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To sustain life in environments that are fraught with risks of life-threatening injury,

organisms have developed innate protective strategies such that the response to wounds

is rapid and localized, with the simultaneous recruitment of molecular, biochemical, and

cellular pathways that limit bleeding and eliminate pathogens and damaged host cells,

while promoting effective healing. These pathways are both coordinated and tightly

regulated, as their over- or under-activation may lead to inadequate healing, disease,

and/or demise of the host. Recent advances in our understanding of coagulation and

complement, a key component of innate immunity, have revealed an intriguing linkage of

the two systems. Cell-secreted polyphosphate promotes coagulation, while dampening

complement activation, discoveries that are providing insights into disease mechanisms

and suggesting novel therapeutic strategies.

Keywords: innate immunity, thrombosis, inflammation, coagulation, age-related macular degeneration, mouse
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INTRODUCTION

Two major blood-borne proteolytic cascades, complement and coagulation, are fully integrated to
cooperatively fight infections and prevent excessive bleeding fromwounds. Interplay between these
systems is evolutionarily conserved, as evident in the horseshoe crab, a “living fossil” representing
arthropods from 500 million years ago (1–3). The released contents of hemocytes induce clotting
and destroy invading pathogens and toxins. Complement and coagulation pathways in mammals
now appear more distinct, but interactions are increasingly being recognized. Elucidation of the
links is yielding novel treatments, including, eculizumab, an effective anti-complement antibody
that prevents thrombosis in paroxysmal nocturnal hemoglobinuria (PNH) and atypical hemolytic
uremic syndrome (aHUS) (4, 5). More therapies for other common diseases will undoubtedly enter
the clinic in coming years (6).

In this report, I review the complement system, highlighting some key mechanisms by which
it is regulated, and how it interfaces with coagulation [Readers are referred to excellent reviews of
the coagulation cascade (7–10)]. I then focus on recently uncovered insights into the role of the
polyanion polyphosphate (polyP)—known to promote coagulation—in dampening complement
activation. This will be followed by a discussion of how such an apparent dichotomy in the function
of polyP is physiologically relevant.
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COMPLEMENT ACTIVATION

Comprising over 30 soluble and membrane-bound proteins,
complement contributes to innate immunity and provides a
bridge to adaptive immunity (11–13). Complement activation is
triggered by exposure of blood to damage-associated molecular
patterns that include, for example, pathogens, host DNA from
damaged cells, lipids and oligosaccharides (Figure 1). Three
pathways—lectin (LP), classical (CP), and alternative (AP)—
converge with generation of C3 convertases that proteolyse C3
into C3b and release the anaphylatoxin C3a. The CP is triggered
by C1q recognition of antibodies bound to antigens or microbial
surfaces. C1q may also recognize other targets, such as C-reactive
protein, apoptotic cells, and microbes. It circulates in complex
with zymogens of serine proteases C1r and C1s (C1qr2s2). When
C1q binds to its target, C1r autoactivates and activates C1s (15)
which in turn cleaves C4, releasing C4a, and C4b, the latter which
covalently binds to target surfaces. C2 binds to immobilized
C4b and is cleaved by C1s into C2b and C2a, allowing C2a to
complex with C4b and form the CP C3 convertase, C4b2a. The
LP is similar to the CP (16), but pathogen recognition comprises
mannose binding lectin (MBL), ficolins and/or collectin-11.
These circulate bound to MBL-associated zymogens of serine
proteases MASP1/MASP3 and MASP2 and bind to sugars or
N-acetylated groups on micro-organisms. MASP1 autoactivates

FIGURE 1 | Schematic of complement activation pathways. Complement activation proceeds via the classical, lectin, or alternative pathways, triggered by exposure

of surveillance molecules, C1q, MBL, collectins and ficolins, of specific danger signals. The alternative pathway is constitutively “on,” due to spontaneous hydrolysis of

C3. The pathways converge to form C3 convertases: C4b2a for the classical and lectin pathways, C3bBb for the alternative pathway. C4a and C3a, are released with

cleavage of C4 and C3, respectively. As C3b is further generated, C5 convertases C4bBbC3b and C3bBbC3b are formed, resulting in liberation of the most potent

anaphylatoxin C5a, in conjunction with C5b. C5b is the initial component required for spontaneous assembly of the C5b-9 membrane attack complex (MAC) which

polymerizes and induces lysis of the cellular target. MBL, mannose binding lectin, CRP, C-reactive protein, CHO, carbohydrate, MASP, MBL associated serine

protease. Figure and legend from Conway (14).

and cleaves C2 and activates MASP2, while MASP2 cleaves C2
and C4, yielding the C4b2a LP C3 convertase (17).

