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A Bow-Tie BAsed risk frAmework inTegrATed wiTh A BAyesiAn Belief 
neTwork Applied To The proBABilisTic risk AnAlysis
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The use of probabilistic risk analysis in the jet engines manufacturing process is essential to prevent failure. It has been observed 
in the literature about risk management that the standard risk assessment is normally inadequate to address the risks in this process. To 
remedy this problem, the methodology presented in this paper covers the construction of a probabilistic risk analysis model, based on 
Bayesian Belief Network coupled to a bow-tie diagram. It considers the effects of human, software and calibration reliability to identify 
critical risk factors in this process. The application of this methodology to a particular jet engine manufacturing process is presented to 
demonstrate the viability of the proposed approach. 
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Abstract

1. inTrodUcTion

Despite the impressive level of safety of today’s aviation 
system, the accident rate has to be decreased still further. 
The main reason for that is the projected growth in air traffic 
movements (Aleet al.,  2006). If the accident rate does not 
decrease, the growth of air traffic will inevitably lead to an 
increase in the absolute number of accidents regarded by 
many as unacceptable (Ale et al.,   2006). This justifies the 
search for ways to actively pursue an increase in the jet 
engines manufacturing safety level by introducing integrated 
risk assessments and probabilistic risk analysis as an integral 
part of the manufacturing process. 

The traditional method of assessing the system correctness 
relies on testing and simulation techniques. In simulation, 
the aim is to capture the system behavior and verify the 
correctness of the system by simulating different scenarios 
one by one using a model (Lahtinen et al.,  2012). In order 
to be effective, a risk model should properly represent the 
interaction among human operator, software, hardware 
and environment and be able to capture the dependencies 
between system components. Safety Supervision, Safety-
oriented Working Environment and system of Incentives and 
Penalties should be considered implementation priorities 

to improve overall performance in an organizational 
safety culture (Fu  et Chan, 2013). Decision making should 
consider safety and operational risks. One of the most 
critical issues that every decision maker needs to face is the 
risk in association with the decisions to be finalized and the 
actions to be taken. (Lee et al.,   2010).

   The management of risks integrated with the operations 
of manufacturing is a huge challenge. However, it reduces 
accidents (Petersen, 2000) and improves productivity and 
the economic and financial performance of the company 
(Rechenthin, 2004). Systemic defects have become the 
major cause of most aviation accidents. While there has 
been a dramatic increase in the reliability of machines and 
computers over the years, the reliability of safety systems 
has not improved at the same pace. (Liou  et al.,   2008). 
The root cause of many disasters originates in maintenance 
workshops and in the factories, where vital components 
and systems have been produced (Janic, 2000). The bow-tie 
technique is suitable to build a model to be used as a tool in 
management decisions . It is important that the managers 
and their support teams be familiar with the value and 
application of these methods. The knowledge of experts 
in the process of jet engines manufacturing can be used to 
estimate the probability of engine failure. The information 
obtained from these experts should be combined in a formal 
way. Recent articles on human reliability claim that formal 
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procedures are increasingly applied to elicit the opinion of 
specialists, especially when the quality and transparency of 
results are important. The goal of these formal methods is 
to achieve consensus in the ratings as a result. If the data 
are obtained systematically from well-informed experts in 
primary and secondary processes, the opinion of experts 
can offer acceptable precision in quantification. 

Modeling is important to support midterm planning and 
decision making. The main strength of the modeling for 
companies lies in its ability to support decision processes 
in an iterative way (Nieuwenhuyse  et  Mahihenni, 2014). 
In the analysis process, the common problems faced are 
the lacking of required information and the accuracy of 
the information. Thus, it is necessary to have a systematic 
procedure to record the information for analysis. Still, the 
developed information collection system should be user 
friendly so that it is applicable in practical (Ding, Kamaruddin  
et  Azid, 2014). 

Considering the context presented above, this paper 
aims to present a proposal for probabilistic risk analysis 
based on bow-tie methodology combined with Bayesian 
Belief Network to analyze critical activities that can affect 
the reliability of the safety system in the manufacturing of 
jet engines. The research was focused on two main points. 
The first was the definition of the methodology to build a 
model based on fault tree, event tree, bowtie chart and 
Bayesian Belief Network. The second was the application 
of the model on a jet engines manufacturing process. The 
structure of the paper is divided into 5 chapters.    The first 
section is the introduction highlighting the importance of 
probabilistic risk analysis in the jet engines manufacturing 
process. The second section presents the context and a brief 
description of techniques fault tree, event tree, bowtie chart 
and Bayesian Belief Network. The third section presents the 
methodology, the phases and the steps followed to build 
the model. The fourth section describes the application of 
the model to the jet engine manufacturing process. The fifth 
section presents the discussion of the results and the sixth 
and last sections presents the conclusion of the research.

