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Erythrocytes Dynamic Antigens Store (EDAS) is a new discovery. EDAS consists of

self-antigens and foreign (non-self) antigens. In patients with infectious diseases or

malignancies, antigens of infection microorganism or malignant tumor exist in EDAS.

Storing EDAS of normal individuals and patients in a database has, at least, two

benefits. First, EDAS can be mined to determine biomarkers representing diseases

which can enable researchers to develop a new line of laboratory diagnostic tests

and vaccines. Second, EDAS can be queried, directly, to reach a precise diagnosis

without the need to do many laboratory tests. The target is to find the minimum set of

proteins that can be used as biomarkers for a particular disease. A hypothetical EDAS is

created. Hundred-thousand records are randomly generated. The mathematical model

of hypothetical EDAS together with the proposed techniques for biomarker discovery

and direct diagnosis are described. The different possibilities that may occur in reality

are experimented. Biomarkers’ proteins are identified for pathogens and malignancies,

which can be used to diagnose conditions that are difficult to diagnose. The presented

tool can be used in clinical laboratories to diagnose disease disorders.

Keywords: mass spectrometry, disorders diagnosis, erythrocytes dynamic antigens store (EDAS), biomarkers,

computer tools in clinics, mathematical model

INTRODUCTION

The main purpose of proteomics-science is to identify and characterize protein expression in
biological systems. Proteomics is an extremely large field consisting of a different collection of
platforms. Mass spectrometry (MS) technology is an essential device in these platforms. MS has
a powerful use for protein identification and profiling experiments (Barnes and Gray, 2003; Pasini
et al., 2010; Timms et al., 2016; Wang et al., 2016; Bryk and Wisniewski, 2017).

Proteomics methods which are based on MS hold special promise for the discovery of novel
biomarkers that might form the foundation for new clinical tests. Advances in methods and
technology now enable construction of a comprehensive biomarker pipeline from five essential
process components: candidate discovery, quantification, verification, research assay optimization,
and biomarker validation (Rifai et al., 2006).

Biomarkers discovery depends on the comparison of different physiological states, phenotypes
done during controlling (diseased) patient groups. Biomarker discovery using MS techniques
requires sensitivity, mass accuracy, and reproducibility. The central role of mass spectrometry in
proteomics is shown in Figure 1 (Jain, 2010).
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FIGURE 1 | The central role of mass spectrometry in proteomics (Jain, 2010).

There are many definitions of biomarker (Naylor, 2003)1,2.
Meanwhile, we will state the definition of the National Cancer
Institute which defines the biomarker as “a biological molecule
found in blood, other body fluids, or tissues that is a sign of a
normal or abnormal process, or of a condition or disease3.”

One of the most important applications of specific biomarkers
is to find the tumor at an early stage even before clinical
symptoms are developed. Early detection of cancer would benefit
patients; as more tumors should be treated more efficiently
(Borrebaeck, 2017). This would certainly increase overall
survival. The World Health Organization (WHO) proposed that
millions of cancer patients could be saved from premature death
if early detection and treatment were available (World Health
Organization, 2007).

Apart from early diagnosis, biomarkers could also provide
physicians with actionable information leading to the evidence-
based selection of the optimal therapy (predictive biomarkers)
and improved and more precise prognostication of disease
progression (prognostic biomarkers)4. Ideally, protein
biomarkers should be found in a minimally invasive liquid
biopsy, such as a simple blood sample. However, the question is
whether blood contains enough information and whether we are
even close to this scenario? Tremendous efforts have been made
over recent decades to find protein cancer biomarkers of clinical
utility (Brennan et al., 2010; Neagu et al., 2011; Vlahou, 2013;
Franzi et al., 2014).

There is over a thousand single candidate cancer biomarkers
have been known for several years (Polanski and Anderson,
2007). However, the US Food and Drug Administration (FDA)
approved that none of these is routinely used for early clinical
diagnosis, except a few of them for example, CA125 (also known
as mucin 16) for ovarian cancer, prostate-specific antigen (PSA)
for prostate cancer and CA19-9 for pancreatic cancer have been
proposed to be useful for longitudinal disease monitoring (Füzey
et al., 2013; Pavlou et al., 2013; Menon et al., 2015).

