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This work is a simulation study to investigate the sensitivity of multivariate control charts for monitoring mean 
vectors in a bivariate Gaussian process with individual observations. The multivariate cumulative sum (MCUSUM), the 
multivariate exponentially weighted moving average (MEWMA) and Hotelling’s T charts are selected for analysis due to 
their common dependency on the non-centrality parameter. The chart performance is evaluated through the average run 
length (ARL) or the average time to signal. The impact of utilising in-control limits computed from known parameters or 
Phase I sample estimates is considered for mean vector shifts. Although designed to monitor mean vectors, the sensibility 
of the control charts is additionally analysed through different variability sources, including the mixing effect of mean vector 
shifts with increasing variances or positive autocorrelation in the out-of-control process.
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Abstract

intrOdUCtiOn

Developed to study the influence of social castes in 
India in the early 20th century, the Mahalanobis distance 
(Mahalanobis, 1936) is an important example of a dissimilar 
metric in various disciplines. Among many existing 
applications of this distance, in the field of statistical process 
control (SPC) it is known as the non-centrality parameter. 
With the increase in computational power over the last 
century and the growing number of applications, the Monte 
Carlo method can help researchers to understand this 
distance behaviour under different simulated scenarios.

In SPC, the non-centrality parameter is frequently applied 
in control charts to detect process changes, triggering a 
signal as soon as the underlying process shifts from the 
in-control state to the out-of-control state. To evaluate the 
control chart performance, the metric typically adopted is 
the average run length (ARL) or average time to signal (ATS). 
The ATS is the process ARL when the time interval between 
samples is fixed at one time unit, as during this simulation 
study.

An important factor for rapid change detection is selecting 
the correct method, which depends on the available data and 
the change to be monitored. Montgomery (2001) elaborates 
on the decision schemes recommended to correctly choose 
a control chart method. Lowry and Montgomery (1995) 
present an additional review. Although the multivariate 
exponentially weighted moving average (MEWMA) of 
Lowry et al.,(1992) and the multivariate cumulative sum 
(MCUSUM) charts of Crosier (1988) are popular and more 

suitable to detect small changes, the  chart is suggested 
to monitor the mean vector for large-scale shifts.  Mahmoud 
et Maravelakis (2010, 2011) estimate the parameters for 
evaluating the performance of two types of MCUSUM and 
MEWMA control charts. These charts are directly based on 
the non-centrality parameter and can be applied to a number 

 of variables, where . When , all methods 
are reduced to their respective univariate schemes, which 
are the CUSUM, EWMA and X control charts. Recent work 
proposes several chart modifications, such as the double 
exponentially weighted moving average (dEWMA) method 
proposed by  Alkatani et Schaffer (2012). 

To monitor the covariance matrix, Montgomery (2001) 
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recommends the moving range and generalised variance 
tests, Riaz et Does (2008) suggest utilising supporting 
information and Costa and Machado (2008) postulate the 
VMAX procedure. Yeh.  et al.,(2006) proposed modifications 
of the EWMA method based on the generalised variance.

The approaches for simultaneously monitoring changes 
in the mean vector and the covariance matrix are numerous, 
and we highlight the integration of the exponentially 
weighted moving average procedure with the generalised 
likelihood ratio test of Zhang et Wang (2010) and Khoo et al., 
(2010), whose statistics are based on the maximum of the 
absolute values of the two dEWMA statistics, one of which 
controls the mean vector and the other the covariance 
matrix. 

The numerous proposals to monitor changes in the 
mean vector of autocorrelated data (Montgomery, 2001) 
include traditional methods that fit the time series and 
subsequently implement control techniques on the model 
residuals produced by the fit.

Although designed to monitor mean vector shifts, the 
present study analyses the sensibility of the MCUSUM, 
MEWMA and Hotelling’s T statistics for process changes in 
the mean vector with different sources of variation. First, 
the chart performance for mean vector shifts is compared 
considering known parameters or training on small samples 
sizes. The simulated mean vector shifts includes comparisons 
about the shift’s direction in correlated and non-correlated 
processes with known parameters. Increasing variances 
and the influence of a vector autoregressive model are 
additionally measured and analysed using the ARL value, 
while the mean vector is fixed.

These two variables are chosen to analyse the multivariate 
point process for their broad application in space-time 
problems and to provide a general example of multivariate 
data. Another positive aspect of studying only two variables 
is the potential to visually identify the in- and- out-of-
control observations in their original spaces with three-
dimensional observations to make more direct conclusions 
and facilitate an understanding of what occurs in the higher-
dimensional spaces. To emphasise this objective, Lowry 
et Montgomery (1995) recommend extending additional 
graphical approaches, including the Polyplot method (Blazek 
et al., 1987), beyond the Hotelling’s T statistic and including 
techniques, such as the MEMWA chart, that effectively 
detect small changes. Although different methodologies 
for data visualization are employed in conjunction with the 
control charts, this work serves as a tool for a continuous 
data view in the scatter-plots, estimating confidence ellipses 
for the current process based on principal component 
analysis (PCA).

