = {H ⊆ I|H =
∞
⋃

i=1

Ai, Ai = (a, b)∩ I or Ai = (a,∞)∩ I or Ai = (∞, a)∩ I with a, b ∈

Q}9, and

Kα = {H ⊆ I|H = lim
n→∞

Hn, Hn ∈ Kβ for any β < α and H /∈ Kλ for all λ < α}.

This definitions and the following ones are initially set up for subsets of I, but they are
extendable in a natural way to In.10

This classification is of the same ontological nature as Baire’ s hierarchy; it corresponds
to a merely nominal level. Luzin proves that each class is not empty according to the

6A set is B-measurable (or borelian) if it can be obtained by finite or denumerable unions and
differences of real intervals.

7This demostration is analyzed in [6].
8The sub-indices of this hierarchy correspond to the first- and second-class ordinals, without reaching

the level of the third-class ordinals, which begins with Ω, i.e α < Ω.
9The set of irrational numbers, I, is the fundamental domain for Luzin. This set is the basis of Luzin’s

reasonings.
10In what follows, Kn

α
indicates the class of level α < Ω for subsets of In, with n ≥ 2.
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Nikolai Luzin and the problem of existence in mathematics 75

directives of Baire’ s constructive existence and using the diagonal method, which is the
basis of Luzin’ s third existential category: Cantor’ s existence.

For the proof of the conjecture, Luzin defined two basic notions:

Definition 2.1. E is called element of Kα, if and only if there is a sequence {En}n∈N and

there exists no sequence {E′

n}n∈N, such that E =
∞
⋂

n=1

En and E =
∞
⋃

n=1

E′

n, where En and

E′

n belong to classes Kβ with β < α.

Definition 2.2. Let E be an element of K2
α. It is said that E is a universal element if

and only if for each e, e an element of Kα, there is x0 ∈ I such that

e× {x0} = E ∩ {(x0, x) : x ∈ I}.

For each K2
α, Luzin constructs a universal element, proving, for the 2-dimensional case

that each one of the relevant classes is nonempty. For the 1-dimensional case, Luzin
assumes the existence of a sequence of universal elements of classes preceding K2

α, that
converges to some Λ ∈ K2

α, which converge to Λ ∈ K2
α. We have that the projection PA

of the set A = {(x, x) : x ∈ I}−Λ on one of the coordinate axes is a one-dimensional set
of Kα. So, the characteristic function,

f : [0, 1] → R,

f(x) =

{

1 if x ∈ PA,
0 if x /∈ PA,

belongs to Cα.

3. Luzin and the general problem of existence

As it was expressed at the beginning of this paper, Luzin established four existential
categories in mathematical analysis [25, p. 55]. For Luzin, we cannot speak of an
absolute existence but rather of existence relative to one of the given categories. In this
sense it is convenient to analyze Luzin’ s statement at the end of his book [25], when he
declares himself an empiricist. What kind of empiricism is Luzin referring to? In order to
approach this question, it is necessary to understand the level of discussion at that time,
which allowed categorizing the main French analysts of the end the 19th century (Borel,
Baire and Lebesgue) as semi-intuitionists. This philosophical discussion is framed by the
problems about the type of objects that may be accepted in mathematics.

In [4, p. 92], Borel calls our attention to the use of nominal definitions, since reasoning
made upon emptiness may lead to inconsistencies; in this sense, he introduces the idea
of a well defined object. According to Borel, a well defined object must transcend the
verbal and the logical levels in which symbols that leave out the basic intuitions of whole
numbers and of the geometric continuum are manipulated. Borel’ s conceptions are close
to Brouwer’ s analysis. The main difference is that Brouwer attributes precedence to
arithmetic over geometry. For Brouwer, the fundamental intuition is the arithmetic one.
According to Borel, the generation of new mathematical objects makes sense if it follows
the model of whole numbers, whose successive construction process corresponds to an act
of reasoning proper of humans. All other processes not falling under this consideration
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are left out of mathematics. That is the case of the transfinite ordinals of class II, since
there is no construction process that accounts for the totality of them. Borel accepts
only those transfinite ordinals that are well defined under the canon of positive integers:

It is well known that any conventional system that can be stated in a
limited number of words, among which the word indefinitely might appear,
will merely lead to designate a denumerable set; it is thus not possible to
devise a well defined notation for those numbers that Cantor named numbers

of the second class. [4, p. 161]

This brings about as a consequence the impossibility to consider the set of real numbers
as a completed totality. Borel only accepts calculable real numbers. A real number x is
calculable if and only if for every natural number n, there is a rational number r such

that |x− r| <
1

n
. Thus, Borel accepts only an irrational number for which there is a well

defined sequence of rational numbers that allows expressing it with an error as small as
it may be desired. Such is the case of the numbers π or e.