2. BAckgroUnd And conTexT

Causal modeling using a bow-tie chart is a powerful tool 
for getting insight into the interdependencies between 
the constituent parts of complex system such as the 
manufacturing of jet engines. As far as safety is concerned, the 
propagation of fault situations in the engine manufacturing 
process can be modeled and followed. Weaknesses in 
protection against fault propagation can be systematically 
determined. The power of causal modeling can be greatly 
enhanced if probabilities and logical dependencies can be 
quantified (Nureg, 2001). Quantification has limitations 
mainly related to complexity of model and scarcity of data 

(Pasman, 2013). These limitations may be overcome by 
expert’s elicitation of probabilities.

By using causal models, the effect of safety measures 
or, conversely, the breach of safety barriers, can be 
quantitatively evaluated allowing comparisons between 
alternatives and cost benefit considerations. Many accident 
models have been suggested in the scientific literature; 
the underlying concept is the same: accidents result from 
a combination of factors, such as design errors, mechanical 
failures, software errors, user errors and organizational or 
regulatory factors (Marais  et al., 2012; Ale et al., 2006). 
Causal models establish the theoretical framework of causes 
that might lead to engine failure and aircraft accidents. 
Causal models of assessment of risk and safety of aircraft 
operations establish the theoretical framework of causes 
that might lead to aircraft accidents (Netjasov  et Janic, 
2008). Methodologies for measuring complexity will assist 
designers in analyzing and mitigating the risks associated 
with product variety and its impact on manufacturing 
(Kamrani  et al.,  2011).

By estimating the probability of occurrence of each 
cause it is possible to predict the risk of accident. This can 
be restricted to pure statistical analysis based on available 
data or it can combine such data with expert judgments of 
causes (Nureg, 2001). The framework of a causal model can 
combine Fault Tree Analysis - FTA, Event Tree Analysis - ETA, 
bow-tie Analysis and Bayesian Networks - BBN to estimate 
the probability of occurrence of each cause and thus predict 
the risk of failure of an engine. Based on causal scenarios 
derived from hazardous events, use of safety goals and risk 
uncertainty calculations are essential (Kumamoto, 2012). 
Pereira and Lima (2012a, c, d) describe some factors to be 
considered in the analysis. Table 1 presents the result of an 
in depth research about the techniques normally used for 
causal modeling. The latest papers (A), books (B), regulations 
and standards (N) about the subject make reference to the 
use of fault trees, event trees, “bow-tie”, human reliability 
analysis and Bayesian Networks for causal modeling.

 

method reference
Fault Tree 
Analysis 
(FTA)

(B) Marszal et al. (2002), (B) Zio (2007), (B) 
Kumamoto (2007), (T) Roelen (2008), (A) Netjasov, 
Janic (2008). (B) Stolzer et al. (2010) (R) EASA-EASP 
(2011),(B) Dias et al.(2011),  (A) Mohanta (2011), (N) 
NASA/SP-3421 (2011) (B) Fenton et al (2012), (N) 
SAE JA 1003 (2012). 

Event Tree 
Analysis 
(ETA)

(B) Marszal at al. (2002), (B) Zio (2007), (B) 
Kumamoto (2007), (A) Netjasov, Janic (2008), (T) 
Roelen (2008), (B) Stolzer et al. (2010), (R) EASA-
EASP (2011), (B) Dias et al.(2011), (B) Rausand 
(2011), (N) NASA/SP-3421 (2011), (B) Fenton et al 
(2012), (N) SAE JA 1003 (2012).  
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Bowtie (A) Zuijderduijn (2000), (A)Trbojevic and Carr (2000), 
(B) Kumamoto (2007), (A) Netjasov, Janic (2008), (T) 
Roelen (2008), (R) EASA-EASP (2011), (B) Rausand 
(2011), (T) Espen (2011), (N) NASA/SP-3421 (2011), 
(B) Dias et al.(2011), (B) Fenton et al (2012), (N) SAE 
JA 1003 (2012), (A) Pasman (2013). 

