Revista Integración Escuela de Matemáticas Universidad Industrial de Santander Vol. 31, No. 2, 2013, pág. 107–120

# On authomorphisms of extremal type II codes

ISMAEL GUTIÉRREZ GARCÍA<sup>*a*\*</sup>, DARWIN VILLAR SALINAS<sup>*b*</sup>

 $^{a}$ Universidad del Norte, Departamento de Matemát<br/>cias y Estadística, Barranquilla, Colombia.

 $^{b}$  RWTH-Aachen University, Department of Mathematics, Aachen, Germany.

**Abstract.** In this article we present some techniques to determine the types of automorphisms of extremal doubly even binary self-dual codes, also called extremal type II codes, with parameters [24, 12, 8], [48, 24, 12] and [120, 60, 24]. We aim to obtain information about the automorphism group considering the exclusion of some prime numbers from its order.

*Keywords*: Binary codes, self-dual codes, doubly even codes, extremal codes and automorphisms of codes.

MSC2010: 11T71, 20B25, 94B60.

# Sobre automorfismos de códigos extremales de tipo II

**Resumen.** En el presente artículo se muestran algunas técnicas para obtener tipos de automorfismos de los códigos binarios auto-duales, doblemente pares y extremales, también denominados extremales de tipo II, con parámetros [24, 12, 8], [48, 24, 12] y [120, 60, 24]. El objetivo central es obtener información sobre el correspondiente grupo de automorfismos a partir de la exclusión de algunos números primos de su orden.

**Palabras claves**: Códigos binarios, códigos auto-duales, códigos doblemente pares, códigos extremales, automorfismos de códigos.

# 1. Introduction

Extremal binary doubly even self-dual codes are one of the most outstanding areas of study in the classical theory of algebraic codes. To mention a few of them we have the [8, 4, 4]-Hamming code, the [24, 12, 8]-Golay code and the [48, 24, 12]-code, fully characterized, which correspond to a cyclic quadratic residue code (QR-code), up to equivalence. Mallows and Sloane proved in [14] that for large lengths such codes don't exist. Nevertheless an explicit upper bound was not established. Later Rains showed in [16] that any extremal binary self-dual code C, with length a multiple of 24, is also a doubly even code. It is then of special interest to study extremal binary doubly even self-dual codes with parameters  $[24m, 12m, 4m + 4], m \in \mathbb{N}$ . The best upper bound for the length of this

<sup>\*</sup> Corresponding author: *E-mail*: isgutier@uninorte.edu.co.

Received: 16 April 2013, Accepted: 02 September 2013.

kind of codes, though somehow loose, was determined by Zhang [19] in 1999. He proved that extremal binary doubly even self-dual codes C of length 24m don't exist if m > 153.

If m = 3, 4 or m=5, then we get extremal binary doubly even self-dual codes with parameters [72, 36, 16], [96, 48, 20] or [120, 60, 24], respectively. The existence of these codes is a longstanding open problem [17].

Another interesting problem in this context is the characterization of the automorphism group of the codes given C of length n. A permutation of degree n, let us say  $\sigma$ , is an automorphism of C if its action over a vector in C is also in the code. This is, Cis invariant under the action of  $\sigma$ . The set of such permutations with the composition forms a group, that we will denote by  $\operatorname{Aut}(C)$ .

In general the results that provide information about the automorphism group of an extremal binary doubly even self-dual code are very restrictive. For instance, the automorphism group of the Hamming codes with dimension n - k is  $\operatorname{GL}(k, \mathbb{F}_q)$ , the general linear group over  $\mathbb{F}_q$ .

The [24, 12, 8]-Golay-code has the sporadic simple Mathieu-group  $M_{24}$  as its automorphism group [12, Ch. 20, Corollary 5] and finally the extended quadratic residue [48, 24, 12]-code has the projective special linear group PSL(2, 23) [11, Theorem 6].

The next case is m = 3; this yields C the binary self-dual [72, 36, 16]-code. It has been proved in [6] and [15] that its automorphism group has order at most 36. In particular, the automorphism group is solvable. Furthermore Bouyuklieva, O'Brien, Willems [6] and Borello [3] proved that the only primes that can divide  $|\operatorname{Aut}(C)|$  are 2, 3 and 5. Recently Borello [2] proved that  $|\operatorname{Aut}(C)|$  if non-trivial, has no element of order 6. Finally the same author, Dalla Volta and Nebe proved in [4] that the automorphism group of C does not contain either the symmetric group of degree 3, the alternating group of degree 4 or the dihedral group of order 8.

For m = 4, C is a binary self-dual [96, 48, 20]-code; it is known that only the primes 2, 3 and 5 can divide |Aut(C)|, see [8], [7].

