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Abstract
In this paper the effects of the autocorrelation on some multivariate capability indices commonly 
used for independent processes are discussed and a correction is proposed. Some results are shown 
for VARMA(1,1) and VAR(1) time series processes under the multivariate normality assumption 
and the proportion of non-conforming units is calculated for some bivariate VAR(1) models. An 
extension of Veevers capability index for non-centered processes is also a subject addressed in 
this paper. An example of application in blast charcoal furnace pig iron process is presented and 
bootstrap is used to build confidence intervals for its true capability value as well as to evaluate 
the performance of the capability estimators. Similar as to what is already known for univariate 
processes the results showed that autocorrelation has a large impact in the multivariate capabilities 
indices. This paper also shows that some care should be taken when using Niverthi and Dey’s 
capabilities indices since they are very sensitive to any deviations from the process means to 
the specification means up to a point that a capable process might be considered non-capable.
Keywords: Autocorrelated processes, Bootstrap, Multivariate capability indices, 
Multivariate time series.

Introduction
Process capability indices are used to quantify the process performance in 

meeting the required specification limits. Many papers can be found in the literature 
discussing the capability for independent and autocorrelated normal univariate processes 
(Koltz and Johnson, 2002; Zhang, 1998). However, most of the processes have their 
performance evaluated according to multiple quality characteristics which in general 
are correlated (Mason and Young, 2002). In these situations Multivariate Capability 
Indices (MCI) are more appropriated. The univariate specification limits are replaced 
by a specification region and capability indices are generated according to the joint 
probability distribution of the variables, which in general is taken as the multivariate 
normal distribution. One of the simplest MCI is the geometric mean of the univariate 
capability values of the quality characteristics used to evaluate the process performance 
(Chan et al.,1991). However, this index may not be able to show the true condition of 
the process performance and it does not take into consideration the possible correlation 
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between the variables. Other MCI which depend upon the correlation structure of the 
variables have been proposed in the literature for independent processes. Wang et al. 
(2000) compared three indices: Taam et al (1993), Chen (1994) and Shahriari et al. 
(1995), considering some particular examples. Pearn et al. (2007) presented a study 
of distributional and inferential properties of the MCP and MCpm multivariate indices 
proposed by Taam et al. (1993). Niverthi and Dey (2000) extended the univariate CP 
and Cpk indices for the multivariate case. A viability index for multiresponse process 
was introduced by Veever’s (1998) and it is very appealing since it is a function of the 
univariate capability indices, it is easy to calculate and corrects some of the problems 
of the geometric mean. Capability measures such as Cheng and Spiring’s (1989) and 
Bernardo and Irony’s (1996) were derived under Bayesian framework. More recently 
Mingoti and Glória (2008) introduced some indices suitable to measure the capability 
of centered and non-centered independent multivariate processes and compared them 
with the geometric mean and Niverthi and Dey’s (2000). Their indices are extensions 
of Chen’s multivariate capability index (1994) and based on Hayter and Tsui’s (1994) 
multivariate statistical test for the population mean vector.

Although many capability indices are built under the independence 
assumption it is well known that positive autocorrelation among process data is 
very common for continuous manufacturing processes such as the production of pig 
iron or other chemical processes. For univariate processes it is already known that 
autocorrelation affects the control charts limits as well as the values of the capability 
indices built under independence assumption (see for example Alwan and Roberts, 
1995; Zhang, 1998, among others). In the case of positive correlation among the 
observations the false alarm proportion of control charts increases and the capability 
estimate overestimates the true process capability. For multivariate processes it has 
also been shown that the autocorrelation affects the multivariate control charts and 
some corrections have been proposed (Kalgonda and Kulkarni, 2004; Jarrett and Pan, 
2007). However, little attention has been given to the effects of the autocorrelation on 
the multivariate capability indices. In this paper we will address this subject and we 
will present a comparison among some MCI under several autocorrelation settings. 
An extension of Veevers’ index (1998), called Cpkmulti, is also proposed for non-
centered processes. For better comprehension the multivariate indices which are 
part of this study are introduced in section 2; the multivariate time series models are 
presented in section 3; a theoretical discussion about the autocorrelation effects on the 
capability values from multivariate processes is presented in section 4 for VAR(1) and 
VARMA(1,1) models with the calculation of the proportion of non-conforming process 
units for some VAR(1) models. An example of application in blast charcoal production 
of pig iron is shown in section 5 with bootstrap being used to generate confidence 
intervals for the true capability value of the process and to evaluate the performance 
of the capability estimators.

