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Abstract. Compared with the traditional laparoscopic surgery, the preoperative planning of robot-assisted la-
paroscopic surgery is more complex and essential. Through the analysis of the surgical procedures and surgical
environment, the laparoscope arm preoperative planning algorithm based on the artificial pneumoperitoneum
model, lesion parametrization model is proposed, which ensures that the laparoscope arm satisfies both the
distance principle and the direction principle. The algorithm is divided into two parts, including the optimum
incision and the optimum angle of laparoscope entry, which makes the laparoscope provide a reasonable ini-
tial visual field. A set of parameters based on the actual situation is given to illustrate the algorithm flow in
detail. The preoperative planning algorithm offers significant improvements in planning time and quality for
robot-assisted laparoscopic surgery. The improved method which combines the preoperative planning algorithm
with deep deterministic policy gradient algorithm is applied to laparoscope arm automatic positioning for the
robot-assisted laparoscopic surgery. It takes a fixed-point position and lesion parameters as input, and outputs
the optimum incision, the optimum angle and motor movements without kinematics. The proposed algorithm
is verified through simulations with a virtual environment built by pyglet. The results validate the correctness,
feasibility, and robustness of this approach.

1 Introduction

With the development of robotic technology and application
of minimally invasive surgery (MIS), the laparoscopic MIS
robotic system has been widely used in surgical specialties,
such as urology (prostate, bladder and kidney cancer), gy-
necology (hysterectomy and myomectomy). Compared with
traditional laparoscopic surgery, robot-assisted laparoscopic
surgery displays high-definition, 3-D image of the lesion to
the surgeon via the console and allows the surgeon to per-
form complex operations by manipulating the master con-
trols. Robot-assisted laparoscopic surgery is more precision,
flexibility, and controllable than conventional techniques, so
it has become the research hotspot in recent years.

Although robot-assisted surgery has many advantages over
traditional surgery, there are also some thorny problems, such
as control switching between master controls and robotic
arms, real-time synchronization of master-slave position and
attitude, MIS robotic system preoperative planning. Besides,

reasonable preoperative planning can significantly reduce the
operation time; otherwise, it may increase surgical risks.

For MIS robotic system preoperative planning, scholars
have proposed many different methods, which are divided
into three parts: (1) A heuristic method based on surgeon ex-
perience. (2) A method based on the virtual surgical environ-
ment. (3) A method based on multi-objective optimization
algorithm.

Hanna et al. (1997a) investigated the impact of port place-
ment on endoscopic manipulations, especially knotting. The
optimal azimuth and elevation angles were obtained by com-
paring the execution time and performance quality score
of tying a surgeon’s knot (Hanna et al., 1997a). Austad et
al. (2001) completed the coronary artery bypass grafting pro-
cedures on pigs using the Zeus robot-assisted surgical sys-
tem. The Zeus system configurations, like port placement
and pigs’ position, were set based on recommendations from
hospitals and surgeon experience (Austad et al., 2001). Fer-
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zli and Fingerhut (2004) proposed recommendations of tro-
car placement for laparoscopic surgery. The abdominal cav-
ity is divided into six parts according to the operation area,
and recommendations are given according to different oper-
ations and patient posture characteristics (Ferzli and Finger-
hut, 2004). Pick et al. (2014) proposed an anatomic guide
of port placement for laparoscopic radical prostatectomy,
which was performed on the da Vinci robot-assisted surgi-
cal system. Compared to traditional port placement, the pu-
bic bone was used as optimal landmark (Pick et al., 2004).
Badani et al. (2008) proposed a novel technique of port place-
ment for robotic renal surgery, which aimed to maximize the
range of motion and eliminate external collisions (Badani et
al., 2008). Cestari et al. (2010) proposed a new method of
port placement for laparoscopic radical prostatectomy, which
used a nautical inclinometer and a homemade triangle mold
(Cestari et al., 2010).

The heuristic method based on the surgeon experience is
convenient and practical for the surgeon, so it is widely used
in clinical practice. However, this method is related to the
surgeon’s operating habits and requires extensive surgical ex-
perience. More importantly, the advantages of the surgical
robot system are not fully developed.