In Section 2, we present the control charts methodology 
with a review of the non-centrality parameter, which is the 
common basic distance among the Hotelling’s T, MCUSUM 
and MEWMA control charts. Additionally we provide a 
brief explanation of PCA as a tool for data visualisation in 
the scatter-plots. Section 3 analyses different experiments 
for shifts in the mean vector with known parameters or 
sample estimates. Because inertia problems may occur 
with non-Shewhart control charts, we demonstrate our 
recommendation for the simultaneous monitoring of a 
non-Shewhart and Shewhart-type control charts to avoid 
detection delay. Further, the ARLs measures the chart 
sensibility due to increasing variances, autocorrelation, and 
the resulting performance of mixing those effects with mean 
vector shifts. The final section discusses the control charts 
performance and sensibility in the proposed scenarios and 
prospects for future work.

COntrOl Charts MethOdOlOgy

In the general case, suppose that vectors  

of dimension  represent sequential observations of  

characteristics over time. The observations 
, are assumed to be independent random vectors of a 

multivariate normal distribution with a mean vector  and 

covariance matrix . Without loss of generality, consider 

that  and .

The three control charts analysed share the property 
that their performances, as measured by ARL, depend on 

 and  only according to the value of the noncentrality 
parameter (Lowry et al., 1992), which is given by

.      
(1) 

When  is the identity matrix,  is reduced to a Euclidean 
distance. In his original formulation, Hotelling suggests the 

utilisation of  to avoid the labor of extracting the square 
root. If the in-control process is not symmetrical around 
its centre of mass, as occurs for correlated variables, the 
Euclidean distance does not consider the process covariance, 
thus making it directionally dependent. To quantify the 
magnitude of shifts without directional dependence, the 
shifts should be correctly weighted by the covariance matrix. 
The statistical pattern recognition literature (Therrien, 1989) 
shows that the non-centrality parameter, also known as 
the Mahalanobis distance, is related to other statistical 
measures known as the Divergence (D) and Bhattacharyya (B) 
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distances. When the covariance matrices of two processes 

are equal, the relationship  is valid.

In classification problems, those distances are present 
in single and composite tests. For the composite problem, 
each observation is compared within two or more classes 
and attributed to the one with the shortest distance. The 
non- centrality parameter in a control chart evaluates the 
relative vector distance to the in-control process mean. 
Thus, problems related to the control charts often arise as 
single hypothesis tests, i.e., when the unique known class 
is the in-control state. The analysis of signals from radar 
devices is an example of single hypothesis tests applied in 
the pattern recognition field, when the aim is the simple 
recognition of potential targets.

Note the existence of two implicit assumptions in the 
performance comparisons based on the non- centrality 
parameter. First, any shift, regardless of size, must be 

detected as early as possible. Second, a shift from  

to  is detected as quickly as a shift from  to  if 

. As the ARL value is a function 

of the non-centraility parameter , the comparisons 
between the methods are simplified with analysis of the 

curve ARL vs. . Alternatively, if the charts do not share this 
property, their relative performance may vary depending on 

, i.e., even for a given matrix , a chart may more effectively 
detect changes in some directions and less effectively in 
other directions. 

hOtelling’s t COntrOl Chart

The statistic proposed by Hotelling (1947), as defined in 
equation (2), triggers a signal when there is a significant shift 
in the mean vector, such that 

,  
  (2)

where  is the threshold specified to maintain a 
desired in-control average run length (ARL0). 

There are three asymptotic distributions described in the 
literature to compute the in-control limits for the Hotelling’s 

T statistics. When we assume that the observations  are 
not time-dependent and that the process parameters are 

known, the  statistic follows a Chi-squared distribution 

with  degrees of freedom and  (Seber, 1984). 

This control chart is called a Phase II -chart for individual 

observations with known parameters. If sample estimates 

 of  are employed and  is an individual 
observation that is not independent of the estimators, then 

the  statistic follows a Beta distribution with 

 and  degrees of freedom, 

where . Thus, the upper control 

limit is given by . This 

control chart is called a Phase I -chart (Tracy et al., 1992). 
If the estimators are utilised instead of the parameters and 

if  is a future individual observation that is independent 

of , then  follows an F-distribution 

with  and  degrees of freedom, where 

.
Thus, the upper control limit of this multivariate Shewhart 

control chart is . This control chart is 

called a Phase II -chart with unknown parameters.

Because the multivariate Shewhart control charts only 
consider the information given by the current observation, 
they are insensitive to small and moderate shifts in the mean 
vector. To overcome this problem, we concisely describe the 
multivariate CUSUM and EWMA schemes proposed in the 
literature.