Multivariate Capability Indices
This section presents the multivariate capability indices that will be compared 

in this paper. In all cases it is assumed that the random vector containing the p quality 
characteristics of interest, X = (X1 X2…Xp)’, has a p-variate normal distribution with 
mean vector m0 = (m0

1 m
0
2...m

0
p)´, covariance and correlation matrices given by Σpxp and 

Ppxp, respectively.
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The Geometric Mean of the Univariate Capability Indices

Let Xi be the quality characteristic with normal distribution with parameters 
m0

i and σi. Let LSLi and USLi be the lower and upper specification limits respectively. 
The univariate capability indices Cpi and Cpki are defined as (Koltz and Johnson, 1993): 

0 0

2i

i

i i
p p i

i

i i i i
pk pk i

i i

USL LSL
C C (X )

m

USL LSL
C C (X ) min ;

m m

−
= =

σ

 − m m − = =  σ σ  

	 (1)

These indices quantify the relationship between the process and the 
manufacturing specification limits at a certain confidence level which depends upon 
the choice of the constant m. The value of this constant comes from the univariate 
standard normal distribution. A common value is m = 3 which corresponds to a 99.73% 
confidence level. Some references values, such as 1.33 or 2, are used to classify the 
process as being capable or not. A simple extension (Chan et al.,1991) of the indices 
defined in (1) to the multivariate case is the geometric mean of the Cpi and Cpki values 
obtained for each quality characteristic Xi, i = 1,2,…, p, as given in Equations 2,3. 
However, this procedure does not take into consideration the correlation that might 
exist among the variables.

1

1

/ pp

pgeom p i
i

C C (X )
=
∏ =   		  (2)
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∏ =   		  (3)

The Cpkgeom is not always defined. As a simple example take the case where 
p = 2 where one Cpk(xi) is negative and the other positive. Although the geometric mean 
is simple to calculate it may not show the true non-capability of the process since high 
capability values of some variables can compensate small capability values of other 
variables. As an example if one of the variables has Cpk(Xi ) equals 3 and the other equals 
0.75 the geometric mean in (3) will be equal to 1.5 indicating that the process is capable. 

Multiple-Response Viability Veevers’ Index

Let USL = (USL1 USL2…USLp)’ and LSL = (LSL1 LSL2…LSLp)’ be the upper 
and lower specification vectors, LSLi and USLi as defined before, i = 1,2,…p. Let Cp(Xi) 
the univariate capability index of Xi, i = 1,2,..., p, defined as in (1). According to Veevers 
(1998) the multivariate capability index, CpVeevers, is defined by (4) if at least one Cp(Xi) 
is less than 1 and it is defined as (5) otherwise, i = 1,2,..., p.

1
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i p i

,if C (X )
C C (X ) where I
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		  (4)
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It is interesting to notice that CpVeevers value in (4) is always smaller than 

1

p

p i
i

C (X )
=
∏ . Similarly the correction used in the denominator of (5) makes the value 

of CpVeevers be smaller than 
1

p

p i
i

C (X )
=
∏  when all capability indices are larger than 1. The 

Veevers’ capability index corrects some biases of the geometric mean. As an illustration 
if p = 2, one CP(Xi) is 3 and the other is 0.75 Veevers’ capability index will be equal to 
0.75 different from the value 1.5 given by the geometric mean.

An Extension of Multiple-Response Viability Veevers’ Index for Non-Centered 
Process

The indices in (4) and (5) are not sensite to the differences between the 
specification and process means. Following Veevers’ approach in this paper we propose 
the Cpkmulti index which is sensitive to these possible differences. Let Cpk(Xi) be defined 
as in (1). The proposed new index is defined as in (6) if at least one Cpk(Xi) is less than 
1 and it is defined as (7) otherwise, i = 1,2,..., p.

( )
1

0 1

1 1
p pk ii

pkmulti pk i i
i pk i

, if C XIC C (X ) where I
, if C (X )=

∏
 ≥= = 

<
	 (6)

1

1 1
1

p

pk i
i

pkmulti p p

pk i pk i
i i

C (X )
C

C (X ) C (X )
=

= =

∏

∏ ∏
=

 − − 
		  (7)

The Cpkmulti is defined in such way that its value is always smaller than 

1

p

pk i
i

C (X )
=
∏ .

Niverthi and Dey’s Multivariate Process Capability Indices

Niverthi and Dey (2000) proposed an extension of the univariate Cp,Cpk 
(Equations 1,2) for the multivariate case as follows. Let the specification vectors USL 
and LSL be defined as before. Niverthi and Dey’s multivariate versions of univariate 
Cp and Cpk are linear combinations of the upper and lower specification limits of all 
variables and are defined as (8) and (9).