Hayashibe et al. (2005) developed the simulation system
for preoperative planning of abdominal surgery. The core of
the simulation system was kinematics and haptics; the ef-
fectiveness of preoperative planning was validated by the
surgeon’s evaluation (Hayashibe et al., 2005). Hayashibe et
al. (2006) developed a new simulation system with volume
rendering of medical images and automatic positioning by
kinematics (Hayashibe et al., 2006). Sun et al. (2007) devel-
oped a simulator of the da Vinci system, which was mainly
used for surgeon training. Its primary functions were the sim-
ulation of port placement and the practice of simple surgical
operations (Sun et al., 2007). Bauernschmitt et al. (2007) de-
veloped a simulator for port placement and enhanced guid-
ance in robot-assisted heart surgery. The simulator was com-
pleted off-line, the simulation model is established by using
the patient’s computed tomography (CT) images to get the
best ports position. Through this system, preoperative plan-
ning was optimized, the operation time was reduced, and op-
eration quality was improved (Bauernschmitt et al., 2007).
Konietschke et al. (2011) developed a simulator of the DLR
MiroSurge system, which used the VR-Map device to estab-
lish the simulator quickly. Its primary functions were pre-
operative optimization and intraoperative simulation (Koni-
etschke et al., 2011).

The method based on the virtual surgical environment vi-
sualizes the port placement and verifies the effect in advance.
Compared with the former method, this method simplifies
the steps of port placement and reduces the time required.
However, this method also requires surgeons with extensive
surgical experience, and due to the lack of analysis of sur-
gical robot performance and finite attempts, it is difficult to
obtain optimized preoperative planning.

Sun and Yeung (2007) proposed the selection of op-
timal port placement and the determination of optimal
robot attitude based on multi-objective optimization. This
method used two performance indices, the global isotropy
index (GII) and the efficiency index (EI). Through the inter-
action of these two indicators, the flexibility and operability
of the robot were improved, and the workspace and visual
space were also increased (Sun and Yeung, 2007). Azimian
et al. (2010) proposed the preoperative planning method for
robot-assisted minimally invasive CABG. This method used
sequential quadratic programming to implement the opti-
mization of kinematic and geometric requirements. In the
optimization process, individualized preoperative planning
can be achieved taking into account the surgeon’s experi-
ence (Azimian et al., 2010). Ma et al. (2014) proposed the
preoperative positioning method, which was mainly aimed at
the collision problem of the multi-arm system. It used the
maximum distance index to achieve collision-free optimal
preoperative positioning (Ma et al., 2014). Yu et al. (2014)
proposed the preoperative positioning method, which was
mainly aimed at cooperative cooperation between two instru-
ment arms. It used the percentage of collaboration workspace
to achieve the optimal cooperation between two manipula-
tors (Yu et al., 2014). Wang et al. (2016) proposed a preoper-
ative planning algorithm for robot-assisted minimally inva-
sive CABG. This algorithm used two performance indices,
isotropy index based on CV (IICV) and index of instrument
collaboration space (IICS), to implement the optimal port
placement selection and the manipulator poses determination
(Wang et al., 2016).

Compared with the former two methods, the method based
on multi-objective optimization algorithm is more scientific.
More importantly, in addition to the surgeon experience, the
robot’s characteristics are also taken into account, so the pre-
operative planning is more conducive to the operation.

In general, after obtaining the preoperative planning by
the above method, the joint variables of the manipulator are
obtained by inverse kinematics. At present, the telecentric
fixed-point positioning mechanism of the surgical robot sys-
tem is mostly an undriven mechanism, which needs to be
manually adjusted to the target position. Due to errors of
manual adjustment and mechanical kinematics parameters,
the actual preoperative planning is not the optimal solution
previously determined. Therefore, it is necessary to use a new
method to complete preoperative planning instead of manual
configuration.

Traditional manipulator control is to calculate joint vari-
ables by inverse kinematics of a given target position. At
present, its trend has turned to the end-to-end solution. In
other words, the controller learns diverse strategies directly
from sensors data, rather than relying on fixed strategies such
as kinematics (James and Johns, 2016; Otte et al., 2016;
Phaniteja et al., 2017; Gu et al., 2017; Mohammadi et al.,
2018). James and Johns (2016) proposed a method that took
images as its input and outputs motor movements and target
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position. Thus, the control of the 7-DOF robot arm can be re-
alized in a virtual environment without any prior knowledge
(James and Johns, 2016). The telecentric fixed-point posi-
tioning mechanism is a redundant mechanism; an accurate
kinematic inverse solution can only be obtained under ap-
propriate constraints. In order to improve the effect of preop-
erative planning, it is necessary to explore a new method to
tackle the problems caused by previous methods.

This paper proposes a laparoscope arm preoperative plan-
ning algorithm, which is based on the lesion parametrization
model and evaluation indexes. Besides, an improved method
based on reinforcement learning algorithm is proposed to
achieve preoperative laparoscope arm automatic positioning.
More importantly, it is a crucial step towards the automation
of robot-assisted laparoscopic surgery.