From Borel’ s conception, well defined sets are those obtained by finite or denumerable
unions and differences of real intervals. Well defined sets correspond to what we now call
Borel sets or B-measurable sets, which are classified according to the Baire-de la Vallée
Poussin hierarchy.

Borel’ s conception about existence in mathematics agrees with Baire’ s constructive ex-
istence. This type of constructions may become very abstruse; so much that Baire could
only establish a constructive process up to class 3 in 1903. Fifteen years later, Ludmila
Keldych achieved an effective construction for class-4 functions. Afterwards, Keldych de-
veloped in [14] a constructive technique for each class-α function, where α is an effectively
given transfinite number of the second class.11

To prove properties of B-measurable sets, Borel resorts to a form of transfinite recursion:
suppose that the desired property is established up to a definite step; then, based on
this, it is shown that the property can be established for the next new step [4, p. 235].
For Borel, this way of establishing sets and of proving properties constitutes a dialectic
construction process that can not be established with the actual infinity, but rather
produces only a potentially infinite process, proper of inductive sets.

Cavaillès observed that non-inductive properties could appear in Borel sets. For ex-
ample, any nondenumerable B-measurable set contains a perfect subset [5, p. 19]. To
solve this inconvenience, Luzin introduced the notion of B-measurability through injec-
tive functions, thus constructing the Borel sets as a closed totality. For it, Lebesgue’ s
constructive existence must be adopted, resulting in a distancing from intuitionistic con-
ceptions, as Luzin manifests:

If all the B-measurable sets are admitted, it is necessary to admit the
projective sets as Henri Lebesgue rightly emphasizes. Then, if what is wanted
is to draw the limits of mathematical analysis at the study of well finished

11A second-class transfinite number is effectively given if for all β ≤ α of the second class, a sequence
of transfinite numbers that converges to β can be exhibited.
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Nikolai Luzin and the problem of existence in mathematics 77

beings and well defined mutual relationships, it is then necessary to return
to the empirical point of view: to sacrifice some B-measurable sets and also
some irrational sets. [25, p. 323]

This means that it is not enough to establish a confined epistemological negotiation to
solve the problems raised by intuitionists. Either a substantial part of classical analy-
sis is sacrificed, or the entrance of objects that challenge some intuitionistic existential
principles is allowed. The problem became more complicated when the axiom of choice
came into place, giving way to Zermelo’ s existence.

The proof of the theorem according to which all sets may be well ordered, developed
by Zermelo in 1904 (second version in 1908), raised Borel’ s, Baire’ s and Lebesgue’ s
criticisms, since it gave way to pure existence proofs.12

Even though Lebesgue did not accept pure existence proofs, he established a less drastic
way out than Borel’ s and Baire’ s to the problem of existence through his notion of the
unnamable.

Like Luzin, Lebesgue considers that – even though it is a matter of convention – it is
only possible to prove the existence of a previously defined object. His conceptions are
stated in a direct manner in his 1905 memory:

An object is defined or is given when a finite number of words that apply
to this object have been pronounced, which means when a characteristic
property of the object has been named. [19, p. 205]

According to Lebesgue, one of the problems in the development of proofs where a choice
function intervenes is that uniqueness of the choices cannot be guaranteed.13 Lebesgue
sets out that a construction process does not necessarily guarantee the identification of
objects in a concrete way; not even an analytic representation is a secure way to establish
calculations; this is the case for the representation

χ(x) = lim
m→∞

[ lim
n→∞

(cosm!πx)2n],

This representation corresponds to the characteristic function of rational numbers among
the real numbers, but it does not allow establishing direct calculations with the irrational
numbers. This way, the functions accepted by Lebesgue are not necessarily useful to
develop specific calculations to obtain the corresponding image for each given value of
the variable. This is the sense of the function defined by Lebesgue that escapes Baire’ s
hierarchy, and this is the direction in which a new type of measure theory was developed
by Lebesgue that exceeds Borel’ s existential requirements; for it, Lebesgue started from
the acceptance of the transfinites of class II like a totality and the Cantor’ s diagonal
method.

