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Abstract. In this article we present some techniques to determine the types of
automorphisms of extremal doubly even binary self-dual codes, also called ex-
tremal type II codes, with parameters [24, 12, 8], [48, 24, 12] and [120, 60, 24].
We aim to obtain information about the automorphism group considering the
exclusion of some prime numbers from its order.
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Sobre automorfismos de códigos extremales de tipo II

Resumen. En el presente artículo se muestran algunas técnicas para obtener
tipos de automorfismos de los códigos binarios auto-duales, doblemente pares
y extremales, también denominados extremales de tipo II, con parámetros
[24, 12, 8], [48, 24, 12] y [120, 60, 24]. El objetivo central es obtener informa-
ción sobre el correspondiente grupo de automorfismos a partir de la exclusión
de algunos números primos de su orden.
Palabras claves: Códigos binarios, códigos auto-duales, códigos doblemente
pares, códigos extremales, automorfismos de códigos.

1. Introduction

Extremal binary doubly even self-dual codes are one of the most outstanding areas of
study in the classical theory of algebraic codes. To mention a few of them we have the
[8, 4, 4]-Hamming code, the [24, 12, 8]-Golay code and the [48, 24, 12]-code, fully charac-
terized, which correspond to a cyclic quadratic residue code (QR-code), up to equivalence.
Mallows and Sloane proved in [14] that for large lengths such codes don’t exist. Nev-
ertheless an explicit upper bound was not established. Later Rains showed in [16] that
any extremal binary self-dual code C, with length a multiple of 24, is also a doubly even
code. It is then of special interest to study extremal binary doubly even self-dual codes
with parameters [24m, 12m, 4m+4], m ∈ N. The best upper bound for the length of this
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kind of codes, though somehow loose, was determined by Zhang [19] in 1999. He proved
that extremal binary doubly even self-dual codes C of length 24m don’t exist if m > 153.

If m = 3, 4 or m=5, then we get extremal binary doubly even self-dual codes with
parameters [72, 36, 16], [96, 48, 20] or [120, 60, 24], respectively. The existence of these
codes is a longstanding open problem [17].

Another interesting problem in this context is the characterization of the automorphism
group of the codes given C of length n. A permutation of degree n, let us say σ, is
an automorphism of C if its action over a vector in C is also in the code. This is, C
is invariant under the action of σ. The set of such permutations with the composition
forms a group, that we will denote by Aut(C).

In general the results that provide information about the automorphism group of an
extremal binary doubly even self-dual code are very restrictive. For instance, the auto-
morphism group of the Hamming codes with dimension n − k is GL(k,Fq), the general
linear group over Fq.

The [24, 12, 8]-Golay-code has the sporadic simple Mathieu-group M24 as its automor-
phism group [12, Ch. 20, Corollary 5] and finally the extended quadratic residue
[48, 24, 12]-code has the projective special linear group PSL(2, 23) [11, Theorem 6].

The next case is m = 3; this yields C the binary self-dual [72, 36, 16]-code. It has been
proved in [6] and [15] that its automorphism group has order at most 36. In particular,
the automorphism group is solvable. Furthermore Bouyuklieva, O’Brien, Willems [6] and
Borello [3] proved that the only primes that can divide |Aut(C)| are 2, 3 and 5. Recently
Borello [2] proved that |Aut(C)| if non-trivial, has no element of order 6. Finally the
same author, Dalla Volta and Nebe proved in [4] that the automorphism group of C does
not contain either the symmetric group of degree 3, the alternating group of degree 4 or
the dihedral group of order 8.

For m = 4, C is a binary self-dual [96, 48, 20]-code; it is known that only the primes 2, 3
and 5 can divide |Aut(C)|, see [8], [7].

And if m = 5 we have a binary self-dual [120, 60, 24]-code. De la Cruz, et al. [5] showed
that in a putative binary self-dual [120, 60, 24] code C an automorphism of order 3 has
not fixed points, |Aut(C)| ≤ 920 and Aut(C) is solvable if it contains an element of
prime order p ≥ 7. Moreover, the alternating group of degree 5 is the only non-abelian
composition factor which may occur in Aut(C).