The rest of the paper is organized as follows. Section 2 in-
troduces surgical procedures and MIS robotic system. The la-
paroscope arm preoperative planning algorithm is introduced
in Sect. 3. The improved DDPG algorithm is introduced in
Sect. 4. The simulation results are presented in Sect. 5. Dis-
cussion and conclusion are given in Sects. 6 and 7, respec-
tively.

2 Robot-assisted surgery

2.1 The MIS procedures

The common MIS has three steps: (1) According to the actual
surgical needs, a surgeon makes several small incisions (usu-
ally 5–15 mm) and inserts a thin tube called trocar. The tro-
car is deployed as a means of introduction for laparoscope or
laparoscopic instruments, like scissors and graspers, to pro-
vide an access port during surgery. (2) Creation of a pneu-
moperitoneum by inflating the abdomen with carbon dioxide
to make a separation between organs and increase the operat-
ing space of surgical instruments. (3) The surgeon views the
magnified image of the patient’s internal organs provided by
laparoscope on a video monitor. Using different instruments,
the surgeon performs a series of surgical operations in the
pneumoperitoneum.

This paper takes laparoscopic cholecystectomy (LC) as
an example. The surgeon makes three incisions and inserts
trocar. In LC, it is always with the patient in a supine po-
sition. Three incisions are arranged in an isosceles triangle
for better operating space, as shown in Fig. 1. A laparoscope
is placed through a trocar, and specialized instruments are
placed through other trocars. By operating the laparoscope
and instruments, the surgeon delicately separates the gall-
bladder from its attachments to the liver and the bile duct
and then removes it through one incision.

2.2 Layout design of MIS robotic system

The MIS robotic system includes a master-slave manipulator
system and a depth camera. The slave manipulator consists

Figure 1. The schematic diagram of surgical incisions.

of one laparoscope arm and two instrument arms. Laparo-
scope arm is equipped with a laparoscope, and instrument
arms are equipped with different laparoscopic instruments.
Laparoscope arm and instrument arms are located on both
sides of the operating bed. A depth camera is installed above
the operating bed for acquiring the position of the incisions
and robotic arms, as shown in Fig. 2.

The three arms have the same mechanical structure. Each
arm is divided into three parts, the telecentric fixed-point po-
sitioning mechanism, the remote center of motion mecha-
nism and the end effector, as shown in Fig. 3. The first part
adjusts the spatial position of telecentric fixed-point by three
revolving joints and one linear joint. The second part adjusts
the position and posture of the end effector by the master ma-
nipulator operated by a surgeon; at its end, there is a versatile
quick-change mechanism for end effectors installation.

3 Laparoscope arm preoperative planning

One of the critical issues for MIS is preoperative planning,
including preparation for interventions and decision about
the optimum surgical incisions. Currently, the surgeon of-
ten uses trial-and-error method or experience-based to com-
plete preoperative planning, which may not meet the require-
ments of the optimum incisions. Therefore, it is necessary
to use preoperative planning algorithm instead of the previ-
ous method. The preoperative planning includes laparoscope
arm and instrument arms preoperative planning. This paper
studies the former, including the optimum incision and the
optimum angle of laparoscope entry.

3.1 The mathematical model of artificial
pneumoperitoneum

The mathematical model of pneumoperitoneum is estab-
lished before preoperative planning. The shape of artificial
pneumoperitoneum is approximately ellipsoid (Mulier et al.,
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Figure 2. The MIS robotic system.

Figure 3. The structure of the robotic arm.

2008; Oda et al., 2012), so the abdominal wall is simplified to
ellipsoid, defined as Eq. (1). The artificial pneumoperitoneal
coordinate frame is established by combining the patient’s
CT images and anatomy. According to anatomy, there are
three principal planes, namely the sagittal plane, the coronal
plane, and the transverse plane. In the coordinate frame, there
are also three reference planes, namely A plane, B plane,
and C plane. A plane coincides with the sagittal plane; B
plane coincides with the coronal plane; C plane is parallel to
the transverse plane, and the pneumoperitoneum is divided
equally by C plane. The origin of the coordinate frame is at
the intersection of three reference planes. xp-axis is defined
along the mediolateral direction; yp-axis is defined along the
superior-inferior direction; zp-axis is defined along the an-
teroposterior direction. In the coordinate frame, the mathe-
matical model of artificial pneumoperitoneum is established,

Figure 4. The coordinate frame and pneumoperitoneum model.