The AP is constitutively active, sustained by a “tick-over”
mechanism in which small amounts of C3 are hydrolyzed
to C3(H2O) (18), exposing a binding site for factor B (FB).
Circulating factor D (FD) cleaves FB into Ba and Bb, the latter
which binds to C3(H2O) to form a fluid-phase C3 convertase
which cleaves C3 to C3b and C3a. With exposure to a pathogen
or damaged cell, more C3a and C3b are generated (19), resulting
in formation of the AP C3 convertase, C3bBb. Complement is
amplified via the AP as the pathways converge and form cell
bound C3 convertases. The additional C3b binds to C4b2b and
C3bBb, yielding C4bBb(C3b)n and C3bBb(C3b)n, which thus
become C5 convertases, cleaving C5 into C5b and C5a. C5b
is the trigger for the terminal pathway, which spontaneously
proceeds with sequential assembly of C6, C7, C8, and multiple
C9 subunits, forming the C5b-9 pore-like, lytic membrane attack
complex (MAC) that targets invading pathogens and promotes
prothrombinase assembly and tissue factor (TF) activation (20).

C5a is a pleiotropic biologically active peptide, exhibiting
potent anaphylatoxin properties. C5a also triggers coagulation
and inflammation via TF by endothelial cells and monocytes,
release/exposure of VWF and P-selectin by endothelial cells
and platelets, secretion of inflammatory cytokines, expression
of leukocyte adhesion molecules, and release of platelet granule
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contents that further promote coagulation and complement
activation (21–24).

REGULATION OF COMPLEMENT

Complement activation is down-regulated at numerous steps.
This ensures a highly localized and temporally appropriate
response that spares the host from undesired damage. Acquired
or genetic alterations in factors that regulate complement are
commonly associated with disease, often featuring varying
degrees of vascular-thrombosis. Characterization of these
pathways is revealing novel strategies for drug development
(6, 25, 26). In the following, I describe a few of the mechanisms
by which complement activation is dampened. References for
more comprehensive reviews are provided (13, 25, 27–29).

C1-esterase inhibitor (C1-INH) is a serine protease inhibitor
that highlights the coordinated regulation of coagulation and
complement (10). In coagulation, C1-INH interferes with the
proteolytic activities of factor XIa, factor XIIa, and kallikrein,
suppressing the contact/intrinsic pathways of coagulation and
inflammation. In complement, C1-INH interferes with C1r,
C1s, MASP1, and MASP2, preventing formation of the CP/LP
convertases. The inhibitory activity of C1-INH is variably
potentiated by polyanions, such as heparin (15, 30). Thus,
heparin augments C1-INH inhibition of factor XIa and MASP2
(31), but actually dampens C1-INH neutralization of factor XIIa
(32), and has almost no effect on C1-INH inhibition of kallikrein,
C1r or MASP1 (32, 33). These differential effects of C1-INH that
are partly dependent on the cofactor activity of the polyanion,
heparin, may help explain why functional deficiencies of C1-INH
are not associated clinically with thrombosis.

The major fluid-phase negative regulator of the AP is
factor H (FH) (34). Synthesized primarily by the liver, but
also by endothelial cells and platelets, FH binds to C3b and
glycosaminoglycans of host cells where it suppresses complement
by acting as a cofactor for protease factor I (FI) mediated
inactivation of C3b to iC3b, accelerating decay of the AP C3
convertase, and competing with FB binding to C3b. Patients
with FH mutations are at increased risk of developing aHUS
and cardiovascular disease (35–37). FH also binds to VWF in
Weibel-Palade bodies and/or facilitates ADAMTS13-mediated
proteolysis of ultra large VWF (38–41), providing protection
against thrombosis.

The membrane-bound complement receptor (CR)1,
glycosylphosphatidylinositol (GPI)-linked CD55, and CD46 are
also decay accelerating factors for C3b-containing convertases.
Moreover, CR1 and CD46 promote FI-mediated proteolysis
of C3b to iC3b (42). Interesting for their distinct clinical
presentations, CD46 deficiency is implicated in aHUS (43), while
CD55 deficiency is associated with PNH (44).