MUltiVariate CUMUlatiVe sUM Chart

Among the multivariate CUSUM methods proposed by 
Crosier (1988), the method with the best properties in terms 
of performance triggers an alarm when the statistic

    
(3)

where , if , 

 

if , ,  and 

,
 

. 

The upper control limit  is determined to provide a 
predefined in-control ARL by simulation. Because the ARL 
performance of this chart depends on the non-centrality 
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parameter, Crosier recommends  for a shift 

detection of  units. 

MUltiVariate exPOnentially Weighted MOVing 
aVerage Chart

The MEWMA method proposed by Lowry et 
al.,(1992) is a natural extension of the EWMA chart. 
Its multivariate formulation defines the EWMA vector 

as ,

, where , the initial in-control mean 

vector of the process, and , 

, . 

When , the MEWMA control chart is equivalent 
to the T-chart. Similar to other methods, this procedure 
triggers an out-of-control signal when

,

(6)

where  is chosen by simulation to obtain 

a predefined value of ARL0 and  is the covariance 

matrix of . If there is no reason to differentially weigh 

the historical observations in the  characteristics, then 

 is utilised, but when unequal weighting 
constants are considered, the ARL depends on the direction 

of the shift. The covariance matrix of  is calculated as 

 ; 

when ,

. 

An approximation of the variance-covariance matrix  

as i approaches +∞ is given as ; however, 
the appliance of exact variance-covariance matrix leads to 
a natural fast initial response (FIR) for the MEWMA chart. 

Scatter-plotS with confidence ellipSe 
estiMatiOn by PCa

The principal components method is a common 
multivariate procedure for projecting the original variable 

space into an orthogonal space, so less transformed 
variables that represent different sources of variation can 
be monitored together with multivariate control charts or 
individually with univariate control charts (Bersemis et al., 
2007). Among the applications of this very useful method 
in multivariate quality control, Jackson (1991) studied three 
types of control charts based on PCA. The first type is a T 
control chart obtained from principal scores components, the 
second is a control chart for principal component residuals 
and the third is a control chart for each independent principal 
component’s scores. Thus, further analysis could be made 
to monitor individual observations using their projections 
into the principal components. Bersemis et al.,(2007) offer 
a detailed description of multivariate process control via 
PCA and other projection techniques. Making a distinction 
between signal classification and signal representation as 
exposed by Fukunaga (1990), the authors applies PCA as a 
descriptive tool, establishing in- and- out-of-control regions 
for the current process and visualising them to gain an 
understanding of the process in conjunction with the control 
charts.

PCA aims to find a matrix  with a linear transformation 

of , which rotates the original axes in the directions of 
decreasing (or increasing) variability. In the bivariate case, 

the eigenvector associated with the first 

principal component (PC1) in the rotation matrix  indicates 
the direction of maximum process variability, and the first 

eigenvalue  indicates the normalised size of variation in 
that direction. Similarly, the second principal component 
(PC2) indicates the direction and magnitude of the axis with 
the second most significant variability, which is orthogonal 
to the first one.

 To plot the in- and -out-of-control ellipses in the 
scatter-plots showed in the present work, take the rotation 
angle of the estimated ellipse (in radians) with respect to 
the original coordinate system from the trigonometric 
rules, such as the arctangent of the first eigenvector, which 
points in the direction of greatest variability. Similarly, the 
second eigenvector provides the direction of the second 
most significant variation. The estimated axis sizes in the 
directions of the major and minor variability are normalised, 
and the eigenvalues are multiplied by the quantile of a 
multivariate normal distribution to establish the confidence 

region of , where  is the error probability. 
Assuming that the subjacent process is Gaussian, we 

adopt , which corresponds to an error 

 for the estimated axis size. The in-control 
ellipses are drawn in blue and the out-of-control ellipse in 
red.
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exPeriMents

As described above, the calibration of the MCUSUM 
and MEWMA charts to obtain a predefined value for ARL0 

involves defining the -factor in the MCUSUM and  in 
the MEWMA. For the MCUSUM chart, Crosier (1988) notes 

that one should choose  to detect a shift with a 

magnitude  corresponding to the noncentrality parameter. 
For the MEWMA method, Lowry and Montgomery (1992) 
illustrate optimal schemes to choose the weighting factor 

, which generally must be between 0.05 and 0.25. The 

optimum suggested value of  to detect a unitary change 
in the non-centrality parameter is 0.16.

In the present work,  is selected for the 
MEWMA chart because with the MEWMA chart using this 
value behaves a little better than the MCUSUM chart when 

, which corresponds to a target shift detection of 

noncentrality value . With the  and values set, 

the control limits  are estimated for the control charts 
to obtain the same average run length. To standardise the 
analysis with other studies, the charts are calibrated to an 
ARL0 of 200, which is an intermediate value for the mean 
time, after which a false alarm may be triggered. Defining 
in-control thresholds for each chart using the same ARL0 
ensures an equivalent type I error for the tests under the 
null hypothesis of no change in the process. 