This conception of existence led him to Lebesgue to reject non-measurable sets:
12This controversy is recorded in [3].
13This matter was relevant in 1904 due to the lack of foundation for set theory. The deadlock was

solved with the formulation of the first axiomatic set theory in 1908 by Zermelo. Specifically, Axiom of
Choice states: there exists a choice function for every system of sets.
Let S be a system of sets. A funcion g defined on S is called a choice function for S if g(X) ∈ X for all

nonempty X ∈ S.
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As for the matter of the existence of non-measurable sets, it has hardly
gained any progress after the edition of this book. Nevertheless this exis-
tence is true for those who admit a certain form of reasoning based on the
so-called Zermelo’ s axiom. Through this reasoning, this conclusion is effec-
tively reached: nonmeasurable sets exist; but this statement should not be
considered as contradictory if it is shown that no man will ever be able to
name a non-measurable set! [18, p. 114]

Luzin does not only take in Lebesgue’ s stance with respect to this type of existence in
mathematics, but also attracts attention upon some difficulties introduced by the use of
negative operations. By negative operations he refers to difference and complement. Neg-
ative operations generate certain sets as a whole without a specific determination. Luzin
calls those sets generated by negative operations virtualities; in other words, notions that
do not define completely finished objects.

In [25, chapter 5], Luzin incorporates projective sets, which do not admit a positive
definition. Based on this, he proposes that philosophical considerations of existence in
mathematics are always vague and unsolvable in an absolute manner. For Luzin, the
problem of existence in mathematics is established in mathematical activity itself.

Luzin’ s solution is subtly profound if we consider that partial answers to the problem of
existence in mathematics was given by formalism and logicism. For Luzin, the fundamen-
tal problem is how to come to terms with the existence of virtualities further away from
their merely nominal definitions, so that one must accept generalizations that depend
not only on basic intuitions.

Concerning this topic, Cavaillès introduced the notion of a thematic field. Thematization
consists in the “transformation of an operation into an element of a superior operative
field...” [5, p. 173]. To say this in a suggestive manner, thematization establishes the
“objectivation of an operation”. This philosophical category allows to avoid the problems
raised by intuitionism and logicism. The existence of a thematic field is given by the
process of establishing properties and relations among operations as elements of the new
field, as well as defining higher-order operations on them. The problems of intuitionism
are avoided because objects are not required to be completely defined and operations
are established in them, since objects and operations are developed simultaneously in a
direct way that allows dealing with those objects at the higher level of abstraction by
going down one level and treating them as operations on other objects at the lower level.
As for this question, a new problem arises: to establish processes that represent ever
higher levels of abstraction without breaking the sensation of the understanding. In this
sense, for Cavaillès, it is not possible to situate the thematic fields outside the world but
within it, because they correspond to their transformations. This does not mean leaving
aside the search for an adequate symbolism; it means taking the symbolic in its true
dimension, as “correlative extension of experience” [5, p. 174].

In [11] Jean-Louis Gardies uses thematization as an explanatory category for objecti-
vation processes. For Gardies, the notion of equivalence class constitutes a conceptual
vehicle that allows a type of thematization. This type of thematization does not neces-
sarily assume the previous direct acknowledgement of a property, or of a set of properties,
immediately captured as such. The new set of equivalence classes allows no direct access
to itself or to its properties, relations or operations, outside the facts that are known at

[Revista Integración, temas de matemáticas



Nikolai Luzin and the problem of existence in mathematics 79

the lower level about the usual properties of equivalence relations. More frequently, only
careful acknowledgement of properties, relations and operations at the initial level can
suggest those that might hold at the immediately superior level and can hint at ways to
attempt the justification or rejection of those conjectures [11, p. 167].

Numerical extensions are established through thematization via equivalence relations.
For example, if we start from natural numbers, the thematization that allows the ac-
ceptance of signed integers has as its reference an equivalence relation between ordered
pairs of natural numbers: equi-difference. At the same time another equivalence relation
between ordered couples of signed integers allows the thematization of rational num-
bers: equi-multiplicity. Real numbers are thematized through ordered pairs of classes:
Dedekind cuts of rational numbers.

The relevant properties, relations and operations at each level are defined as a reflection
of the previous level, in such a way that each element of the new level can be interpreted
as a class of previously existing elements at the lower level. This automatically places: the
natural numbers, the integers, and the rational numbers as subsets of the real numbers,
avoiding the problems posed by intuitionism.

In set theory, the thematization of the infinite in actu is supported, as established by
Dedekind and Cantor, by defining an equivalence relation between sets based on having-
the -same- power: equi-potency. The existence of different levels of infinities is proved
through Cantor’ s diagonal-type arguments. It corresponds, as mentioned earlier, to the
third existential category set up by Luzin.