Assembly and function of the MAC are also regulated to
limit host cell damage. The GPI-linked CD59, deficiency of
which is also associated with PNH (45), binds to C8 and C9
and prevents C9 polymerization (46). Clusterin binds to C7, C8,
and C9, inducing structural changes that reduce integration of
C5b-9 into the membrane (47). Vitronectin also prevents C5b-9

membrane binding by promoting formation of a soluble C5b-7
complex (48).

The activities of C3a and C5a are reduced via several
coagulation-related enzymes. C5a is proteolysed by plasmin
and matrix metalloproteinase 12 (49), while carboxypeptidase
B2 (CPB2) [also referred to as activated thrombin-activatable
fibrinolysis inhibitor (TAFIa)] (50), reduces the activity of C3a
and C5a by cleaving their C-terminal basic amino acids.

PolyP, Coagulation, and Complement
PolyP is a ubiquitously expressed, linear, anionic polymer of
monophosphate units, linked by phosphoanhydride bonds (51).
Polymer lengths vary from ∼25 to 1,000 units in mammalian
cells (52), extending to thousands of units in some bacteria (53).
It is abundant in the dense granules of platelets (54, 55), released
to the cell surface and/or into the circulation upon activation
(55, 56), likely in a charge-neutral form, bound to divalent
cations (Ca2+, Mg2+) and amines (54). Rather than acting
as a calcium ion chelator and anticoagulant, polyP promotes
coagulation at multiple steps in the cascade (57–61). Long
chain polyP is believed to provide a template for autoactivation
of factor XII, thereby also triggering inflammation via factor
XIIa-mediated activation of the kallikrein-kinin system (62).
Shorter forms of polyP released particularly from platelets, bind
directly to thrombin (63), fibrinogen, (64), factors XI and XII,
pre/kallikrein, high molecular weight kininogen and VWF (56),
amplifying generation of factor XIa and thrombin, enhancing
the activation of factor V, inactivating tissue factor pathway
inhibitor (TFPI), and integrating into the fibrin clot, rendering
it more resistant to fibrinolysis (57). The physiologic relevance
of several of these and other polyP-coagulation/fibrinolysis
protein interactions remain incompletely understood,
but targeting polyP is gaining wide interest as a safe
anti-thrombotic (65).

In view of its profound pro-coagulant effects, we predicted
that polyP would similarly activate complement. Somewhat
surprising, polyP did exactly the opposite (Figure 2). In a
C1-INH-dependent manner, polyP dampened C1s-mediated
cleavage of C4 and C2 in gel-based assays and cell systems
(67). Binding studies revealed that C1-INH directly interacts
with the serine protease domain of C1s at a rate that is
augmented ∼90-fold by the presence of polyP—an effect
similar to that seen with heparin. Not formally tested,
the data suggested that polyP similarly potentiates C1-INH
interactions with MASP2. Interestingly, like heparin, polyP
had little potentiating effect on C1r (33). However, these
parallels with heparin are limited, since heparin accelerates
neutralization of thrombin by antithrombin (AT) >2,000-
fold (68), whereas polyP has no effect on the thrombin-AT
interaction (57).

PolyP also significantly interferes with activation of
the terminal pathway of complement (69) in a size and
concentration-dependent manner. It destabilizes C5b-6,
reducing the ability of C5b-7 and C5b-8 to bind to and
integrate into the target membrane. Other pathways by which
polyP might modulate complement activation have not yet
been explored, however, given its highly anionic charge,
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FIGURE 2 | Mechanisms by which polyP regulates complement activation. In resting platelets, polyP and C1-INH are housed in different organelles. After activation,

polyP and C1-INH coalesce toward the center of the platelets where they colocalize and are subsequently secreted (66). PolyP triggers a conformational change in

factor XII, resulting in generation of XIIa, which can activate prekallikrein (PK) and/or factor XI to XIa. Kallikrein (K) or plasmin (not shown) can further cleave XIIa to

generate βXIIa which may activate C1r and thus promote complement activation. C1-INH dampens that pathway by inhibiting factor XII, XIIa, βXIIa, and kallikrein (K).