When the calibration procedure is complete, we compare 
the chart ARL1 values, i.e., the chart performance with a shift 
in the process. When the underlying process is actually out-

of-control with a mean vector shift, a smaller ARL1 value 
corresponds to better chart performance. Conversely, the 
chart may trigger a signal for a different variation source, 
indicating that the chart is not robust for different causes 
of variation. Thus, the ARL1 computed for other sources of 
variation and different mean vector shifts can be viewed as 
a disadvantage or lack of robustness of the chart and treated 
as a scale of sensibility. The ARL empirical computation is 
described in the next section. All routines for the experiments 
were elaborated using the R environment (2008).

As previously stated, the Hotelling’s T control chart 
calibration is achieved using the process sample estimates or 
the known parameters to compute the thresholds by means 
of asymptotic distributions. An additional simple Hotelling’s 
T control chart calibration observes the false alarm rate and 
computes the probability of a signal, but we do not apply 
this procedure because the non-Shewhart control charts do 
not share this signal independence property. To compare the 
performance of non-Shewhart and Shewhart-type control 
chart, we choose the method described below in lieu of the 
traditional Markov Chain or integral equations approach for 
the MCUSUM and MEWMA threshold estimation.

COntrOl Chart CalibratiOn by linear regressiOn

In this work, the control chart calibration is computed by 
specifying a sequence of approximate thresholds for each 
control chart and recording the resulting in-control average 
run length (ARL0). Then, a linear regression model in the 

form  is fitted to estimate the 

target threshold for a predefined . 
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Figure 1. Linear regression adjustments for the three control charts based on known parameters

To access the ARL0 estimation for each threshold value, 
m is set equals 2,000. This quantity of observations show 

high probability (> 99.9% for ) of triggering 
a false alarm when the process is actually in-control. When 
observed, the position N of the first alarm occurrence 
is recorded as the run length, and the mean value of N, 
computed from B Monte Carlo simulations, is the ARL0 for 
that threshold. In the experiments performed with known 
parameters and 20,000 Monte Carlo simulations, the 
maximum observed run length is 1,844. To avoid missing 

values when the signal does not occur, N is set to a maximum 
of 2,000. The experiments are performed with B = 2,000 
simulations to speed up the regression adjustment step, and 
B = 20,000 simulations are performed with the estimated in-
control limit for the final ARL0 and ARL1 computation.

To illustrate the threshold sensitivity in the Hotelling’s 
T control chart, Table 1 contains the asymptotic values for 
a Phase II control chart, based on the F distribution, and 
respective standard errors obtained in 100,000 Monte Carlo 
simulations, where m = 100 observations of the in-control 
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process were simulated each step for parameter estimation. 

The highest threshold ( ) corresponds to an 
ARL0 value of 1,000 observations. Similarly, the confidence 

level of 99.5% ( ) shows an average run 
length that is five times less (200.7) than the first one. 

With the asymptotic values of Table 2 for the Hotelling’s 
T chart and the reference values in the original papers for 

the MEWMA and MCUSUM charts, the linear regressions 

displayed in the Figure 1 are fitted with known parameters 

for all charts’ calibrations. The minimum number of threshold 

values for the regression estimation is 10, and the maximum 

is 18. The values along the vertical axes are ARL0 values in a 

logarithmic scale, and the values along the horizontal axes 

are the in-control limits.

Table 1. Confidence level, thresholds, ARL0 and standard errors for a Phase II T control chart

% ARL0 SE

99.9 15.13 1000.1 3.127

99.5 11.42 200.7 0.625

99.0 9.85 99.7 0.316

95.0 6.30 19.9 0.063

The parameter estimation is carried out with m = 
25, 50 and 100 for the number of Phase I samples of 
individual observations. The thresholds value sequences for 
estimating the regression model of each control chart are 

set to approximate the ARL0 between 100 and 300. All fitted 
regressions, goodness-of-fit and estimated thresholds for a 
target ARL0 = 200 are shown in Table 3.