1http://www.biomarkersconsortium.org
2Biomarkers in Risk Assessment: Validity and Validation, Environmental Health

Criteria 222, WHO
3http://www.cancer.gov/dictionary/?CdrID=45618
4Biomarkers in Risk Assessment: Validity and Validation, Environmental Health

Criteria 222, WHO

This work moves from single biomarker to multiple
biomarkers. Multiple biomarkers can provide significantly
increased diagnostic accuracy. Combinations of biomarkers
contain much more information than a single biomarker, where
the latter does not display sufficient discriminatory power to
substantially affect clinical decisions (Borrebaeck, 2017).

Rafea and Souchelnytskyi (2012) observed and described a
phenomenon related to the protein content of the Red Blood
Cell (RBC). It was noticed that the plasma contains antibodies
against some of RBC proteins, which are contained within
RBC cytoplasm of the same person. Many experiments are
done to understand the relation between RBC antigens content
and their relation to plasma antibodies. Those experiments
conclude that the antigens exist in the RBC cytoplasm have
relation to immune tolerance and that RBC has a dynamic
store of: body antigens [Tissue Specific Antigens (TSA)], food
antigens, environment antigens, bacterial commensals antigens,
and disease antigens whether microbial, viral, or tumors.
They named this store: Erythrocytes Dynamic Antigens Store
(EDAS). Figure 2, depicts the relationship between EDAS and
plasma antibodies.

The first application or invention which is based on
EDAS is named TB-KIT (PCT/EG/000013, 2017). TB-KIT is
Lateral Flow Chromatographic Assay (LFCA) for determining
the antigens concentration of Mycobacterium tuberculosis
complex, in the cytoplasm of blood erythrocytes (hemolysate)
(PCT/IB/054691, 2007; WO/059112, 2012). The test has been
verified and validated. It is currently available and in the process
of certification.

A random generation of EDAS was described in Rafea et al.
(2010) and Rafea and Souchelnytskyi (2012). Meanwhile, this
generation of the EDAS model was very simple and did not
reflect the real EDAS. It was based on classifying proteins into
normal and abnormal, only, without specifying the nature of
these proteins.

As a matter of fact, identifying proteins of RBC that reacts
with self-antibodies and storing the identity of those proteins in
a database for different diseases disorders and normal individuals
will help in many directions. The first aim is to efficiently
diagnose serious disease conditions as early as possible. This
helps to monitor the treatment of these diseases conditions.
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FIGURE 2 | The relation between plasma antibodies and EDAS.

Hence, in Rafea et al. (2010) and Rafea and Souchelnytskyi (2012)
they proposed a technique to discover biomarkers of diseases
based on EDAS. However, they did not show which disease or set
of diseases can be applied? They used one category of diseases.
Also, they did not make any experiment to verify the model.
In fact, classifying the antigens within the EDAS record will
help in many other directions which will be the subject of other
research articles.

The main challenge of our research is its ability in diagnosing
the disease at deep immunological levels. In effect, it will help
to accurately diagnose conditions that are difficult to diagnose.
This research is based on a new mathematical model of EDAS
to simulate reality. So that the biomarkers discovery technique
is developed using supervised machine learning algorithms.
The training datasets of bio-samples created hypothetically in
the database. The developed biomarkers discovery technique
described identifying a set of biomarkers of each disease.
The work is done for two categories of diseases; pathogens
and malignancies.

In the real world, the EDAS is identified in laboratories
through four steps. First, prepare affinity column
chromatography using proteins G and/or A. Second, add patient
plasma to the column which binds immunoglobulins (IgG).
Third, add patient erythrocytes hemolysate so that IgGs, which
act as a ligand, bind antigens representing EDAS. Last, elute the
column and collect EDAS proteins. The separation of EDAS
is followed by the identification of its proteins content using
LC/MS/MS (Pasini et al., 2010; Bryk and Wisniewski, 2017).

The developed mathematical model for EDAS is described in
more details in section 2. The developed biomarker discovery
technique based on the EDAS store is described in section 3.
The diagnostic model is described in section 4. Experiments
are described in section 5. Results and discussion are described

in section 6. Conclusion and future directions are explained
in section 7.

MATHEMATICAL DESCRIPTION OF EDAS

The mathematical description will include the mathematical
definition followed by the generation of hypothetical
EDAS domain.