as shown in Fig. 4.
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During actual operation, the model parameters (ap, bp, cp)
are determined by the medical image and gas insufflation
volume. Suppose an adult’s chest width is 3.15 dm, chest
thickness is 2.45 dm, and chest length is 2.9 dm. The cor-
responding parameters in Fig. 6 are ap = 1.55, bp = 1.45,
h= 1.2 dm. Chen suggested that the gas insufflation volume
is about 3L (Chen, 1999). According to Eq. (2), calculate
cp = 2.27 dm.
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3.2 The lesion parametrization model

The surgeon should be clear about the information of the
surgical site, including lesion location, lesion anatomy, and
surrounding tissues. At present, the conventional method is
imaging (radiology) test, and the lesion model and its sur-
rounding environment are obtained by the 3-D reconstruction
technology. Describe the relationship between lesion and in-
cision in parametric form, as shown in Fig. 5. Plane τ repre-
sents the target operation plane, a represents the normal vec-
tor of the plane τ , d represents the distance from the lesion
to the laparoscope, β represents the angle between laparo-
scope visual axis and a, γ represents the laparoscope devia-
tion angle. So, the two principles of laparoscope arm preop-
erative planning can be expressed as follows: (1) Observation
distance principle: laparoscope-to-target distance d = 75–
150 mm, d ≤ the maximum joint variable of d7 (definition
in Fig. 3), and no barrier (Hanna et al., 1997b). (2) Observa-
tion direction principle: axis-to-target view angle, the smaller
β is, the better operative field is. When β = 0, the operative
field is optimum; in other words, the laparoscope visual axis
is perpendicular to the plane τ (Hanna and Cuschieri, 1999).
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Figure 5. The definition of lesion parameters.

3.3 The preoperative planning algorithm framework

Through the study of the mathematical model of artificial
pneumoperitoneum, lesion parametrization model and pre-
operative planning principles, the laparoscope arm preopera-
tive planning algorithm is proposed, as shown in Fig. 6, that
includes three stages: data processing and modeling, opti-
mum incision determination and optimum angle determina-
tion.

In the first stage, obtain patient information from the med-
ical images, and then establish the mathematical model of ar-
tificial pneumoperitoneum, and lastly determine the location
and lesion parametrization model. This stage is the basis of
the entire algorithm, and also the most time-consuming stage.

In the second stage, all allowable surgical incisions are ob-
tained from the first stage, and then the candidate incisions
are determined according to the two principles. The candi-
date base positions are obtained by the candidate incisions.
According to the actual situation of the operating room, se-
lect one of the positions as the base position. Combine can-
didate incisions and the base position to determine the opti-
mum incision.

In the third stage, the candidate entry angles are deter-
mined by combining the optimum incision, lesion location,
and initial entry angle. Determine the optimum angle accord-
ing to the observation direction principle. Since there may be
no direction in which the visual axis is perpendicular to the
plane τ , the minimum β is chosen as the optimum angle.

Finally, the laparoscope arm preoperative planning algo-
rithm is completed, including the optimum incision and the
optimum angle.

3.4 The candidate incisions

The telecentric fixed-point positioning mechanism has four
degrees of freedom; the mechanism diagram is shown in
Fig. 7. o4 is the telecentric fixed-point, o5 is the end of a
laparoscope, and α is determined by the remote center of mo-
tion mechanism. The prismatic joint is used to adjust the ver-
tical position of o4, and the three revolute joints are used to

Figure 6. Flow chart of the laparoscope arm preoperative planning
algorithm.

Figure 7. The mechanism diagram of the telecentric fixed-point
positioning mechanism.

adjust the horizontal position. Removing the prismatic joint,
it is a planar redundant mechanism. When o4 remains un-
changed, the motion trajectory of the laparoscope is a right
circular cone with specific apex at o4 and aperture π − 2α.
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Figure 8. The schematic diagram of candidate incisions.

First, candidate incisions are determined based on the
distance principle. Assume that the positions of the candi-
date incision and the lesion are Pi and Pl, respectively. If
d(PiPl)= |Pi−Pl| ≤ d7max, Pi satisfies the distance princi-
ple. Second, based on the direction principle, the candidate
incisions are located on the generatrix of a right circular cone
with specific apex at Pl and aperture π − 2α. So, candidate
incisions are incisions that satisfy the two principles. The fol-
lowing is a mathematical derivation of candidate incisions.