Table 2. Asymptotic thresholds of Hotelling’s T Phases I and II

Control chart type

m -distribution Beta-distribution F-distribution

25 - 8.81 14.61
50 - 9.69 12.34

100 - 10.14 11.42

10.60 - -

Table 3. Adjusted linear regression models with sample estimates and known parameters

Control Chart m Fitted model r2

T

25 0.956 11.26

50 0.971 10.93

100 0.985 10.60

0.992 10.61

MCUSUM

25 0.974 6.91

50 0.993 6.25

100 0.997 5.95

0.986 5.52
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MEWMA

25 0.963 11.59

50 0.974 10.29

100 0.994 9.63

0.993 8.76

We first compare the estimated thresholds with the 
asymptotic values of Hotelling’s T control charts presented 
in Table 2. In Table 3, we notice that the linear regression 
approach shows a tendency of larger thresholds for smaller 
sample sizes, as expected, and the estimate for known 
parameters (10.61) is very close to the asymptotic value 
(10.60). Second, for sample estimates, the regression 
adjusted thresholds are close to the asymptotic average 

between the two distributions. For m = 25, the asymptotic 
threshold average is 11.71, while the regression estimate 
is 11.26. For m = 50 and 100, the asymptotic threshold 
averages are 11.02 and 10.78, respectively, while the 
regression estimates are 10.93 and 10.60. Thus, the linear 
regression approach is effective for calibrating Hotelling’s T 
control chart.
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Figure 2. Empirical in- and out-of-control run length distributions

in-control and out-of-control run length 
distribUtiOns

To compare the run length distributions calibrated with 
known parameters, Figure 2 presents a sequence of density 
histograms based on the resulting run length values for 
20,000 Monte Carlo simulations. Figure 2-(a) shows the 
run length distributions for the three control charts and 
the mean points of each distribution are the ARL0 values 
of the last group in Table 4, which is based on the known 
parameters .

Some large observations are not displayed in the 
histograms because the horizontal axes were set to not 
lose scale definition. The maximum value in the mean 
vector shifts of Figure (b) and (c) was set differently for the 
Hotelling’s T control chart to improve visualisation. When 
the shift is large as in Figure 2-(f), the Hotelling’s T is clearly 
the most favourable to change detection. The run length 
distribution of the MEWMA control chart as seen Figure 2 
(e) and (f) confirm that this control chart with λ = 0.1 tends 
to perform better than the MCUSUM with k = 0.5. This 
result is also confirmed by the ARL1 values produced in the 
experiments with known parameters of Table 4.

Simulating long runs for the (2,000) is not necessary for 
defining the out-of-control run length distributions. For the 
ARL1 estimation, the total number of simulated observations 
utilised for each mean vector shift was 1,500, 1,000, 500, 
200 and 100, which considerably reduced the computing 
time costs.

PerfOrManCe COMParisOn fOr Mean VeCtOr 
shifts

Excluding the specific mean vector shifts to test the 

MCUSUM method, Crosier (1988) evaluates  unitary 

increments in the 0 to 5 range for several dimensions. 
Lowry and Montgomery (1995) in the MEWMA method 

evaluate shifts through  increments in the 0 to 3 range. 
The present work simulates changes in equal increments for 
both dimensions, and the centre of the process is shifted 
diagonally from (0.0, 0.0) to (2.5, 2.5) by increments of 0.5 
in both dimensions, representing d values in the 0 to 3.54 
range. The probability inside the area defined by three 
standard deviations in a non-correlated process is 0.995. 

Figure 3 illustrates the proposed mean vector shifts for 
correlated and non-correlated processes. Only the scheme 
in Figure 3-(a) is calibrated with estimated and known 
parameters. The correlated variable schemes (b) and 
(c) of Figure 3 are compared only for the case of known 
parameters. The experienced reader should argue why to 
do comparisons with correlated variables since the charts 
performance does not depends on the shifts direction. For 
that reasoning, the authors intend to emphasize that a shift 
of magnitude d is different when it occurs in the process 
directions of major and minor variability.

For non-correlated processes shown in Figure 3-(a), 
the in-control limits are delimited with known parameters 
and sample estimates of three different sizes in Phase I. 
Table 4 presents the resulting in- and out-of-control ARLs. 
Although the standard error (SE) of the estimate is relatively 
large for the ARL0 due to the regular number of Monte 
Carlo simulations (B = 20,000), the ARL1 values show little 
variation.
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(a) ρ = 0 (b) ρ = + 0.85 (c) ρ = - 0.85

Figure 3. Diagram of the proposed mean vector shifts for non-correlated and correlated processes

The main observed effect due to the utilisation of small 

sample sizes to train the control chart in Table 4 is an 

increasing delay in the change detection as the sample size 

decreases. The MCUSUM and MEWMA charts perform very 

similarly for all shifts, with faster performance than the 

Hotelling’s T chart for the shifts (2.0, 2.0) that are situated 

around the target non-centrality value (d = 1). To this point, 

the inertia effect begins to delay the change detection for 

the non-Shewhart charts, and the shift for the point (2.5, 

2.5) is more likely to be detected with the Shewhart-type 

control chart. 

The experiments with modified correlation structures 

shown in Figure 3 parts (b) and (c) determine the changes 

only in the first quadrant, thus allowing changes to 

represent both large and small shifts respective to the non-

centrality parameter. Figure 4 demonstrates how much 

those different structures allow the same shift in the mean 

vector to represent a relatively different shift in the non-

centrality parameter. Compared with the non-correlated 

process represented by the solid line, the mean vector shifts 

measured by the non-centrality parameter are smaller in 

the positively correlated process (gray line) and larger in the 

negatively correlated process (dashed line).