Mathematical Definition
1) The set E= {ei, ei+1, . . . , en} where ei is a protein from EDAS

and belongs to the individual surrounding environment,
e.g., mosquito protein, where 1 ≤ i ≤ n.

2) The set E′ ⊂ E, there exit EDAS where E′ = E ∩ EDAS.
3) The set F = {fi, fi+1, . . . , fn} where fi is a protein from EDAS

and belongs to an individual’s food, where 1 ≤ i ≤ n.
4) The set F′ ⊂ F, there exit EDAS where F′ = F ∩ EDAS.
5) The set C = {ci, ci+1,..., cn} where ci is a protein from EDAS

and belongs to bacterial commensals, where 1 ≤ i ≤ n.
6) The set C′ ⊂ C and there exit EDAS where C′ = C ∩ EDAS.
7) The set T= {ti, ti+1, . . . , tm} where ti is a protein from EDAS

and is a Tissue-Specific Antigen, where 1 ≤ i ≤m.
8) The set T′ ⊂ T, there exist EDAS where T′ = T ∩ EDAS.
9) The set G = {Gi, Gi+1, . . . , Gk} where Gi is a pathogen that

can induce a disease, where 1 ≤ i ≤ k.
10) The set Gi ={gij, gij+1, . . . , giq} where gij is a protein in the

proteome of Gi, where 1≤ j ≤ q.
11) The set G′

i ⊂ Gi and there exist EDAS where G′
i = Gi

∩ EDAS.
12) The set M = {Mi, Mi+1, . . . , Mk} where Mi is a malignant

tumor, where 1≤ i ≤ k.
13) The set Mi ={mij, mij+1, . . . , miq} where mij is a protein in

the proteome of Mi, where 1≤ j≤ q.
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14) The set M′
i ⊂ Mi and there exist EDAS where M′

i = Mi
∩ EDAS.

15) The set HD = {hdi, hdi+1, . . . , hdr} where hdi is a
hypothetical EDAS, where 1 ≤ i ≤ r.

16) The set hdi = E′ ∪ F′ ∪ C′ ∪ T ′ ∪ G′
i ∪M′

i.

The Generation of Hypothetical EDAS
Domain
The EDAS domain is defined in the previous section as HD.
A patient EDAS: hdi is created according to the following
parameters and procedures:

• Initially, the parameters:

1) The number of elements (n) in E (environmental proteins)
is 3000 protein.

2) The number of elements (n) in F (food proteins) is
3000 protein.

3) The number of elements (n) in C (commensal bacterial
proteins) is 3000 protein.

4) The number of elements (m) in T (tissue-antigens) is
10,000 protein.

5) The number of pathogens (k) in (G) is 20 pathogen.
6) The number of proteins (q) for each pathogen (Gi) is

500 protein.
7) The number of malignancies (k) in (M) is 20 malignancy.
8) The number of proteins (q) for each malignancy (Mi) is

500 protein.

• Consequently, each patient hdi is generated through the
following steps:

1) The random generation of environment proteins: set E′

which has a number of elements (RE) generated randomly
using a Normal distribution from the set E.

2) The random generation of food proteins: set F′ has a
number of elements (RF) generated randomly using a
Normal distribution from the set F.

3) The random generation of commensal bacterial proteins:
set C′ which has a number of elements (RC) generated
randomly using a Normal distribution from the set C.

4) The random generation of Tissue-Specific Antigens: set T′

which has a number of elements (RT) generated randomly
using a Normal distribution from the set T.

5) The random generation of a pathogen or malignant tumor.
First, a random flag is generated that has a value between 0
and 2.

a) If flag= 0, there will be neither pathogen nor malignant
tumor proteins in hd i.

b) If flag= 1, then hdi will have pathogen proteins.

i. A pathogen “Gi” is selected randomly from the set G.
ii. The random generation of pathogen proteins: subset

G′
i has a number of elements (RGi) generated

randomly using a Normal distribution from the
set Gi.

c) If flag = 2, then hdi will have malignant
tumor proteins.

i. A malignant tumor “Mi” is selected randomly from
the set M.

ii. The random generation of malignant proteins: subset
Mi’ has a number of elements (RMi) generated
randomly using a Normal distribution from the
set Mi.