In this paper we give a general idea of some of the techniques used to analyze extremal
binary self-dual codes with small parameters, which we then apply to the codes for
m = 1, 2 and 5. So we obtain a characterization of the automorphism groups for the first
two cases and reducing the list of primes that can divide the order of Aut(C) for the
later case.

2. Preliminaries

Let Fq be a finite field with q elements and n ∈ N. A k-dimensional subspace C of Fn
q

is called a [n, k]-lineal code over Fq. The elements of C are codewords, and if q = 2
or q = 3 we say that C is a binary code or ternary, respectively. The parameter n is
called the length of C.
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For x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Fn
q we define

d(x, y) := |{j | 1 ≤ j ≤ n, xj 6= yj}|;

d is called the Hamming distance between x and y. It can be easily verified that d is a
metric and that it is invariant under translations. This is, for every x, y, z ∈ Fn

q it is true
that

d(x + z, y + z) = d(x, y).

Another important parameter of a code C is its minimum distance d(C), defined as

d(C) := min{d(x, y) | x, y ∈ C, x 6= y}, if |C| > 1, (1)

d(C) := 0, if |C| = 1. (2)

If C is a [n, k]- linear code over Fq with minimum distance d(C) = d, then we say that
C is a [n, k, d]-code over Fq, or simply we write [n, k, d]q-code. The parameters [n, k, d]
are called the fundamental parameters of C.

The weight wt(x) of x ∈ Fn
q is defined as the number of non-zero components in x. We

define the minimum weight wt(C) of C as

wt(C) := min{wt(x) | 0 6= x ∈ C}, if C 6= {0}, (3)

wt(C) := 0, if C = {0}. (4)

From the invariance under translation of d we get that

wt(C) = d(C).

Let C be a [n, k]-code over Fq. If k ≥ 1, then a k × n-matrix G over Fq is called a
generator matrix of C, if

C = F
k
qG = {(u1, . . . , uk)G | uj ∈ Fq}.

In particular, it is possible to show that the Rang(G) = dimFq
(C). If k < n, then a

(n− k)× n-matrix H over Fq is called a parity check matrix of C if

C = {u ∈ F
n
q | Hut = 0}.

It is clear that the rank of H is n−dimFq
(C), which is, n−k. We say that G, a generator

matrix of a code C, is in its standard form if it can be written as

G = (Ik | B),

where Ik represents the identity matrix of size k over Fq; then a matrix in its standard
form is also in its reduced row echelon form.

The canonical inner product on Fn
q is defined by

(u | v) :=
n∑

j=1

ujvj ,
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for u = (u1, . . . , un) and v = (v1, . . . , vn) in Fn
q . Obviously this is a non-degenerate

symmetric bi-linear form in Fn
q .

Then, with this inner product defined, it makes sense to introduce the notion of the dual

of a code. We define the dual C⊥ of C, as usual:

C⊥ := {u ∈ F
n
q | (u | c) = 0, ∀c ∈ C}.

If C ⊆ C⊥, then it is said that C is self-orthogonal, and if C = C⊥, it is called
self-dual. From linear algebra we know that

dimFq
(C) + dimFq

(C⊥) = n.

Due to this, if C is a [n, k]-code over Fq, then C⊥ is a [n, n− k]q-code. In particular, if
C is self-dual, then n = 2k.

Let r ∈ N. A code C is called r-divisible, if for every c ∈ C it is true that r | wt(c). In
particular, a 2-divisible code is named even and a 4-divisible a doubly even.

Among the self-dual codes there exists a special classification depending on the field over
which they are defined and their r-divisibility, as it follows: If C is a self-dual code over
Fq and r-divisible, with r > 1, then we say that C is a code of

(a) type I if q = 2 and C is not doubly even, that is, r 6= 4.