Figure 4. Shift size with respect to the noncentrality parameter in the 
correlated and non-correlated processes

Throughout the rest of the experiments, the in-control 
limits are obtained by calibrating the control chart with the 
process known parameters. The results for ARL comparison 
in detecting the process shift schemes of Figure 3 are shown 
in Table 5 and represented in d units in Figure 5. Although 
the MCUSUM and MEWMA charts have equivalent 
performance in the three situations, the performance of 
the Hotelling’s T chart exceeds the others after the first shift 
in Figure 5 case (c), when the shift occurs in the minor axis 
of the negatively correlated process. This result does not 
contradict the finding that the Hotelling’s T chart is a better 
monitor of large shifts. An observation of the point where 
the charts intersect indicates that the relative magnitude of 
the changes in all three cases is the same when measured 

using the noncentrality parameter .
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(a) ρ = 0 (b) ρ = + 0.85 (c) ρ = - 0.85

Figure 5. The control charts’ performance for the three simulated processes and mean vector shifts as non-centrality values

This situation occurs because a large distance between 
the processes tends to result in inertia in the MCUSUM 
and MEWMA methods (Lowry et al., 1992), delay change 
detection and make the Hotelling’s T chart more efficient 
in the third shifting scheme. We observe that larger shifts 

often occur in the direction of larger variability. A more 
realistic suggestion in this case is to observe relatively less 
movement in the direction of minor variability. The large 
values in the direction of lower variability are usually related 
to typing errors in the data acquisition procedure.

(a) ; M1 = (1.0, 1.0) (b) ; M1 = (2.5, 2.5)

Figure 6. Control chart patterns for moderate and large mean vector shifts
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Figure 6 illustrates three simulated runs for mean vector 
shifts in the process. The changes in the processes are 
moderate and large shifts. The inertia effect can be viewed 
in part (b) with the non-Shewhart control charts. As the 
Hotelling’s T chart triggers a signal at the very first out-of-
control observation, the MCUSUM and MEWMA charts are 
affected by a delay in triggering the signal.

the inflUenCe Of inCreasing VarianCes 

If the variances of the underlying process changes from 

 to , control 
chart may be affected because this overdispersion increases 
the individual observation distances with respect to the 
center of the in-control process. The results in Table 6 reflect 
the effect of process variance increases, which demonstrates 
a larger influence on the Hotelling’s T control chart.

The patterns that result from simultaneously altering 
the mean vector and covariance matrix generate a greater 
tendency for signal growth than the pattern shown in part (a) 
of Figure 7. When the mean vector changes, the subsequent 

process changes stemming from the modification of the 
covariance matrix greatly influence the charts’ performance. 
Whereas the MCUSUM and MEWMA methods consider 
the entire process to be out-of-control, beginning with the 
characterisation of a new centre of gravity, the Hotelling’s T 
chart discriminates all of the observations that exceed the 
coverage area, as defined by the in-control process. 

The difference in the charts’ performance can be 
observed by comparing Tables 6 and 7. Table 7 shows the 
influence of variance increasing over the mean vector 
shifts. This experiment performs only a slight increase in the 

variances, which changes from  

to . The combined effect of the 
increased variances and mean vector shifts is more evident 
for the Hotelling’s T control chart, where the reductions in 
the ARL1 are 73%, 52%, 30%, 11% and 0%. The MCUSUM and 
MEWMA control charts demonstrate a significant difference 
in the ARL1 for the first shift only, which are reduced by 
16% and 15%, respectively. The ARL1 reduction for the non-
Shewhart charts in the second shift is only 3% and is not 
significant for bigger shifts.

Table 6. The influence of increasing the process variances on the average run length

(1.0, 1.0) (1.5, 1.5) (2.0, 2.0) (2.5, 2.5)

Control chart ARL0 SE ARL1 SE ARL1 SE ARL1 SE

MCUSUM 198.1 1.401 52.3 0.370 26.8 0.190 17.9 0.126

MEWMA 202.8 1.434 56.3 0.398 29.0 0.205 18.9 0.134

T 202.3 1.431 35.0 0.247 14.2 0.100 8.4 0.060

 

(a) (b) 
Figure 7. Control chart patterns for (a) mean vector shift (b) mean vector shift and increased variances
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Table 7. The ARL influence of simultaneously increasing the variances and shifting the mean vector