1 21
2

– /
pNDC (USL – LSL)

m
= Σ 		  (8)

1 2 0 1 2 01 1– / – /CpkND min (USL – ; ( – LSL
m m

    = Σ m Σ m        
	 (9)

In this case a capability value is generated for each quality characteristic. 
As before the choice of the constant m is based on the univariate standard normal 
distribution. Niverthi and Dey (2000) used m = 3 which corresponds to a confidence 
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level of 99.73% or a significance level of α = 0.0027. The difficulty in using CpND and 
CpkND to classify the process as being capable or not comes from the fact that there are 
no reference values to which these vectors could be compare to. One possibility is to 
employ the usual univariate 1.33 or 2 reference values for each variable separately. 
Another is to define the global capability process estimate as the minimum value of 
the vectors CpND and CpkND respectively, as suggested in Mingoti and Glória’s (2008).

Mingoti and Glória’s Multivariate Capability Indices

Mingoti and Glória (2008) proposed two multivariate indices called Cm
p and 

Cm
pk . They are extensions of Chen’s multivariate capability index (1994) and based 

in Hayter and Tsui’s (1994) multivariate statistical test for vector mean of normal 
populations. Let LSLi and USLi be the lower and upper specification limits for the 
quality characteristic Xi. Define r1

i = ms
i – LSLi and r2

i = USLi – ms
i , where ms

i is the nominal 
(specification) mean of Xi, i = 1,2,…, p. Mingoti and Glória’s multivariate capability 
index  Cm

p is then defined as
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When Cm
p is larger or equal to 1 the process will be considered capable with 

a certain confidence level (1-α)100%. The Crα value is obtained by using simulation 
of samples from a p-variate normal distribution with zero mean vector and covariance 
matrix Ppxp. In practice the matrix Ppxp is estimated by the sample correlation matrix 
Rpxp of X. The steps of the simulation algorithm (Hayter and Tsui, 1994) used to obtain 
the constant Crα is given as follows. 

Step 1. Generate a large number N of vectors of observations from a p-variate 
normal distribution with zero mean vector and covariance matrix Ppxp. The generated 
vectors are denoted by Z1, Z2,…, ZN.

Step 2. Calculate the statistics M for each of the generated vectors Z j = (Z j
1, 

Zj
2,...,Z

j
p)’

from step 1, i.e, for the every j = 1,2,…, N, calculate the value of the statistics

{ }1 2j j
iM max Z ,i , ,..., p= = .

 Step 3. From the empirical distribution of M obtained from the sample (M1, 
M2,…, MN) find the value corresponding to the percentil of order (1 – α) and use this 
value as the critical constant Crα, 0 < α < 1.

This algorithm was also used by Kalgonda and Kulkarni (2004) in control 
charts for autocorrelated multivariate normal processes. Hayter and Tsui (1994) 
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suggested that a total of N = 100000 simulations should be performed in order to obtain 
the value of Crα with high precision. 

The Cm
p  defined in (10) is not sensitive to changes in the process vector mean 

and need to be modified. A more suitable multivariate coefficient Cm
pk  is defined by 

Mingoti and Glórias’s (2008). For each variable i, i = 1,2,…, p let Cm
pki  be defined as

0 0
m i i i i
pki

R i R i

LSL USL
C min ;

C Cα α

 m − − m
=  σ σ 

		  (12)

The  Cm
pk Mingoti and Glória’s capability index is defined as

{ }1 2m m
pk pkiC min C ,i , ,..., p= = 		  (13)

where LSLi and  USLiare defined as before and m0
i and σI are the process mean and 

standard deviation of the variable Xi, respectively. Considering that LSLi = ms
i – r1

i and 
USLi = ms

i + r2
i, where ms

i is the specification mean of Xi, the equation (12) reduces to 
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and therefore Cm
pk  takes into account possible deviations between the process and the 

nominal means values. The Cm
pk  coefficient defined in (13) is equal to the value obtained 

by Equation 10 when the process is centered in the specification mean vector.

Mingoti and Glória’s indices quantify the global capability as well as the 
capability of the process for each quality characteristic separately. Different from 
Niverthi and Dey’s the correlation structure of the quality characteristics is represented 
by the constant Crα and not by an inverse square root of the covariance matrix.