MATERIALS AND METHODS

The importance of this work is based on the fact that one can
diagnose precisely disease conditions that are difficult to diagnose
from a set of possible diseases using a single sample and a
single test. In this paper, the algorithms, which are documented
in (PCT/EG/000013, 2017), are modified to include different
categories of diseases; namely: pathogens and malignancies.

Biomarker Discovery Tasks
The main task is to discover a unique protein(s) associated with a
particular disease. Usually, we will find more than one protein.
Consequently, any of the unique proteins can be selected and
used as a biomarker in the diagnostic process and/or treatment
monitoring. However, to achieve a more accurate diagnosis a
set of biomarkers (proteins) can be used. Interestingly, the use
of unique protein(s) associated with a particular disease can be
used to develop a vaccine, a point that needs medical research.
Disease biomarkers are discovered from the RBC by knowing the
normal proteins. Normal proteins are discovered first in order
to differentiate them from the diseased ones. The biomarker
discovery algorithms are done in two main steps.

Step 1: Normal protein (P′ normal) extraction

Algorithm 1 shows the developed pseudocode of this step.
Firstly, collect the proteins (P normal) from patient records
that are diagnosed as normal (Normal Cases); then filter the
set (P normal) to exclude the proteins which have sharing
occurrence <5% in the records of normal cases. Those
proteins are excluded because their low occurrence may
indicate a biological error. In effect, those abnormal proteins
are not related to a particular disease. In some sense, this is
taken into consideration to mimic nature which is almost 95%
perfect. The remained (retained) proteins are considered as
Normal Proteins (P′ normal).

Step 2: Disease biomarkers (P′dj) extraction

Biomarker(s) is/are protein(s) which exist(s) in all patients’
records having the same diagnosis. Firstly, we detect common-
shared proteins for each disease (Pdj). Then we remove the
set of normal proteins (P′ normal) that exist in the common-
shared proteins (Pdj) for each disease (dj) separately as in the
equation (P′dj= Pdj– P′ normal).

First: Detecting common-shared proteins for a particular
disease (Pdj)

The main goal of this step is to detect the common-shared
proteins for each disease while using pathogen and malignant
tumor diseases. From patients’ records which are stored in
the database, we can select all records for each disease (dj)
separately. Then the set of all common-shared proteins in
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Algorithm 1 Detecting the Normal Proteins

#Input: normalCases be the list of all Normal Cases
#Output: normalProteinsbe the list of Normal proteins collected
with occurrence > 5% (P′ normal)
# the union of normal cases to get a single occurrence of each
protein in a list
Initialize collectedProteins as union of all proteins
in normalCases
Initialize normalProteinsas empty list
noCases= length (normalCases)

for each protein incollectedProteins,
if (protein in normalProteins)

incrProteinCounter(protein)
else

add protein to normalProteins
createProteinCounter(protein)
end if

end for
#filter collectedProteinsfrom low occurring proteins <5%
for each protein incollectedProteins

pPercent= getProteinCounter(protein) ∗ 100 / noCases
if (pPercent<= 5)

remove protein from normalProteins
end if

end for
end algorithm 1

those records is constructed (Pdj). Algorithm 2 shows the
developed pseudocode of this step.

Second: Discovering biomarkers′ proteins (P′dj)
In the last step of the biomarkers detection stage, we

attempt to discover biomarkers’ proteins for more than one
category of diseases. This step should exclude the set of normal
proteins (P′ normal) that exist in common-shared proteins
(Pdj) for each disease (dj) separately. This excluding is done
by differentiating the common-shared proteins from the set
of normal proteins (P′ normal–Pdj) to get (P′dj). The result
of each disease (dj) (pathogen and malignant tumor) is a
minimum set of proteins that can be used as biomarkers for
this disease. Algorithm 3 shows the developed pseudocode of
this step.