The Pl (xl, yl, zl) is obtained by imaging test; the candi-
date incisions are located on the intersection (red, Eq. 3) of
the abdominal wall (navy blue) and right circular cone with
specific apex at Pl (light blue), as shown in Fig. 8. The inter-
secting line is not a plane curve; it is projected to the plane
xpopyp for the convenience of research. The projection curve
(Eq. 4) is an ellipse whose expression can be obtained by fit-
ting four points on it. Go through Pl and make two planes
parallel to ypopzp and xpopzp, point m1, m2, m3 and m4 are
obtained, go through P z5l (xl, yl, z5) and make one plane par-
allel to xpopyp, point m5 and m6 are obtained, as shown in
Fig. 9 and Eqs. (5)–(7). The equation’s coefficients can be
obtained from any four points in the above six points, and
the remaining two points are used to verify the correctness
of them.

3.5 The candidate base positions

Besides, the base position also affects the surgical incisions.
Removing the prismatic joint, the telecentric fixed-point po-
sitioning mechanism is a 3-RRR planar redundant mecha-
nism. When o4 remains unchanged, it is simplified as a pla-
nar four-bar mechanism, as shown in Fig. 10. In this case, the
link length relationship determines whether the laparoscope
trajectory is a whole cone, which makes it possible to provide
the optimum operative field. In other words, o3o4 should be
rotated around o4 while o4 is unchanged, that is, the o3o4 is
a crank. Based on the conditions of crank existence, the link
length relationship is determined. Assume that the length of
link o1o2, o2o3, o3o4 and o4o1 are a2, a3, a4 and l, l de-
termines if there is a crank, which is discussed under three
cases, as shown in Eqs. (8)–(10). In summary, the distance
from base to fixed-point should be less than a2+ a3− a4 to
ensure that laparoscope has a complete operative field.

1. The link o1o4 is the longest link:{
l > a2
l+ a4 6 a2+ a3

⇒ a2 6 l 6 a2+ a3− a4 (8)

2. The link o1o4 is the shortest link:

{
0< l 6 a4
l+ a2 6 a3+ a4

⇒ 0< l 6 min(a4,a3+ a4− a2 ) (9)

3. The link o1o4 is neither the longest nor the shortest link:

{
a4 < l < a2
a2+ a4 6 l+ a3

⇒max(a4,a2+ a4− a3)< l < a2 (10)

According to Sect. 3.4, the allowable base range is an
ellipse. Compared with the projection of the candidate in-
cisions on the plane xpopyp, the center coordinate is un-
changed and the semi-major axis and semi-minor axis in-
crease lmax. The intersection of allowable base range and
non-interference area in the operating room is the candidate
base positions, as shown in Eq. (11).

 (x− xc)2

(ac+ lmax)2 +
(y− yc)2

(bc+ lmax)26 1

x > ap

(11)

3.6 The optimum incision and the optimum angle

Pb (xb, yb, zb) is chosen as the base position, so the optimum
incisions are within allowable incisions circle with the Pb
as the origin and lmax as the radius. The optimum incisions
(red) are located on the intersection of candidate incisions
(green) and allowable incisions circle (black), as shown in
Fig. 11 and Eq. (12). The optimum angle of laparoscope en-
try is β = 0, that is, laparoscope visual line coincides with the
line relating incision to the lesion. To sum up, combined with
Sects. 3.5 and 3.6, the laparoscope arm preoperative planning
algorithm is completed.


(x− xc)2

a2
c
+

(y− yc)2

b2
c
= 1

(x− xb)2
+ (y− yb)2 < l2max

(12)

Given a set of parameters based on the actual situation, the
steps of the algorithm are described in detail, a2 = 220 mm,
a3 = 220 mm, a4 = 150 mm, α = 45◦, Pl = (0.35,0.2,0.3),
P z5l = (0.35,0.2,1.5) (in the op− xpypzp coordinate frame).

3.6.1 Step 1 Determine candidate incisions

Take the data in Sect. 3.1, 0≤ d7 ≤ 320 mm, d(PiPl)max =

sqrt (h2
+ (ap (1+ sqrt(c2

p −h
2)/cp))2)= 310.7 mm

Mech. Sci., 10, 119–131, 2019 www.mech-sci.net/10/119/2019/



L. Yu et al.: Laparoscope arm automatic positioning 125

Figure 9. The projection of three planes.

Figure 10. The schematic diagram of the simplified mechanism.