Autocorrelated Multivariate Processes
Although many statistical models are proposed considering independence 

among the data autocorrelation is very common. In these situations times series models 
are used to describe the relationship of the series of observations. As pointed out by 
Kalgonda and Kulkarni (2004) the presence of positive autocorrelation affects the 
performance of control charts since the Average Run Length (ARL) is much shorter than 
the expected when the process is under control. We will show that the autocorrelation 
affects the multivariate capability indices as well.

Time Series Models

Multivariate time series models (Lutkepohl, 2005) can be used to describe 
the pattern of autocorrelated multivariate processes. For each time t, let Xt = (Xt1 Xt2 …
Xtp )’ be a random vector with p-variate normal distribution. The VARMA (1,1) model 
is defined as

( ) ( )1 1t t t t tX X − −= m + Φ − Θ ε + ε 		  (15)
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where µt = (µt1 µt2 …µtp)’ is the mean vector of the process at time t, εt = (εt1 εt2 …εtp)’ 
is the vector of p-variate independent normal random variables with zero mean and 
covariance matrix Σpxp’, Φpxp and Θpxp are pxp matrices containing the autoregressive and 
moving average parameters. To be stationary the square roots of the matrix Φpxp have 
to be inside the unit circle or equivalently the eigenvalues of Φpxp have to be smaller 
than 1. Let Γ (t, t + h) be the cross-covariance matrix between Xt and Xt+h its (l,k)th 
element given as (16). 

( )( ){ }lk tl tl t hk t hk(h) E X X + +γ = − m − m 		  (16)

Due to the stationarity assumption µt is constant for each t, (µt = µ), and 
Γ (t, t + h) is a function of lag h only and can be denoted as Γ(h). The cross-correlation 
matrix ρ(h) at lag h is given by

1 2 1 2/ /(h) V (h)V− −r = Γ 		  (17)

where V = diag (γ11(0), γ22(0),...,γpp(0)). It can be shown that for VARMA (1,1) the 
cross-covariance at lag 0, when the matrices Σpxp’, Φpxp and Θpxp are given, is obtained 
by solving the Equations 18 and then, from this, ρ(0).

( ) ( )0 0 ' ' ' 'Γ = Φ Γ Φ + Θ ∑Θ − Φ ∑Θ − Θ ∑ Φ + ∑ 		  (18)

When the matrix Θpxp is null (15) turns into a first-order autoregressive 
model VAR(1) which was discussed by Kalgonda and Kulkarni (2004) and Kramer 
and Schmid (1997). In this case (18) reduces to Γ(0) = ΦΓ(0)Φ’ + Σ.

As an illustration for p = 2 the VAR(1) equations of the time series model 
are given by

1 1 11 1 1 12 1 2 1

2 2 22 1 2 21 1 1 2

t t t , t , t

t t t , t , t

X X X
X X X

− −

− −

= m + φ + φ + ε

= m + φ + φ + ε
		  (19)

The cross terms φ12 and φ21 represent the linear dependence between Xt1 
and Xt–1,2 and Xt2 and Xt–1,1, respectively. When both matrices Φpxp and Θpxp are null the 
model in (15) reduces to Xt = µt + εt. In this situation the observations of the process are 
independent and Σpxp is the covariance matrix of the random vector Xt. When one of the 
matrices Φpxp and Θpxp are not null the observations of the process are autocorrelated and 
the covariance structure of Xt is affected. In all cases, for each t, the random vector Xt 
will have a p-variate normal distribution with mean vector µ and covariance matrix Γ(0).

Kalgonda and Kulkarni (2004) proposed a procedure to implement the 
autocorrelation information in Hotelling T2 (1947) and Hayter and Tsui (1994) statistical 
tests used in multivariate quality control for monitoring the process mean vector. Only 
first-order autoregressive time series models (VAR(1)) with p = 2 quality characteristics 
were considered by the authors. In this paper we will discuss the effects of the 
autocorrelation in the capability indices described previously when data are generated 
from VAR(1), for p = 2 and 3, and from VARMA(1,1) models for p = 2. 

Correcting the capability indices for multivariate autocorrelated processes 
As shown before the autocorrelation affects the covariance matrix of the 

process. As a consequence the multivariate indices described before are also affected. An 
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alternative of correcting the values of those indices is to use the variance and covariance 
information contained in Γ(0) matrix instead of Σpxp in order to calculate the capability 
indices. This is the approach proposed in this paper and that will be discussed in the 
next section for VAR(1) and VARMA(1,1) processes. 