And if m = 5 we have a binary self-dual [120, 60, 24]-code. De la Cruz, et al. [5] showed that in a putative binary self-dual [120, 60, 24] code C an automorphism of order 3 has not fixed points,  $|\operatorname{Aut}(C)| \leq 920$  and  $\operatorname{Aut}(C)$  is solvable if it contains an element of prime order  $p \geq 7$ . Moreover, the alternating group of degree 5 is the only non-abelian composition factor which may occur in  $\operatorname{Aut}(C)$ .

In this paper we give a general idea of some of the techniques used to analyze extremal binary self-dual codes with small parameters, which we then apply to the codes for m = 1, 2 and 5. So we obtain a characterization of the automorphism groups for the first two cases and reducing the list of primes that can divide the order of Aut(C) for the later case.

### 2. Preliminaries

Let  $\mathbb{F}_q$  be a finite field with q elements and  $n \in \mathbb{N}$ . A k-dimensional subspace C of  $\mathbb{F}_q^n$  is called a [n, k]-lineal code over  $\mathbb{F}_q$ . The elements of C are codewords, and if q = 2 or q = 3 we say that C is a binary code or ternary, respectively. The parameter n is called the length of C.

For  $x = (x_1, \ldots, x_n), y = (y_1, \ldots, y_n) \in \mathbb{F}_q^n$  we define

$$d(x,y) := |\{j \mid 1 \le j \le n, \ x_j \ne y_j\}|;$$

d is called the **Hamming** distance between x and y. It can be easily verified that d is a metric and that it is invariant under translations. This is, for every  $x, y, z \in \mathbb{F}_q^n$  it is true that

$$d(x+z, y+z) = d(x, y).$$

Another important parameter of a code C is its **minimum distance** d(C), defined as

$$d(C) := \min\{d(x, y) \mid x, y \in C, \ x \neq y\}, \text{ if } |C| > 1, \tag{1}$$

$$d(C) := 0, \text{ if } |C| = 1.$$
 (2)

If C is a [n, k]- linear code over  $\mathbb{F}_q$  with minimum distance d(C) = d, then we say that C is a [n, k, d]-code over  $\mathbb{F}_q$ , or simply we write  $[n, k, d]_q$ -code. The parameters [n, k, d] are called the **fundamental** parameters of C.

The weight  $\operatorname{wt}(x)$  of  $x \in \mathbb{F}_q^n$  is defined as the number of non-zero components in x. We define the minimum weight  $\operatorname{wt}(C)$  of C as

$$wt(C) := \min\{wt(x) \mid 0 \neq x \in C\}, \text{ if } C \neq \{0\},$$
(3)

$$wt(C) := 0, \text{ if } C = \{0\}.$$
 (4)

From the invariance under translation of d we get that

$$\operatorname{wt}(C) = \operatorname{d}(C).$$

Let C be a [n,k]-code over  $\mathbb{F}_q$ . If  $k \geq 1$ , then a  $k \times n$ -matrix G over  $\mathbb{F}_q$  is called a **generator** matrix of C, if

$$C = \mathbb{F}_q^k G = \{(u_1, \dots, u_k)G \mid u_j \in \mathbb{F}_q\}.$$

In particular, it is possible to show that the  $\operatorname{Rang}(G) = \dim_{\mathbb{F}_q}(C)$ . If k < n, then a  $(n-k) \times n$ -matrix H over  $\mathbb{F}_q$  is called a **parity check matrix** of C if

$$C = \{ u \in \mathbb{F}_q^n \mid Hu^t = 0 \}.$$

It is clear that the rank of H is  $n - \dim_{\mathbb{F}_q}(C)$ , which is, n - k. We say that G, a generator matrix of a code C, is in its **standard form** if it can be written as

$$G = (I_k \mid B),$$

where  $I_k$  represents the identity matrix of size k over  $\mathbb{F}_q$ ; then a matrix in its standard form is also in its reduced row echelon form.

The canonical inner product on  $\mathbb{F}_q^n$  is defined by

$$(u \mid v) := \sum_{j=1}^{n} u_j v_j,$$

for  $u = (u_1, \ldots, u_n)$  and  $v = (v_1, \ldots, v_n)$  in  $\mathbb{F}_q^n$ . Obviously this is a non-degenerate symmetric bi-linear form in  $\mathbb{F}_q^n$ .

Then, with this inner product defined, it makes sense to introduce the notion of the **dual** of a code. We define the dual  $C^{\perp}$  of C, as usual:

$$C^{\perp} := \{ u \in \mathbb{F}_q^n \mid (u \mid c) = 0, \ \forall c \in C \}.$$

If  $C \subseteq C^{\perp}$ , then it is said that C is **self-orthogonal**, and if  $C = C^{\perp}$ , it is called **self-dual**. From linear algebra we know that

$$\dim_{\mathbb{F}_a}(C) + \dim_{\mathbb{F}_a}(C^{\perp}) = n.$$

Due to this, if C is a [n, k]-code over  $\mathbb{F}_q$ , then  $C^{\perp}$  is a  $[n, n-k]_q$ -code. In particular, if C is self-dual, then n = 2k.