(sqrt= square root), the result shows that any point on
the abdominal wall can be used as a candidate incision. The
candidate incisions are located on the curve, as shown in
Eq. (13). According to Sect. 3.4, the projection of the curve

on the plane xpopyp is shown in Eq. (14).
x2

1.552 +
y2

1.452 +
z2

2.272 = 1

(z− 0.3)2
=

1
tan245

◦

[
(x− 0.35)2

+ (y− 0.2)2
] (13)

(x− 0.13)2

1.34
+

(y− 0.07)2

1.23
= 1 (14)

3.6.2 Step 2 Determine base position

The candidate base positions are located on the curve, as
shown in Eq. (15). Within the allowable base range, choose a
base position Pb = (2.3,−0.2, zb), zb is determined accord-
ing to the condition of the operating room. (x− 0.13)2

(1.16+ 2.9)2 +
(y− 0.07)2

(1.11+ 2.9)26 1

x > 1.55
(15)
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Figure 11. The schematic diagram of optimum incisions.

Figure 12. The sketch map of the optimum incision and angle.

3.6.3 Step 3 Determine the optimum incision and the
optimum angle

First, determine xi based on the surgical needs, body con-
dition and surgeon’s operating habits, calculate yi based on
Eq. (16), calculate zi based on the mathematical model of
pneumoperitoneum, the optimum incision is (xi , yi , zi). Sec-
ond, the optimum visual axis direction is the line connecting
the optimum incision to the lesion. The optimum incision and
optimum angle are shown in Fig. 12.

 (x− 0.13)2

1.34
+

(y− 0.07)2

1.23
= 1

(x− 2.3)2
+ (y+ 0.2)2 < 2.92

(16)

Figure 13. The agent–environment interaction in reinforcement
learning.

4 Reinforcement learning algorithm

4.1 Problem description

Reinforcement learning describes the set of learning prob-
lems where an agent should learn how to map states to ac-
tions in an environment to maximize the defined reward func-
tion. Throughout the learning process, an agent is not told
which actions to take but instead should find out which ac-
tion yield the most reward by trying various actions. In most
cases, actions may affect not only the immediate reward but
also the next state, and through that all subsequent rewards.
In solving practical problems, it should define a reasonable
reward function to compute the reward for taking actions and
have a goal relating to the state of the environment. Also, it
should quantify all the variables the environment describes
and have access to these variables at each step or state.

In this paper, the agent is the 3-RRR planar redundant
mechanism which is a simplified model of telecentric fixed-
point positioning mechanism plus laparoscope. The environ-
ment is the lesion and the surgical incision obtained through
the preoperative planning algorithm. The actions are the
movement of three revolute joints. The agent–environment
interaction is shown in Fig. 13.

4.2 Deep deterministic policy gradient (DDPG)

In this paper, laparoscope arm automatic positioning is
achieved by DDPG, which is a model-free, off-policy actor-
critic algorithm based on the deterministic policy gradient
(DPG) (Silver et al., 2014). Deep neural network (DNN)
function approximators were used to estimate the action-
value function. Thus, the algorithm can learn policies in high-
dimensional, continuous action spaces.

Based on DPG, DDPG combines the ideas underlying
the success of Deep Q Network (DQN) (Mnih et al., 2013,
2015). It can learn value functions stably and robustly due
to two aspects. First, the network is trained off-policy with
samples from a replay buffer to minimize correlations be-
tween samples. Second, the network is trained with a target
Q network to give consistent targets during temporal differ-
ence backups. Meanwhile, batch normalization is used to ac-
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celerate deep network training and improve the accuracy of
the model (Ioffe and Szegedy, 2015).

DDPG contains a parameterized actor function µ(s|θµ)
and critic network Q(s, a|θQ) with weights θµ and θQ.
The critic network is learned using the Bellman equation
(Eqs. 17–18) to make the L(θQ) smaller and smaller. In other
words, Q(s, a|θQ) gets closer to the actual value.

L(θQ)= Est∼ρβ ,at∼β,rt∼E[(
Q
(
st ,at |θ

Q
)
− yt

)2
]

(17)

where

yt = r (st ,at )+ γQ
(
st+1,µ (st+1) |θQ

)
(18)

The actor function is updated by the chain rule (Eq. 19) to
the expected return from the start distribution J with respect
to the actor parameters.

∇θµJ ≈ Est∼ρβ
[
∇θµQ(s,a|θQ)|s=st ,a=µ(st |θµ)

]
= Est∼ρβ

[
∇aQ(s,a|θQ)|s=st ,a=µ(st )∇θµµ(s|θµ)|s=st

] (19)

Every n steps DDPG updates the target networks of actor
and critic using “soft” target updates (Eq. 20), rather than
directly copying the weights.