(1.0, 1.0) (1.5, 1.5) 

d 0 0.71 1.41 2.12 2.82 3.54

Control chart ARL0 SE ARL1 SE ARL1 SE ARL1 SE ARL1 SE ARL1 SE

MCUSUM 198.5 1.404 13.5 0.095 5.8 0.041 3.7 0.026 2.8 0.020 2.3 0.016

MEWMA 198.2 1.402 13.0 0.092 5.6 0.040 3.6 0.025 2.7 0.019 2.2 0.015

T 200.8 1.420 21.3 0.151 8.9 0.063 4.1 0.029 2.2 0.016 1.5 0.011

the inflUenCe Of aUtOCOrrelatiOn

To verify the control charts’ performance when the 
process is perturbed with autocorrelation, the out-of-
control processes are simulated based on a first-order 
autoregressive model, VAR(1), on a scale of increasing 
intensity. The autocorrelations in both dimensions are 

 for the in-control 

process and  for 
the out-of-control process. The autocorrelation levels are 

. The 
degree of influence on the processes is indirectly evaluated 
by comparing the ARL1 values produced in the experiments 
described in Tables 8 and 9 to the values presented in Table 
4, where only the mean vector was modified. 

The experiment in Table 8 demonstrates that pure 
autocorrelation in the out-of-control process results in small 

mean vector shifts, being less noticed by the Hotelling’s T 
chart. The experiment in Table 9 inserts low autocorrelation 
levels in the process and simultaneously shifts the mean 
vector. The combined effect of mean vector shifts and 
autocorrelation shows a reduction in the ARL1 primarily 
for small shifts with all control charts and an acceleration 
of the change detection as the autocorrelation level 
increases. Further, the increase in the autocorrelation with 
mean vector shifts demonstrates a bigger influence on the 
Hotelling’s T chart. Comparing with simply shifting the mean 

vector to , the experiments utilising 

 and  accelerate the 
Hotelling’s T chart to identify the first two smaller shifts by 
17.7% and 23%, while the MCUSUM and MEWMA charts 
are accelerated by 18% and 16.3%, respectively. When 

, the acceleration in change detection are 
also more evident for the small shifts in the mean vector. 

Table 8. The ARL influence of purely increasing autocorrelation levels

(0.0, 0.0) (0.1, 0.1) (0.2, 0.2) (0.3, 0.3) (0.4, 0.4)

C. Chart ARL0 SE ARL1 SE ARL1 SE ARL1 SE ARL1 SE

MCUSUM 198.5 1.404 105.3 0.744 60.1 0.425 36.1 0.255 23.9 0.169

MEWMA 198.2 1.402 111.1 0.785 64.7 0.457 39.8 0.282 25.9 0.183

T 200.8 1.420 194.0 1.372 163.6 1.157 130.4 0.922 92.2 0.652

(0.5, 0.5) (0.6, 0.6) (0.7, 0.7) (0.8, 0.8) (0.9, 0.9)

C. Chart ARL1 SE ARL1 SE ARL1 SE ARL1 SE ARL1 SE

MCUSUM 16.4 0.116 11.7 0.083 8.5 0.060 6.2 0.044 4.6 0.032

MEWMA 17.4 0.123 12.2 0.086 8.7 0.061 6.2 0.044 4.5 0.032

T 60.5 0.428 37.7 0.266 21.8 0.154 12.8 0.090 7.1 0.051

To visualise the effect of pure autocorrelation in the 
out-of-control process, Figure 8 illustrates the action 

pattern of the control charts when . The 
non-Shewhart control charts are more likely to detect the 
change of an oscillatory movement in the process, which 
is characteristic of positive autocorrelation. Observing the 
three-dimensional scatter plots of Figure 8, this variation 

source initially performs a small shift in the process mean 
vector.

In all cases, the distances measured using the non-
centrality parameter suggest that the effects resulting from 
purely autocorrelated processes favour detection by the 
MCUSUM and MEWMA charts. The individual observation 
distances do not represent significant shifts relative to the in-
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control process. In situations when a shift in the mean vector 
occurs with a regular autocorrelation level, the Hotelling’s T 
chart can be more effective to change detection. 

The MCUSUM and MEWMA charts are generally 
considered effective for detecting shifts that are caused by 

the occurrence of purely positive autocorrelation at regular 
and high levels; for negative autocorrelation, the Hotelling’s 
T chart is most suitable to perceive the changes as outliers 
in the process.

Table 9. The ARL influence of simultaneously increasing autocorrelations and shifting the mean vector