Let  $r \in \mathbb{N}$ . A code C is called *r*-divisible, if for every  $c \in C$  it is true that  $r \mid wt(c)$ . In particular, a 2-divisible code is named even and a 4-divisible a **doubly even**.

Among the self-dual codes there exists a special classification depending on the field over which they are defined and their r-divisibility, as it follows: If C is a self-dual code over  $\mathbb{F}_q$  and r-divisible, with r > 1, then we say that C is a code of

- (a) type I if q = 2 and C is not doubly even, that is,  $r \neq 4$ .
- (b) **type II** if q = 2 and C is doubly even.
- (c) type III if q = 3 and is also 3-divisible, by being self-dual.
- (d) type IV if q = 4 and therefore even as well.

A theorem from Gleason, Pierce and Turyn [1, Part XI], [9] guarantees that, if s > 1 divides the weight of each *codeword* in a non-trivial binary self-dual code, then either s = 2 or s = 4. The binary self-dual codes satisfy naturally this condition, when s = 2. Type II codes only exist if n is a multiple of eight.

A theorem proved by Mallows and Sloane [14, Theorem 2] shows that the minimum distance d of a binary self-dual [n, k, d]-code satisfies the inequality:

$$d \le 4 \left\lfloor \frac{n}{24} \right\rfloor + 4, \text{ if } n \not\equiv 22 \mod 24,$$
$$d \le 4 \left\lfloor \frac{n}{24} \right\rfloor + 6, \text{ if } n \equiv 22 \mod 24,$$

where  $\lfloor x \rfloor$  denotes the integer part of x. The codes that reach this bound are called **extremals**.

We write  $\operatorname{Sym}(n)$  to represent the symmetric group of order  $n, x = (x_1, \ldots, x_n) \in \mathbb{F}_q^n$ and  $\sigma \in \operatorname{Sym}(n)$ . Let's define the action of  $\sigma$  on  $\mathbb{F}_q^n$  by

$$\sigma(x) := (x_{\sigma(1)}, \dots, x_{\sigma(n)}), \ x \in \mathbb{F}_q^n.$$

If C is a binary code and  $\sigma(x) \in C$ , for every  $x \in C$ , then  $\sigma$  is called an **automorphism** of C. The set of all the automorphisms of C is the **automorphism group** of C and it is denoted by Aut(C).

Finally, if C is a [n, k]-code over  $\mathbb{F}_q$  and  $\sigma \in \operatorname{Aut}(C)$  is of order p, with p a prime number, then we say that  $\sigma \in \operatorname{Sym}(n)$  has the type p - (c, f) if  $\sigma$  has c p-cycles and f fixed points.

# 3. Cited results

Let C be a linear code of length n and  $\sigma \in \operatorname{Aut}(C)$  of type p - (c, f), say

$$\sigma = \Omega_1 \cdots \Omega_c \Omega_{c+1} \cdots \Omega_{c+f},\tag{5}$$

where  $\Omega_1, \ldots, \Omega_c$  are the *p*-cycles and  $\Omega_{c+1}, \ldots, \Omega_{c+f}$  the fixed points. Then, we define:

$$F_{\sigma}(C) := \{ u \in C \mid \sigma(u) = u \},\tag{6}$$

$$E_{\sigma}(C) := \{ v \in C \mid wt(v|_{\Omega_i}) \equiv 0 \mod 2, i \in \{1, \dots, c+f\} \}.$$
(7)

Let  $\pi$  be the function  $\pi: F_{\sigma}(C) \longrightarrow \mathbb{F}_2^{c+f}$  defined by

$$u \mapsto (\pi(u))_i := u_j$$

where  $j \in \Omega_i$ . In the forthcoming  $\overline{F_{\sigma}(C)}$  will stand for  $\pi(F_{\sigma}(C))$ .

Now we give some facts about  $F_{\sigma}(C)$ ,  $E_{\sigma}(C)$  and  $\sigma \in Aut(C)$ . Let  $\sigma$  be as in (5); then for  $u = (u_1, \ldots, u_n)$  we define

$$u|_{\Omega_i} := (u_{\Omega_{i1}}, \dots, u_{\Omega_{il}}),$$

with  $\Omega_j = (\Omega_{j1} \dots \Omega_{jl})$ , being  $l \in \{1, p\}$ . Therefore, if  $\sigma = (123)(456)(789)$ . for example, and

u = 00011111100000000011000,

then  $u|_{(123)} = (000)$  and  $u|_{(456)} = (111)$ . Besides, note that by definition if  $u \in E_{\sigma}(C)$ and  $f \neq 0$ , then  $u|_{\Omega_s} = 0$  for each  $s \in \{c+1, \ldots, c+f\}$ . If  $\sigma = (123)(456)(789)(101112)$ and