Bayesian 
Belief 
Networks 
(BBN).

(A) LuxHoj (2002), (A) Stamelos (2003),  (A) 
Droguett et al. (2007), (A) Netjasov, Janic (2008), (R) 
EASA-EASP (2011), (B) Rausand (2011), (B) Dias et 
al.(2011), , (A) Brooker (2011), Yorukoglu (2011), (A) 
Nott et al. (2011), (A) Mohanta (2011), ((B) Fenton 
et al (2012), A) Axu (2012),  (A) Podofillini (2013), 
(A) (Groth e al. (2013), (A) Konovessis et al.(2013), 
(A) Pasman (2013).

FMEA (B) Zio (2007), (B) Kumamoto (2007, (B) Stolzer et al. 
(2010) (R) EASA-EASP (2011), (B) Dias et al.(2011), 
(A) Cambacedes (2013).

Table 1 – Publications referencing techniques for causal modeling

Table 1 shows that the modeling techniques most 

referenced by authors in state of the art literature about 

probabilistic risk analysis are fault tree, event tree, bow tie 

and Bayesian networks. The following items describe these 

techniques in detail. 

2.1 Bow-tie modeling

Trbojevic et Carr (2000) state that in the most known 

uses of the bow-tie technique, it is utilized as part of 

assessments undertaken with a view to reduce accidents 

based on equipment failure. According to Zuijderduijn 

(2000) the management of hazards and their effects, 

through the application of a process called Hazard And 

Effect Management Process, which at its core produces 

bow-tie diagrams, describes the various hazards that can 

occur and the existing process and equipment controls to 

prevent these from occurring, or reducing the impact were 

these hazards to cause a loss event. Bow-tie analysis can be 

used for both qualitative and quantitative risk assessments 

in complex situations. A bow-tie chart is used to show the 

combination of a fault tree on the left and an event tree on 

the right. Fig. 1 shows the fault tree connected via the top 

event named TE to the event tree.

Fig 1 - Bow-tie Diagram - Vesely (1981)    

   Pereira  et al., (2014e, f, g) addressed the bow-tie 
diagram shown in  Figure 1, the left side of a bow-tie diagram 
resembles a Fault Tree. The fault tree method was created in 
1962 and quickly became popular in the nuclear and aviation 
industry. A fault tree uses Boolean AND/OR gates to model 
causal relationships between events (the method is mostly 
used to model the causality of unwanted events, but it is 
possible to model any kind of causal relationship). In order 
to quantify the event tree, the probabilities of occurrence 
of the initial event and the success or failure of the reactive 
layers are considered.  Considering that the fault trees are 
used to obtain the probability of a system failure, the fault 
tree may be combined with the event tree to form a bow-tie 
diagram. The pivot event is the final failure event obtained 
with the fault tree and the initial event for the event tree. 
The pivot event may occur or not, which leads to different 
final situations. Each path through the diagram is a scenario. 
A bow-tie based model employs the combined fault tree 
and event tree and allows the representation of several 
scenarios.

   The bow-tie method is most often used for the analysis 
of Major Hazard Scenarios in which the consequence 
spectrum is so bad that keeping control over these Hazards 
is of major importance, regardless of the actual probability 
of the consequences. Fortunately there is little accurate 
information available about the frequency of these worst-
case-scenario consequences. Bow-tie models are tools for 
integrating broad classes of cause-consequence models. The 
familiar fault tree and event tree models are ‘bow tied’ in 
this way; indeed, attaching the fault tree’s top event with the 
event tree’s initiating event originally suggested the bow-tie 
terminology. However, any other cause and consequence 
models can be used as well (Ale et al., 2006).