THE DIAGNOSTIC MODEL

In this section, we verify the consistency of the model through
generating a new case and testing how it can match with
the cases in the database. As described in the following
mathematical expression;

∀ Dis in DiseasesSet
if BiomarkerSet of Dis ∩ NewCase

6= Null then Diagnosis= Dis (1)
elseifDiseaseProteins of Dis ∩ NewCase

6= Null then Diagnosis= Dis (2)
else NewCase is Normal

Algorithm 2 Detecting the common-Shared Proteins of Each
Disease
#Input: diseasesList be the list of all Diseases
#Input: patientList be the list of all patients’ records
#Output: commonDiseasesProteins be the list of all
common-shared disease proteins (Pdj)
Initialize commonDiseasesProteins as empty lists with length
of diseasesList
Initialize allProteins as empty list
for each Disease in diseasesList

Initialize commonDiseasesProteins[Disease] empty list
diseaseRec= select all patient records of Disease
dr= first record in diseaseRec
# find proteins that exist in all records
foreachdisProtein in dr

flag= true
foreach rec indiseaseRec

ifdisProtein does not exist in rec
flag= false

endforeach
if (flag) add disProteintocommonDiseases
Proteins[Disease]

end foreach
endfor
return commonDiseaseProteins
end algorithm 2

Algorithm 3 Detecting the Biomarkers’ Proteins

#Input: normalProteins be the list of all Normal Proteins
(P′ normal)
#Input: commonDiseasesProtein be the list of common proteins
of each Disease (Pdj)
#Input: diseasesList be the list of all Diseases
#Output: biomarkersList (P′dj)
Initialize biomarkersList as empty lists with length of diseasesList

for each Disease
foreachdisProteinin commonDiseasesProteins[Disease]

if disProtein does not exist in the normalProteins
add to biomarkersList [Disease]

end foreach
endfor
return biomarkersList
end algorithm 3

In the first situation “Equation (1),” the integration is
straightforward; if the BiomarkerSet is a subset of the new
patient case where the intersection between the BiomarkerSet
and the new patient case gives a result not null. Then this patient
suffers from a corresponding disease (Dis).

If the BiomarkerSet is not a subset of the new patient
case, and the intersection between the BiomarkerSet and
the new patient is null, then the case cannot be directly
integrated into the database. In this situation, Equation
(2) is executed. If intersecting the already known diseases’
proteins set (not only the biomarkers proteins) with the
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FIGURE 3 | Workflow pipeline of the experiment.

new patient case is null, this indicates that this patient is
normal. However, if the intersection is not null this indicates
that this patient is suffering from the corresponding disease
(Dis). In effect, this indicates that the biomarker set is
incomplete. Consequently, the tool updates the BiomarkerSet
by re-executing the module of discovering biomarker of
disease (Dis).

EXPERIMENTS

The experiment is divided into three phases as shown in Figure 3:
the random generation of the EDAS data, the biomarkers
discovery phase, and the diagnostic phase. The data phase is
based on generating records for 100,000 cases. Each case is
generated randomly from the set of proteins as described in
the mathematical model in section Mathematical Description
of EDAS. Then the proposed biomarker discovery technique is
applied in these cases.

The experiment is performed on MacBook Pro, 2.9 GHz Intel
Core i5 and 8 GB of RAM, the database is created in Microsoft
SQL Server 2008, the algorithms are implemented in C#.

Phase 1: Random generation of EDAS data
In this step, the artificial dataset of proteins is generated

randomly based on Normal distribution and according to the
previous mathematical model.

Firstly, a pool of normal proteins is constructed, from the
following categories:

1. 3,000 environment proteins (P1, . . . ., P3000)
2. 3,000 food proteins (P3001, . . . ., P6000)
3. 3,000 bacterial commensal proteins (P6001, . . . ., P9000)
4. 10,000 tissue proteins (P9001, . . . ., P19000).

From this pool, the set of normal proteins (N) for each case is
created randomly as the following:

1. E′ is composed randomly from the set (E) using (RE). The arity
(RE) is randomly generated, where RE ≤ 3000 proteins.

2. F′ is composed randomly from the set (F) using (RF). The arity
(RF) is randomly generated, where RF ≤ 3,000 proteins.

3. C′ is composed randomly from the set (C) using (RC). The
arity (RC) is randomly generated, where RC≤ 3,000 proteins.

4. T′ is composed randomly from the set (T) using (RT). The
arity (RT) is randomly generated, where RT≤ 10,000 proteins.

The union of these sets (E′, F′, C′, T′) form the set of normal
proteins (N).

Secondly, a pool of pathogens proteins is generated like
the following:

• 20 types of pathogens (G1, . . . ., G20). Each one of them is
composed of N + Gi′. Gi′ is composed randomly from the
set (Gi) using (RGi). The arity (RGi) is randomly generated,
where RGi ≤ 500 proteins. This ensures the uniqueness of
the biomarkers.