u = 10100000101011011000000,

then

$$\sigma(u) = (11000000110011011000000).$$

In this case note that  $u \notin F_{\sigma}(C)$ , since  $u \neq \sigma(u)$ . Moreover, we notice from the example that if  $u \in C \cap F_{\sigma}(C)$ , then  $u_{\Omega_{jl}} \equiv u_{\Omega_{jk}} \mod 2$ , for every  $\Omega_{jl}, \Omega_{jk} \in \Omega_j, j \in \{1, \ldots, c+f\}$ . Finally,  $F_{\sigma}(C) \cup E_{\sigma}(C) \subseteq C$ ; then, if C is doubly even, both  $F_{\sigma}(C)$  and  $E_{\sigma}(C)$  are doubly even as well. And if C is self-orthogonal then both subcodes are also self-orthogonal.

**Lemma 3.1** ([10, Lemma 1]). Let C be a self-dual code of length n. Then  $\overline{F_{\sigma}(C)}$  is selfdual of length n - c(p-1). Moreover, if C is doubly even and  $p \equiv 1 \mod 4$  or f = 0, then  $\overline{F_{\sigma}(C)}$  is a 4-divisible code.

**Corollary 3.2.** Let C be a binary self-dual doubly even code and  $\sigma \in Aut(C)$  of type p - (c, f), with p odd. If  $p \equiv 1 \mod 4$  and  $p - 1 \not\equiv 0 \mod 8$ , then c is even.

*Proof.* Since C is self-dual and doubly even, by lemma 3.1 it is true that  $\overline{F_{\sigma}(C)}$  is a type II code. Thus, by [9] its length is divisible by eight. Then  $n - c(p-1) \equiv 0 \mod 8$ . If we also have that  $p-1 \equiv 0 \mod 4$  and  $p-1 \not\equiv 0 \mod 8$ , since  $n \equiv 0 \mod 8$ , it follows that  $c \equiv 0 \mod 2$ , that is, c is even.

**Lemma 3.3.** Let C be a binary code of length n and  $\sigma \in Aut(C)$  of type p - (c, f). Then

$$C = F_{\sigma}(C) \oplus E_{\sigma}(C).$$

If C is in addition self-dual, then

$$\dim_{\mathbb{F}_2} E_{\sigma}(C) = \frac{(p-1)c}{2}.$$

Moreover, the multiplicative order of  $2 \in \mathbb{Z}_p$  divides  $\dim_{\mathbb{F}_2} E_{\sigma}(C)$ . In particular, if C is self-dual and 2 is a primitive root modulo p, then c is even.

*Proof.* Let  $v \in C$  and define  $w := v + \sum_{i=0}^{p-1} \sigma^i(v)$ . We know that

$$\operatorname{wt}(\sigma^{i}(v)|_{\Omega_{j}}) = \operatorname{wt}(\Omega^{i}_{j}(v)|_{\Omega_{j}}) = \operatorname{wt}(v|_{\Omega_{j}}),$$

for every  $i \in \{0, \ldots, p-1\}$ ,  $j \in \{1, \ldots, c+f\}$ , because two distinct cycles are disjoint, this is,  $\Omega_l \cap \Omega_s = \emptyset$  for  $l \neq s$  so that  $\Omega_j$  only reorganizes the coordinates of v, and this does not alter its weight.

For  $\sigma = \Omega_1 \dots \Omega_{c+f} \in Aut(C)$  we get that

$$w|_{\Omega_j} = v|_{\Omega_j} + \sum_{i=0}^{p-1} \sigma^i(v)|_{\Omega_j}, \text{ for every } j \in \{1, \dots, c+f\}.$$

C is binary, then it is even. In consequence,

$$\operatorname{wt}(w|_{\Omega_j}) = \operatorname{wt}\left(\sum_{i=0}^p \sigma^i(v)|_{\Omega_j}\right) - 2k,$$

but the order of  $\sigma$  is p and  $k(v, \Omega_i)(k$  depends on v and  $\Omega_i)$ . This is,

$$\operatorname{wt}(w|_{\Omega_j}) = (p+1)\operatorname{wt}(v|_{\Omega_j}) - 2k$$

and since p is an odd prime it follows that

$$\operatorname{wt}(w|_{\Omega_j}) \equiv 0 \mod 2$$

for each  $j \in \{1, \ldots, c+f\}$ , that is  $w \in E_{\sigma}(C)$ . Note here that

$$\sigma\left(\sum_{i=0}^{p-1}\sigma^{i}(v)\right) = \sum_{i=0}^{p-1}\sigma^{i+1}(v)$$
$$= \sum_{i=0}^{p-1}\sigma^{i}(v).$$

This shows that  $\sum_{i=0}^{p-1} \sigma^i(v) \in F_{\sigma}(C)$ . Hence, for every  $v \in C$  it is true that

$$v = \sum_{i=0}^{p-1} \sigma^i(v) + w \in F_{\sigma}(C) + E_{\sigma}(C)$$

(note that C is a vector space over a field of characteristic two, then v = -v for every  $v \in C$ ).