d 0 0.71 1.41 2.12 2.82 3.54

C. Chart ARL0 SE ARL1 SE ARL1 SE ARL1 SE ARL1 SE ARL1 SE

MCUSUM 201.0 1.421 13.2 0.093 5.3 0.037 3.4 0.024 2.5 0.018 2.1 0.015

MEWMA 201.1 1.422 12.8 0.090 5.1 0.036 3.2 0.023 2.4 0.017 2.0 0.014

T 203.1 1.457 64.2 0.454 14.2 0.100 4.4 0.031 2.0 0.014 1.3 0.009

d 0 0.71 1.41 2.12 2.82 3.54

C. Chart ARL0 SE ARL1 SE ARL1 SE ARL1 SE ARL1 SE ARL1 SE

MCUSUM 201.0 1.421 10.8 0.077 4.6 0.033 3.0 0.021 2.8 0.020 2.3 0.016

MEWMA 201.1 1.422 10.6 0.075 4.5 0.032 2.9 0.020 2.7 0.019 2.2 0.015

T 202.1 1.457 48.4 0.342 10.2 0.072 3.2 0.023 2.2 0.016 1.5 0.011

Figure 9 shows the negative autocorrelated out-of-
control process pattern results, which are only detected 
using the Hotelling’s T chart, especially if the magnitude 
of the autocorrelation is large and the outliers appear 
beyond the in-control region. Conversely, the MCUSUM and 
MEWMA statistics result in no sensitivity to the negative 
autocorrelated process because the alternating individual 
observations cancel each other.

disCUssiOn

The present study investigates the behavioural patterns 
and performance of the control charts widely applied in SPC 
to monitor the mean vector, i.e., the MCUSUM, MEWMA 
and Hotelling’s T charts, with individual observations 
and combined sources of variability. The performance 
comparison of the charts with controlled simulated changes 
is carried out by the estimated ARLs. A procedure for the 
confidence ellipse estimation based on principal component 

analysis is briefly described as a descriptive tool for 
visualisation purposes.

As a unifying approach to estimate the in-control limits of 
Shewhart- and non-Shewhart-type control charts, the linear 
regressions of the thresholds as a function of the average 
run length are adjusted for known parameters and sample 
estimates of different sizes. The estimated thresholds for 
the three selected control charts agree with the values 
described in the literature. As noted above, an estimation 
of the control charts thresholds with a small number of 
individual Phase I observations increases the in-control 
limits and delays change detection for all studied control 
charts.

Different scenarios for the correlated process are 
established to compare the mean vector shifts in 
the directions of larger and smaller variations. These 
experiments demonstrate how the performance of selected 
control charts is dependent only on the shift magnitude, as 
measured by the noncentrality parameter.
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(a) (b)
Figure 8. Three-dimensional scatter plots (a) and control charts with confidence ellipses (b) for a purely autocorrelated out-of-control process 

(a) (b)
Figure 9. Three-dimensional scatter plots (a) and control charts with confidence ellipses (b) for the negative autocorrelated process 

The estimated in-control limits for known parameters 
are applied to study the effects of combining mean vector 
shifts and increasing variances or serial autocorrelations 
in the out-of-control process. We demonstrate that the 
resulting effect on the charts’ performance following an 
increase only in the variances in the out-of-control process 
is more evident in the Hotelling’s T chart, even for relatively 
small variance increments. The combined effect of jointly 
shifting the mean vector and increasing the variances in low 

levels makes the Hotelling’s T control chart as competitive 
as the non-Shewhart charts, even for moderate shift sizes 
in the mean vector because the influence of increasing the 
process dispersion additionally increases the individual non-
centrality values.

The effect of serial autocorrelation simulated in the out-
of-control process follows a first-order autoregressive model 
at different intensity levels. Among all proposed increments 
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in the autocorrelation, the experiments in this work 
showed that the effects of purely autocorrelated processes 
can be identified as small shifts in the mean vector, with 
correspondingly better change detection by the MCUSUM 
and MEWMA charts. When combined with the mean vector 
shifts, low levels of positive autocorrelation demonstrate 
that the Hotelling’s T control chart is as competitive as or 
better than the non-Shewhart charts for moderate and large 
shifts in the mean vector.

The control charts’ performance in the presence of 
negative autocorrelation shows that only the Hotelling’s T 
chart recognises the effects as outliers due to their continuous 
process dispersion. Whereas the MCUSUM method voids 
the information about the shift when the observations 
produce statistics with alternating signs in the cumulative 
sums, the MEWMA chart becomes ineffective by weighting 
the current value with the historical average, which is also 
affected by continuously alternating observations.

The non-centrality parameter is widely applied in 
single-hypothesis problems to control the mean vectors in 
multivariate processes because the analysis of all possible 
alternative distributions prior to decision-making is 
impossible. This technique works well when the observation 
size is small, e.g., 1 or 2. When p increases, however, mapping 
the p-dimensional space for a one-dimensional distance may 
destroy valuable information for the correct classifications 
that exist in the original spaces, if the direction of the shift 
is unknown a priori. A careful search of the conditional 
discriminant functions that determine an ideal intersection 
between the processes can reveal an optimal procedure.

As previously noted, the literature on statistical pattern 
recognition proposes several dissimilarity measures to 
improve class separability. Measures specifically delineated 
for multivariate normal distributions, such as appropriate 
linear transformations of the Mahalanobis distance, show 
superior performance in ARL when compared with the 
charts in the present study, on which topic work will soon 
be published.
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