C1s cleaves C4 and C2 to generate the C4b2a C3 convertase, which ultimately leads to formation of the C5b,6 complex, and assembly of the C5b-9 membrane

attack complex (MAC). PolyP or heparin potentiate the inhibitory function of C1-INH via direct interactions with C1-INH and the target protease, C1s. PolyP also

destabilizes C5b,6, thereby dampening formation of the MAC. Interestingly, in spite of binding to factors XIa and XIIa, reduced levels or function of C1-INH do not

cause thrombosis, possibly due in part to differential effects of polyanions (polyP, heparin) on the function of the target enzymes. The over-riding effect of polyP in a

serum-based endothelial cell culture system is to suppress complement activation. Figure and legend from Wijeyewickrema et al. (66).

its stability in a calcium-nanoparticle form (62), and its
wide expression profile, it is likely that polyP has multiple
effects on this innate immune pathway, analogous to its role
in coagulation.

RELEVANCE OF polyP IN COMPLEMENT

In the face of its pro-coagulant and pro-inflammatory properties,
what might be the physiologic relevance of polyP in complement
activation? The complement-dampening effect of polyP does
not entirely conflict with the defined role of polyP in other
biological systems. PolyP is prominently expressed in several
cellular compartments of prokaryotes, where it exhibits pro-
survival properties as an energy source, a metal ion chelator,
a molecular chaperone, in enhancing pathogenicity (70–72),
and in some cases, protecting against complement mediated
death (73).

One can speculate on how polyP and C1-INH might
co-operate in host protection. C1-INH is synthesized by and
found on the surface of endothelial cells (74). Endothelial
cells also display abundant glycosaminoglycans on their
surface as heparan sulfate. PolyP, released by activated cells
and found at low concentrations in the blood of healthy
individuals (75, 76) would be available to bind to C1-INH
on the endothelium, where it could potentiate the function
of C1-INH, allowing the C1-INH:polyanion complex to

recruit and neutralize target proteases, such as C1s and/or
MASP2. Binding of the polyanion first to C1-INH is
required for optimal neutralization of C1s. Such an order
of events would best keep complement activation in check.

PolyP would also be positioned to dampen generation
of MAC on the host cell surface. In such a scenario, the

activated endothelial cell would be protected against host-
mediated destruction, while retaining its prothrombotic and

pro-inflammatory properties.
This model may also apply to other cells. As mentioned,

polyP is abundant in platelets and released upon activation
(54, 55, 77). C1-INH is also found in platelets, secreted
and deposited on the activated platelet membrane (78).
Although initially housed in separate granules, platelet activation
results in colocalization of polyP and C1-INH in and on
the platelet (66). High levels of polyP on activated platelets
would therefore readily dampen complement activation
by potentiating the inhibitory properties of C1-INH and
interfering with the terminal pathway (69), overall protecting
the underlying host cells from innate destruction, while
allowing the platelets to promote hemostasis-thrombosis
and inflammation. Interestingly, polyP also binds to FH (69)
and may similar to C1-INH, coat and protect host cells (34)
from complement activation, convertase assembly and MAC
binding/integration. Disturbances in the release of adequate
polyP might therefore be predicted to result in disease. This
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is in fact evident in patients with dense granule storage pool
diseases (79) who have low platelet polyP (80) and exhibit
a bleeding diathesis and organ dysfunction secondary to
excessive inflammation.

Taking Advantage of the
Complement-Dampening Properties of
polyP for Therapeutic Purposes
Immediate clinical application of the finding that polyP,
a naturally occurring and easily synthesized polyanion
that suppresses complement activation, is enticing but not
without challenges. Depending on the length, dose and
formulation, systemic delivery of polyP may entail risk
of thrombosis. However, polyP has been administered
safely in vivo, providing protection against endotoxin-
induced sepsis in a mouse model (81). If validated, one
could envisage using polyP for a wide range of disorders
with excess complement activation. Our group has limited
in vivo testing of polyP to study its role in protecting
against age-related macular degeneration (AMD). AMD
is a common cause of blindness where over-activation of
complement is a major pathogenic driver (82). In a mouse
model of laser-induced AMD, intravitreal administration
of polyP dampened the pathologic neovascularization and
complement deposition to a similar extent as currently
used anti-VEGF targeted therapies (83). No adverse effects
of polyP were observed, providing strong rationale for
further exploration.

CONCLUSION

In the last 20–30 years, major inroads have been made in
delineating the molecular mechanisms by which complement,
coagulation and inflammation intersect. The preceding
discussion underlines the unique role that polyP plays in
suppressing complement, while promoting coagulation and
inflammation. Further understanding of how polyP modulates
complement activation through the induction of structural
changes in key factors in these different proteolytic cascades,
and/or interactions with other proteins and cells, will reveal
novel sites for therapeutic intervention for a range of thrombotic
and inflammatory disorders.
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