θQ
′

← τθQ+ (1− τ )θQ
′

θµ
′

← τθµ+ (1− τ )θµ
′ (20)

4.3 Reward function construction

In the training process, telecentric fixed-point (marked point)
position and lesion location are taken as the input of the
DDPG algorithm. The fixed-point is obtained by a depth
camera, the optimum incision, the optimum angle and the
base position are obtained by the preoperative planning algo-
rithm. The DDPG algorithm that combines the algorithm can
learn policies directly from the inputs, to achieve laparoscope
arm automatic positioning for the robot-assisted laparoscopic
surgery. The reward function is essential for the algorithm
to learn policies successfully. It consists of intermediate re-
ward and final reward, where the former is given a continu-
ous, guided negative reward when the task is not completed,
and the latter is given a positive reward that is one to two
orders of magnitude larger than the former when the task is
completed. The continuous reward function can make con-
vergence of the algorithm better.

In the op− xpypzp coordinate frame, the fixed-point po-
sition is Pf (xf, yf, zf), the incision position is Pi (xi, yi,
zi), the laparoscope end position is Pe (xe, ye, ze), and the
lesion location is Pl (xl, yl, zl). The goal of the task is
|PfPi| + |PePl| =0 (lsinα (definition in Fig. 7) is equal to
|PiPl| for programming convenience.). The intermediate re-
ward is−(|PfPi|+|PePl|) and is normalized to [−1,0] inter-
val. The final reward is 10.

4.4 States description

To improve the convergence of the algorithm, the state vari-
ables also play a crucial role in addition to the reward func-
tion. If state variables can adequately present the environ-
ment, the algorithm can learn policies quickly. Because the
image from the depth camera contains all the state informa-
tion of the environment, it is reasonable to use the image di-
rectly as input. However, due to the limitations of the hard-
ware, the processing image data is very slow. To speed up
training of the algorithm, it uses a low-dimensional states
description, such as joint variables and positions, instead of
high-dimensional renderings of the environment.

The algorithm is to make the laparoscope arm move to the
target position, so the joint variables are used as the state
variables. However, from the training results, these variables
cannot adequately describe the environment; in other words,
the algorithm cannot achieve the laparoscope arm automatic
movement. So, the distance from telecentric fixed-point to
incision, the distance from laparoscope end to the lesion, and
whether the target is reached are added to the state variables.
The experimental results of these two state variables are de-
scribed in Sect. 5.2.

5 Simulation and results

5.1 Simulation details

The environment is simulated using Pyglet, including a le-
sion point, a surgical incision and a simplified model of the
telecentric fixed-point positioning mechanism. For this envi-
ronment, a lesion point is randomly specified within a rea-
sonable range, an incision and a base location are obtained
by the preoperative planning algorithm. Batch normalization
is used on the state input, all layers of the actor network and
all layers of the critic network before the action input. In this
way, it can learn effectively across tasks with different types
of units, without needing to ensure the units are within a set
range manually.

TensorFlow is used in the code for high-performance nu-
merical computation. The simulations use Adam (Kingma
and Ba, 2015) for learning neural network parameters with a
learning rate of 10−5 for the actor and critic. ForQ it includes
L1 weight decay of 0.1, L2 weight decay of 10−3 and a dis-
count factor of γ = 0.9. For the soft target updates, it uses
τ = 0.01. The neural networks use the rectified non-linearity
for all hidden layers (Glorot et al., 2011). The networks have
three hidden layers with 900, 900 and 60 units respectively,
and the final output layer of the actor is a tanh layer, to bound
the actions. The actions are not included until the 3rd hidden
layer of Q. The layers weights and biases of both the actor
and critic are initialized from a uniform distribution [−x, x],
where x = sqrt (6./(in+ out)). It trains with minibatch sizes
of 16, and it uses a replay buffer size of 6× 104. The behav-
ior policy during training is ε-greedy with ε annealed linearly
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Figure 14. The total reward per episode with states descriptor one.

from 1 to 0.1 over the first hundred episodes and fixed at 0.1
after that. The simulations train for a total of 2000 episodes;
every episode is terminated if the goal is not completed after
600 steps.

5.2 Simulation results

Two simulations are set up to evaluate the performance of
the improved method applied to laparoscope arm automatic
positioning for the robot-assisted laparoscopic surgery. The
two simulations make one change to states description during
training only, and use the same network architecture, learn-
ing algorithm and hyperparameters settings. States descrip-
tor one is three joint variables and states descriptor two is
the former plus the distance from fixed-point to incision, the
distance from laparoscope end to the lesion, and whether the
target is reached.