(b) type II if q = 2 and C is doubly even.

(c) type III if q = 3 and is also 3-divisible, by being self-dual.

(d) type IV if q = 4 and therefore even as well.

A theorem from Gleason, Pierce and Turyn [1, Part XI], [9] guarantees that, if s > 1
divides the weight of each codeword in a non-trivial binary self-dual code, then either
s = 2 or s = 4. The binary self-dual codes satisfy naturally this condition, when s = 2.
Type II codes only exist if n is a multiple of eight.

A theorem proved by Mallows and Sloane [14, Theorem 2] shows that the minimum
distance d of a binary self-dual [n, k, d]-code satisfies the inequality:

d ≤ 4
⌊

n
24

⌋
+ 4, if n 6≡ 22 mod 24,

d ≤ 4
⌊

n
24

⌋
+ 6, if n ≡ 22 mod 24,

where ⌊x⌋ denotes the integer part of x. The codes that reach this bound are called
extremals.

We write Sym(n) to represent the symmetric group of order n, x = (x1, . . . , xn) ∈ Fn
q

and σ ∈ Sym(n). Let’s define the action of σ on Fn
q by

σ(x) := (xσ(1), . . . , xσ(n)), x ∈ F
n
q .

If C is a binary code and σ(x) ∈ C, for every x ∈ C, then σ is called an automorphism

of C. The set of all the automorphisms of C is the automorphism group of C and it
is denoted by Aut(C).

Finally, if C is a [n, k]-code over Fq and σ ∈ Aut(C) is of order p, with p a prime number,
then we say that σ ∈ Sym(n) has the type p− (c, f) if σ has c p-cycles and f fixed points.
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3. Cited results

Let C be a linear code of length n and σ ∈ Aut(C) of type p− (c, f), say

σ = Ω1 · · ·ΩcΩc+1 · · ·Ωc+f , (5)

where Ω1, . . . ,Ωc are the p-cycles and Ωc+1, . . . ,Ωc+f the fixed points. Then, we define:

Fσ(C) := {u ∈ C | σ(u) = u}, (6)

Eσ(C) := {v ∈ C | wt(v|Ωi
) ≡ 0 mod 2, i ∈ {1, . . . , c+ f}}. (7)

Let π be the function π : Fσ(C) −→ F
c+f
2 defined by

u 7−→ (π(u))i := uj,

where j ∈ Ωi. In the forthcoming Fσ(C) will stand for π(Fσ(C)).

Now we give some facts about Fσ(C), Eσ(C) and σ ∈ Aut(C). Let σ be as in (5); then
for u = (u1, . . . , un) we define

u|Ωj
:= (uΩj1 , . . . , uΩjl

),

with Ωj = (Ωj1 . . .Ωjl), being l ∈ {1, p}. Therefore, if σ = (123)(456)(789). for example,
and

u = 000111111000000000011000,

then u|(123) = (000) and u|(456) = (111). Besides, note that by definition if u ∈ Eσ(C)
and f 6= 0, then u|Ωs

= 0 for each s ∈ {c+1, . . . , c+ f}. If σ = (123)(456)(789)(101112)
and

u = 101000000101011011000000,

then
σ(u) = (110000000110011011000000).

In this case note that u 6∈ Fσ(C), since u 6= σ(u). Moreover, we notice from the example
that if u ∈ C∩Fσ(C), then uΩjl

≡ uΩjk
mod 2, for every Ωjl,Ωjk ∈ Ωj , j ∈ {1, . . . , c+f}.

Finally, Fσ(C)∪Eσ(C) ⊆ C; then, if C is doubly even, both Fσ(C) and Eσ(C) are doubly
even as well. And if C is self-orthogonal then both subcodes are also self-orthogonal.

Lemma 3.1 ([10, Lemma 1]). Let C be a self-dual code of length n. Then Fσ(C) is self-
dual of length n − c(p − 1). Moreover, if C is doubly even and p ≡ 1 mod 4 or f = 0,
then Fσ(C) is a 4-divisible code.