Let's prove next that  $F_{\sigma}(C) \cap E_{\sigma}(C) = \{0\}$ . Let  $v \in F_{\sigma}(C) \cap E_{\sigma}(C)$ ; then  $\sigma(v) = v$  and  $\Omega_j(v)|_{\Omega_j} = \Omega_j(v)$ , v of even weight. As each  $\Omega_j$  is a cycle of odd length, we have  $v_l = 0$  for every  $l \in \Omega_j$ ,  $j \in \{1, \ldots, c+f\}$ , this is, v = 0. Thus,

$$C = F_{\sigma}(C) \oplus E_{\sigma}(C).$$

Besides, if C is self-dual, then by Lemma 3.1 we get that  $F_{\sigma}(C)$  is also self-dual. Hence, since

$$\dim_{\mathbb{F}_2} C = \dim_{\mathbb{F}_2} F_{\sigma}(C) + \dim_{\mathbb{F}_2} E_{\sigma}(C),$$

it follows that

$$\dim_{\mathbb{F}_2} E_{\sigma}(C) = \frac{1}{2}n - \frac{1}{2}(n - c(p - 1)) = \frac{1}{2}c(p - 1).$$

And as the only vector of  $E_{\sigma}(C)$  fixed by  $\sigma$  is 0, it is true that

$$p \mid (2^{\dim_{\mathbb{F}_2} E_{\sigma}(C)} - 1),$$

thus

$$2^{\dim_{\mathbb{F}_2} E_{\sigma(C)}} \equiv 1 \bmod p.$$

Let  $c \in C$ ,  $\sigma \in Aut(C)$ ; then we define:

$$O(c) := \{ \sigma^i(c) \mid i \in \mathbb{Z} \} \implies |O(c)| := \begin{cases} 1, & c \in F_{\sigma}(C) \\ p, & c \notin F_{\sigma}(C) \end{cases}$$

Moreover, we could define an equivalence relation over C as it follows: For  $c,c' \in C$  let

$$c \sim c' \Leftrightarrow c' \in O(c)$$
  
$$\Leftrightarrow \exists i \in [0, p-1] \cap \mathbb{Z} \text{ such that } c' = \sigma^i(c).$$

Clearly the cosets of C induced by this relation are O(c), with  $c \in C$ . Then we get that

$$\bigcup_{c \in C} O(c) = \left(\bigcup_{c \in F_{\sigma}(C)} O(c)\right) \cup \left(\bigcup_{c \notin F_{\sigma}(C)} O(c)\right)$$

In this way  $|C| = |F_{\sigma}(C)| + s \cdot p$ , where  $s \in \mathbb{Z}$ ; since we proved that  $C = E_{\sigma}(C) \oplus F_{\sigma}(C)$ , it follows that

$$2^{\dim_{\mathbb{F}_2} E_{\sigma}(C) + \dim_{\mathbb{F}_2} F_{\sigma}(C)} = 2^{\dim_{\mathbb{F}_2} F_{\sigma}(C)} + sp,$$

or equivalently,

$$2^{\dim_{\mathbb{F}_2} E_{\sigma}(C) + \dim_{\mathbb{F}_2} F_{\sigma}(C)} \equiv 2^{\dim_{\mathbb{F}_2} F_{\sigma}(C)} \mod p;$$

but we know p is odd, then it is equivalent to say that

$$2^{\dim_{\mathbb{F}_2} E_{\sigma}(C)} \equiv 1 \bmod p.$$

Finally, since  $2^{(p-1)} \equiv 1 \mod p$ , by Fermat's little theorem, we get  $c/2 \in \mathbb{N}$ , that is c is even.

**Remark 3.4.** If p is an odd prime number and we write s(p) to name the smallest natural number such that

$$p \mid (2^{s(p)} - 1),$$

then, as a consequence from the previous lemma, we obtain the next result:

**Corollary 3.5.** Let C be a binary self-dual doubly even code and  $\sigma \in Aut(C)$  of type p - (c, f), with p odd. If s(p) is even, then c is even, too.

Using the last lemma it is possible to obtain a generator matrix G for C in the form

$$G = \begin{pmatrix} fixed \\ points \\ \hline X & Y \\ \hline A & 0 \end{pmatrix} \quad \begin{cases} span(F_{\sigma}(C)) \\ span(E_{\sigma}(C)). \end{cases}$$

**Lemma 3.6** ([10, Lemma 3]). Let C be a binary self-dual [n, k, d]-code with  $\sigma \in Aut(C)$  of type p - (c, f). Then:

- (a) If  $f \ge 2d$ , then  $2d 2 \log_2(d) \le \frac{1}{2}(f + c)$ .
- (b) If f < 2d, then  $\frac{1}{2}(f-c) \le 1 + \log_2(\frac{d}{2d-f})$ .
- (c) If  $pc \leq 2d$ , then or
  - I. d = 4, p = 3, c = 2 or

II. 
$$d = 4, p = 7, c = 1.$$

**Theorem 3.7** (V. Yorgov [18]). Let C be a binary self-dual extremal doubly even [n, k]-code and  $\sigma \in Aut(C)$  of type p - (c, f), with p odd. Then  $c \ge f$ .