The two simulations evaluate the policy periodically dur-
ing training by testing it without exploration noise. The im-
proved method with 3 action dimensions and 20 state dimen-
sions runs ten times in the simulated environment. Perfor-
mance after training across the environment for at most 2000
episodes. The results of ten training sessions report both total
reward per episode and steps to target, as shown in Figs. 14–
17. The solid line in the figure represents the average over ten
sessions, the upper boundary of the shadow part represents
the maximum over ten sessions, and the lower boundary rep-
resents the minimum value.

Figure 14 shows that the average of total reward per
episode is stabilized to negative and only a few episodes total
reward are positive. Figure 15 shows that the steps to target
are always 600. These two figures show that it never reaches
the goal. Figure 16 shows that the average of total reward
per episode increases from −300 to about 120. After 400
episodes, the total reward converges to around 120. Figure 17
shows the steps to target stabilizes at about 150. These two
figures show that it reaches the goal after 400 episodes. The

Figure 15. The steps to target with states descriptor one.

Figure 16. The total reward per episode with states descriptor two.

results illustrate the states descriptor two is outperformed
states descriptor one, the latter does not enable the agent to
converge to a good solution, but the former can do it. In other
words, the improved method which uses the states descriptor
two can learn the right policies on laparoscope arm automatic
positioning.

6 Discussion

The preoperative planning algorithm, based on the artificial
pneumoperitoneum model and the lesion parametrization
model, appears to offer significant improvements in plan-
ning time and quality for robot-assisted laparoscopic surgery
over experience-based method or literature-based method.
The distance principle and the direction principle ensure that
the proposed algorithm can meet the surgeon’s surgical re-
quirements. Furthermore, preoperative planning does not re-
quire an additional landmark on the abdominal wall or par-
ticular patient positioning.
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Figure 17. The steps to target with states descriptor two.

The proposed algorithm is designed to simulate the actual
clinical procedure of robot-assisted surgery or applied to a
virtual surgery training system, and a standardized procedure
is proposed for preoperative planning. By taking LC as an
example, the results indicate that the port placement and la-
paroscope entry angle selection have satisfying performance,
especially for less experienced surgeons.

Preoperative laparoscope arm automatic positioning is
achieved based on the DDPG. In this algorithm, the states
descriptor plays a crucial role and affects the performance of
the algorithm. From the results, the states descriptor two is
outperformed states descriptor one. Although the controller
does not learn a reasonable strategy directly from states de-
scriptor one, with the evolution of episodes, the controller
still improves compared to the initial. Therefore, it is crucial
to select states descriptor reasonably. The controller learns a
reasonable strategy from states descriptor two, but there is
room to reduce the steps of the target, to improve the learn-
ing efficiency of the controller. Furthermore, the laparoscope
arm automatic positioning is independent of robot configura-
tion and can be extended to any surgical robot system.

This method successfully learns a controller in simulation,
and the next step is to study to learn a controller in real robots
without a lot of time training, and the method can be ex-
tended to the preoperative planning of other operations or
even other surgical procedures. Thus, the implementation of
the algorithm for robot-assisted surgery can further realize
telesurgery, thereby improving the medical level in many ar-
eas.

7 Conclusions

This paper completes the preoperative planning by ana-
lyzing the surgical procedures and surgical environment
of robot-assisted laparoscopic surgery. Based on the lesion
parametrization model, two principles of laparoscope arm
preoperative planning are designed, including the distance

principle and the direction principle. According to the two
principles, the laparoscope arm preoperative planning algo-
rithm is divided into two parts, the optimum incision and
the optimum angle of laparoscope entry. A set of parame-
ters based on the actual situation is given to verify the ef-
fectiveness of the algorithm. Preoperative laparoscope arm
automatic positioning is achieved by the improved method
which combines the preoperative planning algorithm with
the DDPG algorithm. The improved method takes the fixed-
point position captured by a depth camera and the lesion lo-
cation obtained by imaging test as input. Based on the input
information, optimum incision and optimum angle are ob-
tained through the algorithm, and then the laparoscope arm
can automatically move to the target position. Compared to
the traditional method, kinematics is not used to calculate
the motor movements, so that it can reduce errors caused
by inaccuracy of kinematic parameters and improve the ef-
fectiveness of preoperative planning. The simulation results
show that the improved method can realize preoperative la-
paroscope arm automatic positioning and it is also robust.

The automatic positioning algorithm provides a theoretical
basis for the laparoscope arm preoperative planning of robot-
assisted laparoscopic surgery. It avoids the disadvantage of
the heuristic method based on surgeon experience, and it also
simplifies the preoperative planning process and reduces the
operation time. However, the algorithm is implemented in a
virtual environment, and there is a certain gap with the actual
system. Therefore, how to implement the algorithm in the
actual system is the primary direction of subsequent research.
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