Corollary 3.2. Let C be a binary self-dual doubly even code and σ ∈ Aut(C) of type
p− (c, f), with p odd. If p ≡ 1 mod 4 and p− 1 6≡ 0 mod 8, then c is even.

Proof. Since C is self-dual and doubly even, by lemma 3.1 it is true that Fσ(C) is a type
II code. Thus, by [9] its length is divisible by eight. Then n− c(p− 1) ≡ 0 mod 8. If we
also have that p− 1 ≡ 0 mod 4 and p− 1 6≡ 0 mod 8, since n ≡ 0 mod 8, it follows that
c ≡ 0 mod 2, that is, c is even. �XXX
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Lemma 3.3. Let C be a binary code of length n and σ ∈ Aut(C) of type p− (c, f). Then

C = Fσ(C)⊕ Eσ(C).

If C is in addition self-dual, then

dimF2 Eσ(C) =
(p−1)c

2 .

Moreover, the multiplicative order of 2 ∈ Zp divides dimF2 Eσ(C). In particular, if C is
self-dual and 2 is a primitive root modulo p, then c is even.

Proof. Let v ∈ C and define w := v +
∑p−1

i=0 σ
i(v). We know that

wt(σi(v)|Ωj
) = wt(Ωi

j(v)|Ωj
) = wt(v|Ωj

),

for every i ∈ {0, . . . , p − 1}, j ∈ {1, . . . , c + f}, because two distinct cycles are disjoint,
this is, Ωl ∩ Ωs = ∅ for l 6= s so that Ωj only reorganizes the coordinates of v, and this
does not alter its weight.

For σ = Ω1 . . .Ωc+f ∈ Aut(C) we get that

w|Ωj
= v|Ωj

+
∑p−1

i=0
σi(v)|Ωj

, for every j ∈ {1, . . . , c+ f}.

C is binary, then it is even. In consequence,

wt(w|Ωj
) = wt

(∑p

i=0
σi(v)|Ωj

)
− 2k,

but the order of σ is p and k(v,Ωj)(k depends on v and Ωj). This is,

wt(w|Ωj
) = (p+ 1)wt(v|Ωj

)− 2k,

and since p is an odd prime it follows that

wt(w|Ωj
) ≡ 0 mod 2

for each j ∈ {1, . . . , c+ f}, that is w ∈ Eσ(C).

Note here that

σ

(∑p−1

i=0
σi(v)

)
=
∑p−1

i=0
σi+1(v)

=
∑p−1

i=0
σi(v).

This shows that
∑p−1

i=0 σ
i(v) ∈ Fσ(C). Hence, for every v ∈ C it is true that

v =
∑p−1

i=0
σi(v) + w ∈ Fσ(C) + Eσ(C)

(note that C is a vector space over a field of characteristic two, then v = −v for every
v ∈ C).
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Let’s prove next that Fσ(C) ∩Eσ(C) = {0}. Let v ∈ Fσ(C) ∩Eσ(C); then σ(v) = v and
Ωj(v)|Ωj

= Ωj(v), v of even weight. As each Ωj is a cycle of odd length, we have vl = 0
for every l ∈ Ωj , j ∈ {1, . . . , c+ f}, this is, v = 0. Thus,

C = Fσ(C)⊕ Eσ(C).

Besides, if C is self-dual, then by Lemma 3.1 we get that Fσ(C) is also self-dual. Hence,
since

dimF2 C = dimF2 Fσ(C) + dimF2 Eσ(C),

it follows that

dimF2 Eσ(C) =
1

2
n−

1

2
(n− c(p− 1)) =

1

2
c(p− 1).

And as the only vector of Eσ(C) fixed by σ is 0, it is true that

p | (2dimF2 Eσ(C) − 1),

thus
2dimF2

Eσ(C) ≡ 1 mod p.