2.2 Bayesian network modelling

Bayesian Networks, also called Bayesian Belief Networks 
(BBNs), have become an increasingly popular part of the 
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risk and reliability analysis framework due to their ability 
to incorporate qualitative and quantitative information 
from different sources, to model interdependency, and 
to provide a causal structure that allows probability risk 
analysis practitioners to gain deeper insight into risk drivers 
and into specific interventions that reduce risk (Mosleh 
1992; Rechenthin, 2004). A Bayesian network is a powerful 
tool for various analyses (E.g.: inference analysis, sensitivity 
analysis, evidence propagation, etc.) Sutrisnowati  et al., 
2014).  There has been an increasing trend in the literature 
and in the application of Bayesian networks in fields related 
to reliability, safety and maintenance (Mahadevan  et al.,  
2001; Weber et al. 2012). Bayesian approaches to aggregate 
expert judgments on probabilities have been extensively 
investigated in risk and reliability analysis (Podofillini, Dang, 
2013, Mosleh, 1986; Droguett  et al.,  2004). BNs provide 
a framework for addressing many of the shortcomings of 
human reliability analysis from a researcher perspective and 
from a practitioner perspective (Groth, Swiler, 2013, Boring  
et al.,  2010). External human performance factors depend 
on company, society and technology (Calixto  et al.,  2013). 
The human reliability analysis is a systematic framework, 
which evaluates the process of human performance and the 
associated impacts on structures, systems and components 
for a complex facility (Cepin, He, 2006, Cepin, 2007).

   There are many varieties of Bayesian analysis. The 
fullest version of the Bayesian paradigm casts statistical 
problems in the framework of decision making. It entails 
formulating subjective prior probabilities to express 
pre-existing information, careful modelling of the data 
structure, checking and allowing for uncertainty in model 
assumptions, formulating a set of possible decisions and a 
utility function to express how the value of each alternative 
decision is affected by the unknown model parameters. Due 
to their ability to incorporate qualitative and quantitative 
information from different sources, Bayesian Networks (BNs), 
also called Bayesian Belief Networks (BBNs) have become an 
increasingly popular part of the risk and reliability analysis 
framework to model interdependency, and to provide 
a causal structure that allows probability risk analysis 
practitioners to gain deeper insight into risk drivers and 
into specific interventions that reduce risk (Mosleh, 1992; 
Rechenthin, 2004). Over the last decade, bibliographical 
reviews in the state of the art literature have focused on the 
use of Bayesian networks on dependability, risk analysis and 
maintenance. It shows an increasing trend of the literature 
to address the application of Bayesian networks in fields 
related to reliability, safety and maintenance (Mahadevan 
et al., 2001; Weber  et al.,  2012).   The node represents 
random variables and arcs represent direct dependency 
between variables relations. The arcs direction represents 
cause effect relation between variables. Fig. 2 represents 
the Bayesian Network, being node H consequence from 
causes T and P. 

Fig.2. Bayesian network

In Figure 2, nodes T and P are fathers of H and are called 
ancestral of H. In Human Reliability analysis, for example, 
the Nodes T and P represents performance human factors 
and node H represents human error probability conditioned 
to human performance factors T and P. In each node 
there is a conditional probability table, which represents 
variables. General equation (1) represents the probability of 
occurrence of variable H conditioned to the occurrence of 
variables T and P.

(1)

Equation (2) estimates the probability of variable H 
becoming true, conditioned to variables P and T being true 
or false. 

(2)

 In human reliability, the Bayesian belief networks (BBN) 
methodology provides a greater flexibility as it not only 
allows for a more realistic representation of the dynamic 
nature of man and system, but also allows for the use of 
a methodology to represent a relationship of dependence 
among the events and performance shaping factors.

3. indUsTry ApplicATion: proBABilisTic risk 
AnAlysis of JeT engine fAilUre

The operational system in jet engine manufacturing 
process needs to represent the causes of failure and 
their respective consequences. For this reason, a single 
representation of a scenario, with a cause-consequence 
diagram, is employed. This scenario considers the factors 
affecting human failure, software failure and calibration 
failure as related to engine failures. This cause-consequence 
method involves visualizing the possible alternative 
sequences composed by factors affecting human failure, 
software failure and calibration failure, and allows the 
undesirable event probabilities to be calculated from the 
factors affecting basic event probabilities. Application of a 
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structured qualitative process risk analysis methodology, 
such as the Probabilistic Risk Analysis (PRA) allows quick 
identification and evaluation of the main risks of installations 
(Esteves  et al.,  2005). To identify the specific details, 
possible causes or contributing factors of risk events in the 

jet engines manufacturing process the entire process need 

to be mapped out and a qualitative risk analysis performed. 

Figure 3 shows the process map and the pivotal event, which 

is the incorrect assembly of an engine.

     Process 6 shown in Figure 3 represents the pivotal 
element. The building blocks of the flowchart shown in  
Figure 3 represent the critical processes of the jet engine 
manufacturing system. In order to identify the critical 
steps and factors of risk in an operational situation, as 
well as to apply modeling methodologies suggested by the 

literature, specific sequences were followed. The proposed 

methodology utilizes fault tree, event tree and Bayesian 

networks combined in only one model and applied in an 

operational situation. Figure 4 shows the sequence of 

phases proposed to build the model. 