**Lemma 3.8** ([10, Lemma 4]). Let p be an odd prime such that  $1 + x + \ldots + x^{p-1}$  is irreducible over  $\mathbb{F}_2$ . Let  $\mathcal{P}$  be the set of all polynomials of even weight in  $\mathbb{F}_2[x]/\langle x^p - 1 \rangle$ . Then  $\mathcal{P}$  is a field with module  $x + x^2 + \ldots + x^{p-1}$ . Moreover, multiplying by  $1 + x^2 + x^3 + \ldots + x^{p-1} \in \mathcal{P}$  it corresponds to a right shift modulo the ideal  $\langle x^p - 1 \rangle$ .

We introduce another notation. For C self-dual with  $C = F_{\sigma}(C) \oplus E_{\sigma}(C)$ , as in Lemma 3.3,  $v \in E_{\sigma}(C)$  with

$$v|_{\Omega_i} = a_1 \dots a_p;$$

we also define

$$f(v|_{\Omega_i}) := a_1 + a_2 x + \ldots + a_p x^{p-1}$$
 for  $i \in \{1, \ldots, c\}$ .

Here f induces componentwise a function from  $E_{\sigma}(C)^*$  onto the ring  $(\mathbb{F}_2[x]/\langle x^p - 1 \rangle)^c$ , where  $E_{\sigma}(C)^*$  corresponds to  $E_{\sigma}(C)$  by erasing the fixed points. Thus, if the conditions of the previous lemma hold, then  $\mathcal{P} = \mathbb{F}_{2^{p-1}}$ . In fact, we have the following lemma.

**Lemma 3.9.** Let's suppose C is a self-dual code and  $1 + x + \ldots + x^{p-1}$  is irreducible over  $\mathbb{F}_2$ . Then  $f(E_{\sigma}(C)^*) \leq \mathbb{F}_{2p-1}^c$  of dimension  $\frac{c}{2}$ . In particular, c is even.

*Proof.* Clearly f preserves the addition. Let

$$\beta := 1 + x^2 + \ldots + x^{p-1} \in \mathbb{F}_2[x]/\langle x^p - 1 \rangle.$$

By lemma 3.8, multiplying a polynomial of even weight by  $\beta^i$  produces a cyclic shift *i* times to the right. Then,

$$1 + \beta = 1 + x,$$

that is,  $\{1 + \beta, \beta + \beta^2, \dots, \beta^{p-2} + \beta^{p-1}\}$  is a basis for  $\mathbb{F}_{2^{p-1}}$  over  $\mathbb{F}_2$ .

Hence, as

$$\beta^i f(v) = f(\sigma^i(v)) \in f(E_\sigma(C)^*)$$
 for each  $v \in E_\sigma(C)^*$ ,

we obtain that  $f(E_{\sigma}(C)^*)$  is closed under the scalar product induced from  $\mathbb{F}_{2^{p-1}}$ . Now by Lemma 3.3 we have that

$$\dim_{\mathbb{F}_2} E_{\sigma}(C)^* = \dim_{\mathbb{F}_2} E_{\sigma}(C) = \frac{1}{2}c(p-1).$$

Then, if  $\dim_{\mathbb{F}_{2^{p-1}}} f(E_{\sigma}(C)^*) = k$ , then  $(2^{p-1})^k = 2^{\frac{1}{2}c(p-1)}$ , and it follows that  $k = \frac{1}{2}c$ .

**Lemma 3.10.** If p = 3 and C is a doubly even self-dual code, then  $f(E_{\sigma}(C)^*)$  is self-dual over  $\mathbb{F}_4$  with the inner product given by

$$(u|v) := \sum_{i=1}^c u_i v_i^2$$

for every  $u, v \in \mathbb{F}_{2^{p-1}}^c$ . It is also true that  $d(E_{\sigma}(C)^*)$  is greater or equal to  $\frac{d}{2}$ .

Proof. Since C is doubly even, if  $v \in E_{\sigma}(C)^*$  then  $\operatorname{wt}(f(v)) = \frac{1}{2}\operatorname{wt}(v)$ , that is,  $\operatorname{wt}(f(v)) \equiv 0 \mod 2$ . Using the previous lemma and [13, Theorem 1] it follows that  $f(E_{\sigma}(C)^*)$  is self-dual and  $\operatorname{d}(f(E_{\sigma}(C)^*)) \geq \frac{d}{2}$ .