Let c ∈ C, σ ∈ Aut(C); then we define:

O(c) := {σi(c) | i ∈ Z} ⇒ |O(c)| :=

{
1, c ∈ Fσ(C),
p, c /∈ Fσ(C).

Moreover, we could define an equivalence relation over C as it follows:

For c, c′ ∈ C let

c ∼ c′ ⇔ c′ ∈ O(c)

⇔ ∃i ∈ [0, p− 1] ∩ Z such that c′ = σi(c).

Clearly the cosets of C induced by this relation are O(c), with c ∈ C. Then we get that
·⋃
c∈C O(c) =

( .⋃
c∈Fσ(C) O(c)

)
∪

(
·⋃
c 6∈Fσ(C) O(c)

)
.

In this way |C| = |Fσ(C)|+ s · p, where s ∈ Z; since we proved that C = Eσ(C)⊕Fσ(C),
it follows that

2dimF2 Eσ(C)+dimF2
Fσ(C) = 2dimF2 Fσ(C) + sp,

or equivalently,
2dimF2 Eσ(C)+dimF2

Fσ(C) ≡ 2dimF2 Fσ(C) mod p;

but we know p is odd, then it is equivalent to say that

2dimF2 Eσ(C) ≡ 1 mod p.

Finally, since 2(p−1) ≡ 1 mod p, by Fermat’s little theorem, we get c/2 ∈ N, that is c is
even. �XXX

Remark 3.4. If p is an odd prime number and we write s(p) to name the smallest natural
number such that

p | (2s(p) − 1),

then, as a consequence from the previous lemma, we obtain the next result:
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Corollary 3.5. Let C be a binary self-dual doubly even code and σ ∈ Aut(C) of type
p− (c, f), with p odd. If s(p) is even, then c is even, too.

Using the last lemma it is possible to obtain a generator matrix G for C in the form

fixed
cycles points

G =

(
X

∣∣∣∣
Y

)
}span(Fσ(C))

A 0 }span(Eσ(C)).

Lemma 3.6 ([10, Lemma 3]). Let C be a binary self-dual [n, k, d]-code with σ ∈ Aut(C)
of type p− (c, f). Then:

(a) If f ≥ 2d, then 2d− 2− log2(d) ≤
1
2 (f + c).

(b) If f < 2d, then 1
2 (f − c) ≤ 1 + log2(

d
2d−f ).

(c) If pc ≤ 2d, then or

i. d = 4, p = 3, c = 2 or

ii. d = 4, p = 7, c = 1.

Theorem 3.7 (V. Yorgov [18]). Let C be a binary self-dual extremal doubly even [n, k]-code
and σ ∈ Aut(C) of type p− (c, f), with p odd. Then c ≥ f .

Lemma 3.8 ([10, Lemma 4]). Let p be an odd prime such that 1 + x + . . . + xp−1 is
irreducible over F2. Let P be the set of all polynomials of even weight in F2[x]/〈xp − 1〉.
Then P is a field with module x + x2 + . . . + xp−1. Moreover, multiplying by 1 + x2 +
x3 + . . .+ xp−1 ∈ P it corresponds to a right shift modulo the ideal 〈xp − 1〉.

We introduce another notation. For C self-dual with C = Fσ(C)⊕Eσ(C), as in Lemma
3.3, v ∈ Eσ(C) with

v|Ωi
= a1 . . . ap;

we also define

f(v|Ωi
) := a1 + a2x+ . . .+ apx

p−1for i ∈ {1, . . . , c}.

Here f induces componentwise a function from Eσ(C)
∗ onto the ring (F2[x]/〈xp − 1〉)c,

where Eσ(C)
∗ corresponds to Eσ(C) by erasing the fixed points. Thus, if the conditions

of the previous lemma hold, then P = F2p−1 . In fact, we have the following lemma.

Lemma 3.9. Let’s suppose C is a self-dual code and 1+x+ . . .+xp−1 is irreducible over
F2. Then f(Eσ(C)

∗) ≤ Fc
2p−1 of dimension c

2 . In particular, c is even.