In [25] Luzin established the conceptual basis of descriptive set theory using non-
constructive processes. In this sense, it is important to draw attention upon Luzin’ s
vision about the inevitable development of a type of objects whose existence does not
correspond to any of the first three levels set by him. What to do with these “new en-
tities”? Luzin considers the solution based on the sacrifice of some B-measurable sets as
improper, since that leaves out a part of the analysis whose importance is undeniable.
For Luzin this is a problem without absolute answers and it is solved, as has been said
before, in the mathematical activity itself. In the case of the projective sets, Luzin set
forth two possibilities:

Either later research will one day lead to precise relationships between
projective sets, in a way that there is a complete solution to problems rela-
tive to measurement, category and power of these sets; from this moment on,
projective sets would have conquered their mathematical citizenship, at the
same level as the more classical problems of B-measurable sets. Or the in-
dicated problems about projective sets will remain unsolved, thus increasing
the amount of new problems that appear as natural as they are unmanage-
able. In that case, it is clear that we will have to modify our ideas about the
arithmetic continuum. [25, p. 324]

At present, the descriptive theory of sets is one of the most active branches of set the-
ory, with applications to topology, mathematical logic (recursion theory), combinatorics,
functional analysis and group theory. Since 1930, the number of publications has con-
stantly increased. In chronological order, we can name, among many others, the works
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by Sierpiński [29], Kunugi [15], Kuratowski [16], Novikov [27], Šneider [32], Choquet [7],
Davies [9], Sion [31], Dellacherie [8]. The development of descriptive set theory is also
made evident with the publication of specific treatises such as [12], [13], [17], [26], [30],
[33].

Descriptive set theory is an unavoidable subject in advanced books about topology and
set theory. Having as reference the notation devised by J. W. Addison in [1], hierarchy
of descriptive sets is introduced through a ladder whose first step corresponds to the
collection B of all Borel sets of R. Analytic sets are defined as those sets that are images
of elements of B; co-analytic sets are those sets that are complements of analytic sets.
The now current notation for higher steps of the ladder is as follows:
∑1

1
= {A ⊂ R : A is an analytic set}

∏1

1
= {A ⊂ R : A is co-analytical}

∑1

k+1
=

{

A ⊂ R : A is a continuous image of some element of
∏1

k

}

∏1

k+1
=

{

A ⊂ R : A is the complement of some element of
∑1

k+1

}

.

This rising chain forms the projective hierarchy, and a set is projective iff it belongs to
∑1

n or
∏1

n, for some n.

As well as for Baire’ s conjecture, the question arises about the existential category to
which projective sets belong. These sets are described in a seemingly simple manner
through an iterative process. Nevertheless, they have a high complexity, because, even
though the analytic sets

(

∑1

1

)

and the co-analytic sets
(

∏1

1

)

are Lebesgue measurable,

in
∏1

2
we find sets that are not. To demonstrate existence of non-measurable sets in

∏1

2
,

it is necessary to take on ZFC+ (V=L) (Zermelo-Frankel axioms for set theory with the
axiom of choice, plus the constructibility axiom).

From Gödel’ s work and the forcing methods introduced by Cohen, it became evident
that many well-formed formulas of descriptive set theory are undecidable. Later devel-
opments, due to Ronald Jensen, have shown that the theory of large cardinals has a
direct relation with internal-model theory. The results obtained in this direction not
only supply new data about the mathematical continuum but also about the structure
of the universe based on descriptive set theory. Since the thematization of actual infinity
opens the doors for descriptive set theory, we have that the existential categories typified
by Luzin correspond to philosophical approaches that outline the problem of existence
in mathematics in all its dimension. This matter, for Michael Dummett, constitutes the
central problem of mathematical philosophy [10, p. 5].

As Gardies has indicated, the emergence of new thematized objects immediately poses
philosophical problems about the nature of these objects. Either they correspond to “free
creations of the mind”, as Cantor puts it, or they refer to discovered entities. On one
hand, given that the existence of new thematized objects do not correspond to the same
existential category as those on which they are supported, they seem to be creations of
the mind. On the other hand, taking into account that they are nor established in an
arbitrary manner, but are subject to some necessary conditions, they seem to be new
discoveries [11, p. 175].
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The methods used by Luzin in his proofs of Baire’ s conjecture, as well as the develop-
ments in which analytic sets emerge, are located in the perspective of this dilemma; but
this is a problem that deserves a separate treatment, since it corresponds to a contro-
versial issue of mathematical philosophy and raises a deep question about the relation
between objectivity and existence: Should it first be shown that mathematical objects
do exist, or should their nature be understood first?
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