Thirdly, a pool of malignancies proteins is generated like
the following:

• 20 types of malignancies (M1, . . . ., M20). Each one of them is
composed of N + Mi′. Mi′ is composed randomly from the
set (Mi) using (RMi). The arity (RMi) is randomly generated,
where RMi ≤ 500 proteins. This ensures the uniqueness of
the biomarkers.

Lastly, 100,000 transactions are created randomly as
the following:

A random function is operated to specify if the record is a
normal case, a pathogen case, or a malignancy case. In the normal
case, the set of proteins is generated randomly only from the pool
of normal proteins. In the pathogen case, the set of proteins is
generated randomly from the pool of normal proteins and the
pool of pathogens proteins. In the malignancy case, the set of
proteins is generated randomly from the pool of normal proteins
and the pool of malignancies proteins.

Phase 2: Applying the biomarker discovery technique on the
previously generated data in phase 1. The aim is to detect a set
of biomarkers for each disease separately from the randomly
generated records.

Phase 3: Applying the diagnostic model to the new generated
case. The aim is to diagnose a new case. Queries are done to
verify the diagnosis. Firstly, we generate a new case as described
in phase one. This new case is documented in the XML file.
Secondly, we can select this XML file. Thirdly, the case can be
evaluated. This is by comparing the set of proteins for this case
with the already known sets of biomarkers for all diseases disease
by disease. Lastly, we can save this new case with its diagnosis.

RESULTS AND DISCUSSION

In the experiment, there are 100,000 patients’ records stored in a
database. Where:

1. The number of normal cases is 30,719 records.
2. The numbers of patients who have pathogens are

27,539 records.
3. The numbers of patients who have malignant tumors are

41,742 records.

Tables 1, 2 shows the quantitative results.
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TABLE 1 | Results of the experiment for pathogens.

Disease Number of records Number of biomarker proteins

G1 1,371 31

G2 1,303 42

G3 1,346 25

G4 1,310 8

G5 1,390 41

G6 1,365 13

G7 1,395 55

G8 1,396 79

G9 1,399 6

G10 1,319 63

G11 1,346 16

G12 1,420 32

G13 1,404 55

G14 1,403 35

G15 1,407 24

G16 1,351 33

G17 1,333 17

G18 1,438 46

G19 1,403 10

G20 1,440 16

TABLE 2 | Results of the experiment for malignant tumors.

Disease Number of records Number of biomarker proteins

M1 2,063 30

M2 2,109 43

M3 2,083 30

M4 2,053 19

M5 2,035 35

M6 2,094 24

M7 2,062 116

M8 2,135 13

M9 1,982 23

M10 2,096 21

M11 2,040 29

M12 2,084 37

M13 2,076 28

M14 2,149 32

M15 2,130 11

M16 2,115 32

M17 2,059 85

M18 2,080 50

M19 2,116 26

M20 2,181 41

As shown in Table 1, the number of patients that suffered
from the disease (G1) was 1,371. After applying the proposed
algorithm, we observed that the number of biomarkers for
this disease is 31 proteins. In the case of disease (G15),
the number of patients that suffered from this disease
was 1,407. After applying the proposed algorithm, we

FIGURE 4 | Common-shared malignancy proteins.

TABLE 3 | The results of patients after diagnosis.

Patient number Patient Patient Patient Patient Patient

no. 1 no. 2 no. 3 no. 4 no. 5

Edas no. 1,958 1,888 1,939 2,069 2,010

Disease M10 G6 Normal G18 M8

Number of

biomarkers

21 13 Null 46 13

Number of

biomarkers

found

14 2 Null 45 2

Jaccard similarity 66.67% 15.38% Null 97.83% 15.38%

observed that the number of biomarkers for this disease is
24 proteins.

As shown in Table 2, the number of patients that suffered
from the disease (M2) was 2,109. After applying the proposed
algorithm, we observed that the number of biomarkers for
this disease is 43 proteins. In the disease (M18), the number
of patients that suffered from this disease was 2,080. After
applying the proposed algorithm, we observed that the number
of biomarkers for this disease is 50 proteins.