Proof. Clearly f preserves the addition. Let

β := 1 + x2 + . . .+ xp−1 ∈ F2[x]/〈x
p − 1〉.
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By lemma 3.8, multiplying a polynomial of even weight by βi produces a cyclic shift i
times to the right. Then,

1 + β = 1 + x,

that is, {1 + β, β + β2, . . . , βp−2 + βp−1} is a basis for F2p−1 over F2.

Hence, as
βif(v) = f(σi(v)) ∈ f(Eσ(C)

∗) for each v ∈ Eσ(C)
∗,

we obtain that f(Eσ(C)
∗) is closed under the scalar product induced from F2p−1 . Now

by Lemma 3.3 we have that

dimF2 Eσ(C)
∗
= dimF2 Eσ(C) =

1

2
c(p− 1).

Then, if dimF2p−1 f(Eσ(C)
∗) = k, then (2p−1)k = 2

1
2 c(p−1), and it follows that k = 1

2c.
�XXX

Lemma 3.10. If p = 3 and C is a doubly even self-dual code, then f(Eσ(C)
∗) is self-dual

over F4 with the inner product given by

(u|v) :=
c∑

i=1

uiv
2
i

for every u, v ∈ Fc
2p−1 . It is also true that d(Eσ(C)

∗) is greater or equal to d
2 .

Proof. Since C is doubly even, if v ∈ Eσ(C)
∗ then wt(f(v)) = 1

2wt(v), that is, wt(f(v)) ≡
0 mod 2. Using the previous lemma and [13, Theorem 1] it follows that f(Eσ(C)

∗) is
self-dual and d(f(Eσ(C)

∗)) ≥ d
2 . �XXX

Corollary 3.11. If C is a doubly even self-dual code and p = 3, then d
2 ≤ 2⌊ c

6⌋ + 2.
Moreover, if C is extremal, then n

24 ≤ ⌊ c
6⌋.

Proof. By [13] a quaternary self-dual code with parameters [c, c2 ] has minimum distance
at most 2⌊ c

6⌋+ 2. �XXX

Lemma 3.12 ([10, Lemma 7]). If p = 5 and C is a self-dual doubly even code, then
f(Eσ(C)

∗) is self-dual over F16 with the inner product defined by

(u|v) :=
c∑

i=1

uiv
4
i

for every u, v ∈ Fc
2p−1 .

In this way we also have the next corollary.

Corollary 3.13. If p = 5, C is a doubly even self-dual code and Ωi is cyclically organized,
then f(Eσ(C)

∗) is self-dual too. Besides, each codeword in f(Eσ(C)
∗) with ai components

of the form αi(α12j) fulfilling that a0 ≡ a1 ≡ a2 mod 2.
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4. Exclusion of some prime numbers from the order of the automor-
phism group

4.1. The case [24, 12, 8]

Let’s σ ∈ Aut(C) be of type p− (c, f). The combinations that hold on first instance that
24 = pc+ f are

p c f

3 1, 2, 3, 4, 5, 6, 7, 8 21, 18, 15, 12, 9, 6, 3, 0

5 1, 2, 3, 4 19, 14, 9, 4

7 1, 2, 3 17, 10, 3

11 1, 2 13,

13 1 11

17 1 7

19 1 5

23 1 1

As a consequence from Yorgov’s Lemma (Lemma 3.7) we get c ≥ f , so the previous table
is reduced to

p c f

3 6, 7, 8 6, 3, 0

5 4 4

7 3 3

11 2 2

23 1 1

Using Corollary 3.5, since s(3) = 2 from the last table we exclude 3 − (7, 3), because c
must be even. At the end we get

p c f

3 6, 8 6, 0

5 4 4

7 3 3

11 2 2

23 1 1
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Now we show a generator matrix for the binary self-dual doubly even [24, 12, 8]-code,
obtained by considering an automorphism of type 3 − (6, 6). In this particular case,
dimF2 Eσ(C) = (p− 1)c/2 = 6 and dimF2 Fσ(C) = (c+ f)/2 = 6.