**Corollary 3.11.** If C is a doubly even self-dual code and p = 3, then  $\frac{d}{2} \le 2\lfloor \frac{c}{6} \rfloor + 2$ . Moreover, if C is extremal, then  $\frac{n}{24} \le \lfloor \frac{c}{6} \rfloor$ .

*Proof.* By [13] a quaternary self-dual code with parameters  $[c, \frac{c}{2}]$  has minimum distance at most  $2\lfloor \frac{c}{6} \rfloor + 2$ .

**Lemma 3.12** ([10, Lemma 7]). If p = 5 and C is a self-dual doubly even code, then  $f(E_{\sigma}(C)^*)$  is self-dual over  $\mathbb{F}_{16}$  with the inner product defined by

$$(u|v) := \sum_{i=1}^{c} u_i v_i^4$$

for every  $u, v \in \mathbb{F}_{2^{p-1}}^c$ .

In this way we also have the next corollary.

**Corollary 3.13.** If p = 5, C is a doubly even self-dual code and  $\Omega_i$  is cyclically organized, then  $f(E_{\sigma}(C)^*)$  is self-dual too. Besides, each codeword in  $f(E_{\sigma}(C)^*)$  with  $a_i$  components of the form  $\alpha^i(\alpha^{12j})$  fulfilling that  $a_0 \equiv a_1 \equiv a_2 \mod 2$ .

# 4. Exclusion of some prime numbers from the order of the automorphism group

# **4.1.** The case [24, 12, 8]

Let's  $\sigma \in Aut(C)$  be of type p - (c, f). The combinations that hold on first instance that 24 = pc + f are

| p  | с                      | f                          |
|----|------------------------|----------------------------|
| 3  | 1, 2, 3, 4, 5, 6, 7, 8 | 21, 18, 15, 12, 9, 6, 3, 0 |
| 5  | 1, 2, 3, 4             | 19, 14, 9, 4               |
| 7  | 1, 2, 3                | 17, 10, 3                  |
| 11 | 1, 2                   | 13,                        |
| 13 | 1                      | 11                         |
| 17 | 1                      | 7                          |
| 19 | 1                      | 5                          |
| 23 | 1                      | 1                          |

As a consequence from Yorgov's Lemma (Lemma 3.7) we get  $c \geq f,$  so the previous table is reduced to

| p  | c       | f       |
|----|---------|---------|
| 3  | 6, 7, 8 | 6, 3, 0 |
| 5  | 4       | 4       |
| 7  | 3       | 3       |
| 11 | 2       | 2       |
| 23 | 1       | 1       |

Using Corollary 3.5, since s(3) = 2 from the last table we exclude 3 - (7, 3), because c must be even. At the end we get

| p  | c    | f    |
|----|------|------|
| 3  | 6, 8 | 6, 0 |
| 5  | 4    | 4    |
| 7  | 3    | 3    |
| 11 | 2    | 2    |
| 23 | 1    | 1    |

Now we show a generator matrix for the binary self-dual doubly even [24, 12, 8]-code, obtained by considering an automorphism of type 3 - (6, 6). In this particular case,  $\dim_{\mathbb{F}_2} E_{\sigma}(C) = (p-1)c/2 = 6$  and  $\dim_{\mathbb{F}_2} F_{\sigma}(C) = (c+f)/2 = 6$ .

A generator matrix for  $F_{\sigma}(C)$  is given by

while a generator matrix for the subcode  $E_{\sigma}(C)$  is

•

Using Lemma 3.3, we get a generator matrix for C:

**4.2.** The case [48, 24, 12]

Analogously as in the later case, if  $\sigma \in Aut(C)$  is of type p - (c, f), then for this code C there are the following options:

| p  | с          | f      |
|----|------------|--------|
| 3  | 12, 14, 16 | 12,6,0 |
| 5  | 8          | 8      |
| 7  | 6          | 6      |
| 11 | 4          | 4      |
| 23 | 2          | 2      |
| 47 | 1          | 1      |

A generator matrix for the self-dual doubly even binary [48, 24, 12]-code, obtained from an automorphism of type 23 - (2, 2), is given by



### **4.3.** The case [120, 60, 24]

The existence of an extremal binary self-dual doubly even code with such parameters is currently an open problem.

Under the assumption that such code exists, let  $\sigma \in Aut(C)$  be of type p - (c, f). Then, for this code C we have the following possible types:

| p  | с                      | f                    |
|----|------------------------|----------------------|
| 3  | 30, 32, 34, 36, 38, 40 | 30, 24, 18, 12, 6, 0 |
| 5  | 20, 22, 24             | 20,10,0              |
| 7  | 15, 16, 17             | 15, 8, 1             |
| 11 | 10                     | 10                   |
| 19 | 6                      | 6                    |
| 23 | 5                      | 5                    |
| 29 | 4                      | 4                    |
| 59 | 2                      | 2                    |

This problem is part of a research project and there is little information available about the prime numbers that divide the order of Aut(C). However, a remark is that 11 - (10, 10), 17 - (7, 1) and 59 - (2, 2) are not possible types, as are not either some of order 3, 5 and 7.