As shown in Figure 4, all patients who suffer frommalignancy
Mi have EDAS consists of N+Mi’ proteins, where N represents
the normal proteins, and Mi’ represents the malignancy proteins.
The intersection of all Mi cases after subtracting N from
their EDAS, produces a subset of common shared malignancy
proteins, Bi. In other words; Bi is a set of biomarkers profiling
malignancy Mi.

Each set of biomarkers is unique for a particular disease
because the biomarker uniqueness is inherent during disease
proteins generation. Obviously, diseases have a lot of proteins
that may be shared between diseases. However, those proteins
are not considered. Because of they are shared with commensal,
environment, food, and tissue proteins. We consider the proteins
that are specific for a particular disease.

The results of phase 3 are shown in Table 3. The results
contain some patients and some details about their health state
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FIGURE 5 | Biomarkers found from EDAS.

such as the patient number, the number of proteins (EDAS),
the disease infects for the patient (if found), the number of the
biomarkers of this disease, the number of the biomarkers of this
disease which found in the set of proteins (EDAS) of the patient,
and the Jaccard similarity analysis.

As shown in Figure 5, biomarkers of Mi represent the set of
biomarkers for a particular malignancy Mi. BF represents the
biomarker found at the EDAS of patient j. The intersected set
between the set of biomarkers for a malignancyMi and the EDAS
of patient j is considered as BF.

From this point, the Jaccard similarity can be calculated as
shown in Table 3. The Jaccard similarity (coefficient) (Fletcher
and Islam, 2018) is a term coined by Paul Jaccard to measure
similarities between sets. It is defined as the size of the
intersection divided by the size of the union of two sets. The
Jaccard similarity of

Cases Sets Jaccard similarity (%)

Patient 1 14/21 66.67
Patient 2 2/13 15.38
Patient 4 45/46 97.83
Patient 5 2/13 15.38

The decision of using a random selection of proteins to
generate the EDAS is essential. So that population difference
is covered. Lifestyle habits and behaviors affect human general
health, like cigarette smoking, excessive alcohol consumption,
excessive sunlight exposure, poor diet, lack of exercise, medical
drugs, change of hormones, radiation, viruses, bacteria, and
environmental chemicals. Chemical factors might be in the
air, water, food, and/or workplace. The genetic makeup is
essential so that these mentioned factors can lead to malignant
transformation (American Cancer Society, 2017; Fymat, 2017;
Iqbal, 2017; Ellberg et al., 2018; Ukawa et al., 2018). Because
of the complicated interplay of many habits and behaviors, it

is difficult to predict which combination of these habits and
behaviors is accountable for certain cancer. The cause of cancer
is still unknown and the human body’s readiness to be diseased
is unpredictable.

One of the important areas of research today is attempting
to identify the association between the habits and behavior of
an individual and diseases, specifically, Malignant Tumor. From
this point, this EDAS can be used to find the association between

normal proteins (environmental factors) and diseases that are
difficult to diagnose and propose justifications for these diseases
(further research). However, this model does not cover case
prognosis, i.e., malignancy staging or infection severity.

CONCLUSION

This paper is focused on issues related to the design and
implementation of advanced technology based on using mass
spectrometry in clinical practice. Its main purpose is to help in
diagnosing disease conditions in the early stages precisely. The
technique in this stage is based on hypothetical generated data.
The technique is tested by generating databases each with 100,000
cases covering 20 pathogens and 20 malignancies. The technique
conducted counts on random cases generation. In the future,
the database will be generated from real patients. Consequently,
the same code can be applied to discover biomarkers. Also, we
will attempt to find the association between normal proteins and
diseases by using association mining rule algorithms. Finally,
discovering unique protein(s) associated with a particular disease
can be used to develop vaccines which will be a very interesting
future direction.

The presented diagnostic model can be used in clinical
laboratories. In real life, the application can be initiated by some
cases (normal and abnormal) and then incremented during its
lifetime. The set of biomarkers of a particular disease will be
built incrementally by adding new cases. By the time the set of
biomarkers of a specific disease will be stable. The stability of the
biomarker set of a particular disease is the indicator of knowledge
completeness for this disease. In effect; the tool can be trusted
for diagnosis of a disease if its biomarker set is stable. Clinician
and Biologists will be the main users of the tool.
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