A generator matrix for Fσ(C) is given by

X =




111111000000000000110000

000111111000000000011000

000000111111000000001100

000000000111111000000110

000000000000111111000011

111000000000000000011111



,

while a generator matrix for the subcode Eσ(C) is

A =




011000000011110110000000

000011000110011110000000

000000011110110011000000

101000000101011011000000

000101000011101011000000

000000101011011101000000



.

Using Lemma 3.3, we get a generator matrix for C:

G =




111111000000000000|110000
000111111000000000|011000
000000111111000000|001100
000000000111111000|000110
000000000000111111|000011
111000000000000000|011111
011000000011110110|000000
000011000110011110|000000
000000011110110011|000000
101000000101011011|000000
000101000011101011|000000
000000101011011101|000000




.

4.2. The case [48, 24, 12]

Analogously as in the later case, if σ ∈ Aut(C) is of type p− (c, f), then for this code C
there are the following options:
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p c f

3 12, 14, 16 12, 6, 0

5 8 8

7 6 6

11 4 4

23 2 2

47 1 1

A generator matrix for the self-dual doubly even binary [48, 24, 12]-code, obtained from
an automorphism of type 23− (2, 2), is given by

G =




1111111111111111111111100000000000000000000000|10
0000000000000000000000011111111111111111111111|01
1000000000000000000000100110010101110101111011|00
0100000000000000000000110101011111001111000110|00
0010000000000000000000101100111010010010011000|00
0001000000000000000000100000001000111100110111|00
0000100000000000000000110110010001101011100000|00
0000010000000000000000101101011101000000001011|00
0000001000000000000000110000111011010101111110|00
0000000100000000000000101110001000011111000100|00
0000000010000000000000100001010001111010011001|00
0000000001000000000000110110111101001000110111|00
0000000000100000000000111101001011010001100000|00
0000000000010000000000101000110000011101001011|00
0000000000001000000000110010001101111011011110|00
0000000000000100000000101111010011001000010100|00
0000000000000010000000100001111100010001110001|00
0000000000000001000000110110101011111101000011|00
0000000000000000100000111101000000001011011010|00
0000000000000000010000101000110101110000010110|00
0000000000000000001000100010001111001101110000|00
0000000000000000000100100111010010010011000011|00
0000000000000000000010110101111100111100011010|00
0000000000000000000001101100101011101011110110|00




.

4.3. The case [120, 60, 24]

The existence of an extremal binary self-dual doubly even code with such parameters is
currently an open problem.

Under the assumption that such code exists, let σ ∈ Aut(C) be of type p− (c, f). Then,
for this code C we have the following possible types:
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p c f

3 30, 32, 34, 36, 38, 40 30, 24, 18, 12, 6, 0

5 20, 22, 24 20, 10, 0

7 15, 16, 17 15, 8, 1

11 10 10

19 6 6

23 5 5

29 4 4

59 2 2

This problem is part of a research project and there is little information available about
the prime numbers that divide the order of Aut(C). However, a remark is that 11 −
(10, 10), 17− (7, 1) and 59− (2, 2) are not possible types, as are not either some of order
3, 5 and 7.

5. Conclusion

Let C be a extremal binary self-dual code with parameters [24m, 12m, 4m + 4], with
m ∈ N. We present the following table as a summary, where in the last column we show
the information about the automorphism group of the code C and also the prime numbers
that probably divide its order. Besides, M24 denotes the sporadic Mathieu group that
acts on a set of 24 objects.

m Parameters Code Aut(C)

1 [24, 12, 8] Golay M24

2 [48, 24, 12] QR-code PSL(2, 47)

3 [72, 36, 16] ? 2, 3, 5, solvable

4 [96, 48, 20] ? 2, 3, 5, solvable

5 [120, 60, 24] ? 2, 3, 5, 7, 11, 19,

23, 29, 59, solvable
...

...
...

...
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