Fig.3. Combination of a fault tree and event tree

Fig.4. Phases and steps to develop the causal model
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In the first phase the causal model for application in the 
jet engine manufacturing process was conceived. To attain 
this objective, an in depth research was conducted, followed 
by a field research with experts in the process and then a 
detailed analysis of the data obtained against the applicable 
literature was performed in order to  define the methodology 
to build the model to be used for the probability risk analysis. 
The result of this analysis is detailed in Pereira (2014b) an in 
Pereira . et al., (2014f, g). In the second phase the jet engine 
manufacturing process was mapped out and the pivot 
element was identified. The pivot event going in one of the 
directions, failure or non-failure was derived from the flow 
chart of the jet engine manufacturing process. In this specific 
model, the pivot event is the engine being manufactured 
with or without a defect.  In the sequence, the fault tree was 
built with the sub-assembly processes and their respective 
preventive layers, then the event tree was built with the sub-
processes and the reactive layers occurring after the pivot 
element.  The fault tree and event tree are then combined 
to form the bow-tie chart. The last step in this phase is 
the preparation of Bayesian Belief Networks based on the 
primary risk factors and their interdependency. The bow-
tie chart and its application to jet engine manufacturing 
process are detailed in the paper entitled “Probabilistic Risk 
Analysis in Manufacturing Situational Operation” (Pereira, 
Lima, 2014g).    In the third phase the probability of engine 
failure is estimated. The first step in this phase is to elicit the 
probabilities from experts, then populate the software with 
the elicited probabilities and adjust the model. The final step 
in this phase is to conduct sensitivity analysis to verify the 
accuracy and repeatability of the model. The result of the 
sensitivity analysis is being the object of a future paper in 
preparation.

4. resUlTs And discUssion

The fault-trees are constructed and quantified on the basis 
of the top event and expert opinion and a combination of 
different events causing the top event. These are connected 
by the logical gates and may have as many processes and 
preventive layers, as necessary, as shown in  Figure 5.

   Figure 5 represents different processes with their 
respective preventive layers. Each process may fail due to 
basic events related to failure of technicians in the execution 
process, software failure or calibration failure. These events 
are combined by the logical gate OR and the occurrence of 
any of the events will cause the occurrence of the process 
failure.

Fig.5. Processes and protective layers

 Each protective layer may also fail due to the same basic 
causes related to failure of technician in the execution 
process, software failure or calibration failure. The basic 
events originating the failure of the processes and preventive 
layers may be triggered by several different factors that 
may have interdependency. Assuming independence, these 
factors are combined by using BBN. Equation (3) determines 
the probability of failure of intermediate event (Process 1):

                                                            

 (3)

Where:

p (IE1)= probability of intermediate event (process 1) 
failure

q1i = probability of basic event failure (BEi) causing the 
failure of intermediate event 1. The basic events could 
be failure of technician, failure of software or failure of 
calibration.

Equation (4) determines the probability of failure of the 
preventive layer 1:                                                

         

  (4)

Where:

p (PL1) = probability of failure of protective layer 1 

q1pi = probability of basic event failure (BEi) causing the 
failure of protective layer 1. The basic events could be failure 
of technician, failure of software or failure of calibration.

The probability of failure of process 1 and preventive 
layer 1 is determined by Eq. (5), which is the combination 
of (3) and (4).                                                                 
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(5)

Equation (6) determines the probability of failure of 
process n:

 

(6)

Where:

p (IEn) = probability of failure of intermediate event 
(process n). 

qni = probability of basic event failure (BEi) causing the 
failure of the intermediate event IEn. The basic events could 
be failure of technician, failure of software or failure of 
calibration.

Equation (7) determines the probability of failure of the 
preventive layer n:

(7)

Where:

p (PLn) = probability of failure of the protective layer n. 

qpni = probability of basic event failure (BEi) causing 
the failure of protective layer PLn. The basic events could 
be failure of technician, failure of software or failure of 
calibration.

The probability of failure of process n and the preventive 
layer n is determined by (8), which is the combination of (6) 
and (7). 

(8)

Equation (9) determines the probability of failure of 
processes 1 to n and preventive layers 1 to n, which, 
assuming they do not intercept each other, is the sum of all 
equations. 