# 5. Conclusion

Let C be a extremal binary self-dual code with parameters [24m, 12m, 4m + 4], with  $m \in \mathbb{N}$ . We present the following table as a summary, where in the last column we show the information about the automorphism group of the code C and also the prime numbers that probably divide its order. Besides,  $M_{24}$  denotes the sporadic Mathieu group that acts on a set of 24 objects.

| m   | Parameters    | Code    | Aut(C)               |
|-----|---------------|---------|----------------------|
| 1   | [24, 12, 8]   | Golay   | $M_{24}$             |
| 2   | [48, 24, 12]  | QR-code | PSL(2, 47)           |
| 3   | [72, 36, 16]  | ?       | 2, 3, 5, solvable    |
| 4   | [96, 48, 20]  | ?       | 2, 3, 5, solvable    |
| 5   | [120, 60, 24] | ?       | 2, 3, 5, 7, 11, 19,  |
|     |               |         | 23, 29, 59, solvable |
| :   | :             | •       | :                    |
| 153 |               |         |                      |

# References

 Assmus E. Jr., Mattson H. Jr., and Turyn R., "Research to develop the algebraic theory of codes", Air force Cambridge Res. Lab., Bedford, MA, Report AFCRL-67-0365 (1967).

- [2] Borello M., "The automorphism group of a self-dual [72, 36, 16] binary code does not contain elements of order 6", *IEEE Trans. Inform. Theory* 58 (2012), no. 12, 7240–7245.
- [3] Borello M. and Willems W., "Automorphism of order 2p in binary self-dual extremal codes of length a multiple of 24", IEEE Trans. Inform. Theory 59 (2013), no. 6, 3378–3383.
- Borello M., Dalla Volta F. and Nebe G., "The automorphism group of a self-dual [72, 36, 16] code does not contain S<sub>3</sub>, A<sub>4</sub> or D<sub>8</sub>", arXiv:1303.4899
- [5] Bouyuklieva S., De la Cruz J. and Willems W., "On the automorphism group of a binary self-dual [120, 60, 24] code", Appl. Algebra Engrg. Comput. 24 (2013), no. 3-4, 201–214.
- [6] Bouyuklieva S., O'Brien E. and Willems W., "The automorphism group of a binary selfdual doubly-even [72, 36, 16] code is solvable", *IEEE Trans. Inform. Theory* 52 (2006), no. 2, 4244–4248.
- [7] De la Cruz J. and Willems W., "On extremal self-dual codes of Length 96", IEEE Trans. Inform. Theory 57 (2011), no. 10, 6820–6823.
- [8] Dontcheva R., "On the doubly-even self-dual codes of length 96", IEEE Trans. Inform. Theory 48 (2002), no. 7, 557–560.
- [9] Gleason A.M., "Weight polynomials of self-dual codes and the MacWilliams identities", 1970 Actes du Congrès International des Mathématiciens, vol 3 (1971), 211–215.
- [10] Huffman W.C., "Automorphisms of codes with applications to extremal doubly even codes of length 48", *IEEE Trans. Inform. Theory* 28 (1982), 511–521.
- [11] Leon J.S, Masley J.M. and Pless V., "Duadic codes", IEEE Trans. Inform. Theory 30 (1984), 709–714.
- [12] MacWilliams F.J. and Sloane N.J.A., The theory of error-correcting codes, North-Holland, Mathematical Library Amsterdam, 1977.
- [13] MacWilliams F., Odluzko A., Sloane N. and Ward H., "Self-dual codes over GF(4)", Journal of Combinatorial Theory 25A (1978), 288–318.
- [14] Mallows C., and Sloane N., "An upper bound for self-dual codes", Information and Control 22 (1973), 188–200.
- [15] O'Brien E. and Willems W., "On the automorphism group of a binary self-dual doubly even [72, 36, 16] code", *IEEE Trans. Inform. Theory* 57 (2011), no. 7, 4445–4451.
- [16] Rains E., "Shadow bounds for self-dual codes", IEEE Trans. Inform. Theory 44 (1998), 134–139.
- [17] Sloane N., "Is there a (72; 36) d = 16 self-dual code?", IEEE Trans. Inform. Theory IT-19 (1973), no. 2, 251–251.
- [18] Yorgov V.Y. and Huffman W.C., "A [72, 36, 16] doubly even code does not have an automorphism of order 11", *IEEE Trans. Inform. Theory* 33 (1987), no. 5, 749–752.
- [19] Zhang S., "On the nonexsitence of extremal self-dual codes", Discrete Appl. Math. 91 (1999), no. 1-3, 277–286.