 (9)

The event tree may have as many reactive layers, as 
required, as shown in  Figure 6.

Fig.6. Reactive layers

Equation (10) determines the probability of failure of 
reactive layer 1:

(10)

Where:

p(RL1) = probability of failure of reactive layer 1 

q1ri = probability of basic event failure (BEi) causing the 
failure of reactive layer 1. The basic events could be failure 
of technician, failure of software or failure of calibration. 

Equation (11) determines the probability of failure of the 
reactive layer n

(11)

Where:

p (RLn) = probability of failure of reactive layer n 

qrni = probability of basic event failure (BEi) causing the 
failure of reactive layer n. The basic events could be failure 
of technician, failure of software or failure of calibration.

The probability of failure of the reactive layers 1 to n is 
determined by the combination of all equations. Equation 
(12) determines the probability of engine operational failure.

 
(12)

The Fault Tree and Event Tree are joined by the Top event, 
as shown in  Figure 7.
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Fig.7. Combination of a fault tree and event tree

Equation 13 determines the probability of engine operational failure and combines all equations.   

(13)

    A causal model portrays progression of events over 
time, while BBN, Fault Trees and Event Trees represent 
the logic corresponding to failure of complex systems. The 
integrated structure of the model is represented by the 
framework of the Fault Tree connected via the top event TE 
to the base of an Event Tree. The latter branches out from 
the initiating critical event to potential consequences of 

engine failure in operation named operational failure “OF”. 
Preventive barriers PL1, PL2 and PL3 in the Fault Tree and the 
reactive layers RL1, RL2 and RL3 in the Event Tree are part of 
the bow-tie diagram. The connecting lines from a Fault Tree 
basic fault to any Event Tree branch end consequence form a 
scenario, so one bow-tie can show many scenarios.

    

Fig.8. Bayesian network of compressor assembly process

Figure 8 shows an example of general Bayesian network 
obtained with the combination of specific Bayesian networks 
generated from the fault tree and event trees. The network 
represents the node “failure in compressor assembly”, the 

node failure in compressor balancing” and the node “failure 
in engine testing”. A Bayesian network software is used 
to run the model, the probability values obtained for the 
nodes are also shown in the  Figure  8. The aggregation of 
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all probabilities results in a probability of engine failure of 
0.0079. This value was obtained assigning the probability of 
failure of 0.01 to all primary independent variables. 

Figure 8 shows that the probability of engine failure is 
0.0079. A failure in testing contributes with a probability 
of 0.1983, while a failure in compressor balancing has a 
probability of 0.0393. In the test failure, the human failure 
contributes with 0.0772, software failure with 0.0772 and 
calibration failure with 0.0582. The failure of assembling and 
balancing the compressor contributes with 0.1983. In the 
compressor assembly failure, the human failure contributes 
with 0.0772, the software failure with 0.0772 and calibration 
failure with 0.0585. The same happens to the failure of 
balancing. The final result is a probability of engine failure 
of 0.0079.

5. conclUsion

This paper presents a model that combines Fault Tree 
analysis, Event Tree analysis and Bayesian Belief Networks 
in an integrated model that can be used by decision makers 
to identify critical risk factors in order to allocate resources 
to improve the safety of the system. The result of this study 
adds to the body of evidence that the methodology for 
probabilistic risk analysis and causal model in jet engine 
manufacturing industry is feasible and the model is a 
powerful tool to be used by decision makers in the jet engine 
manufacturing industry. 

The methodology for building the structure of the model, 
which is a causal model for probabilistic risk assessment in 
the manufacturing of jet engines, has been presented and 
consists of a procedure for the construction of the Bayesian 
belief network fault tree, event tree and bow tie in a 
situational operation. The single homogeneous structure of 
the model allows consistent handling of probabilities of the 
factors affecting engine failure and their interdependence.

A partial validation of the model was presented for the 
compressor assembly, balancing an engine testing. The 
results need to be validated in more detail, in order to make 
sure the fault trees, event trees and Bayesian networks 
functions correctly in a real application. The application of 
the model to the process of jet engines manufacturing in a 
real situation needs to be performed successfully in order to 
validate the model. Independent data obtained from experts 
elicitation process need to be used to feed the model with 
numbers and verify the probability of engine failure. Result 
of calculations need to be discussed with the experts to 
identify discrepancies to be corrected. The causal model can 
be used as a tool to safety decisions in the industries of jet 
engines manufacturing.
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