Comparing Capability Indices – Autocorrelated Processes

To understand how the autocorrelation affects the process capability values 
a study was performed under several settings described in Tables 1-3. The models in 
Table 1 are VAR(1) for p = 2 and p = 3, and VARMA(1,1) for p = 2. Tables 2,3 show the 
specification and the process limits for all models of Table 1. For each case and model 
the capability indices described were calculated based on both matrices Σpxp and Γ(0) 
(Tables 4-6). The ratio between the capability results obtained in both situations are 
presented. For Niverthi and Dey’s indices the global capability process estimate was 
defined as the minimum value of the vectors CpND and CpkND respectively, as suggested 
in Mingoti and Glória’s (2008).

The results based on Σpxp matrix ignore the autocorrelation among the 
observations. On the contrary, the results based on Γ(0) take into account the 
autocorrelation. As one can see there is a huge difference between the numerical 
values of the capability indices calculated under independent and autocorrelated data. 
In all cases the capability values based on the matrix Γ(0) are lower (in absolute value) 
than the values based on Σpxp and in general the differences are larger for Niverthi and 
Dey’s. When the matrix Γ(0) is used, all the capability indices, except the geometric 
mean, were able to recognize the processes which were not capable. The same was 
not true when the capability is calculated using the matrix Σpxp (Table 4, cases 3 and 
4). The ratio between the capability results calculated with Σpxp and Γ(0) show that the 
difference was much larger for VAR(1) with p = 2, than for VAR(1) with p = 3 and 
VARMA(1,1). Niverthi and Dey’s had the tendency to result in smaller capability values 
when compared to the other indices.

As an illustration in Figure 1a-d, the specification and the process confidence 
regions (99.73%) are shown for VAR(1) model defined according to Table 2, p = 2. The 
probability of non-conforming units with respect to the specification limits are also 
presented. Comparing these plots with the capability results of Table 4 we can see that 
the capability indices calculated by using matrix Σpxp were completely inappropriate 
for case 3 (except Niverthi and Dey’s). The non-capability of case 4 and the possible 
non-capability of case 3 are clearly signaled when matrix Γ(0) is used to quantify 
the capability. It is important to notice that the numerical values of the multivariate 
indices based on Γ(0) discussed in this paper reflect well the condition of the process 
in terms of the proportion of non-conforming (p). For case 1, p is approximately zero 
and all the multivariate capability indices resulted in numerical values larger or equal 
1.33; for case 2, p is 0.1532 (153200 ppm) and the multivariate capability indices 
were lower than 0.5 except for the geometric mean which was equal to 0.97; for case 
4 a non-centered process, clearly non-capable in the second variable and with a value 
of p equals to 0.1151 (115100 ppm) the multivariate capability indices of Cpk type 
were approximately equal to 0.4 (except the geometric mean that was equal to 0.89). 
For case 3 which represents a situation where the specification limits for the second 
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variable are equal to the process limits, the value of p is 0.0027 (2700 ppm) and the 
multivariate capability indices were lower but close to 1, except Niverthi and Dey’s 
which resulted the value 0.49. 

From the results in Tables 4-6 it is clear that Niverthi and Dey’s penalizes 
the processes more than the other indices even when the probability of non-conforming 
process units is small (see case 3 whose proportion of non-conforming process units 
according to the specification limits is 0.0027). Due to this tendency it is possible that a 
capable process will be considered non-capable by Niverthi and Dey´s indices (Mingoti 
and Glória, 2008). On the other hand, Mingoti and Glória’s and Veevers’ were more 
stable and produced more suitable information about the true capability (capability 
values close to 1 for case 3). 

Example of Application
When data is collected from a multivariate normal process with the purpose 

of estimating its capability the first step is to verify if the autocorrelation is present 
in the data and then to identify the appropriate time series model that is generating 

Table 2. Specification and process limits – p = 2.

Cases
Specification 

limits 
variable 1

Specification 
limits 

variable 2

Process limits 
variable 1

Process limits 
variable 2

Process 
condition

VAR(1)
1 [30 40 50] [21.6 30 38.4] [35 40 45] [ 25.8 30 34.2] centered-capable
2 [30 40 50] [28.0 30 32.0] [35 40 45] [ 25.8 30 34.2] centered-noncapable
3 [30 40 50] [25.8 30 34.2] [35 40 45] [ 25.8 30 34.2] centered-capable (*)

4 [30 40 50] [21.6 30 38.4] [43 48 53] [ 25.8 30 34.2] non-centered-
noncapable

VARMA(1,1)
5 [33.3 40 46.6] [24 30 36] [36.7 40 43.3] [27 30 33] centered-capable
6 [33.3 40 46.6] [29 30 31] [36.7 40 43.3] [27 30 33] centered-noncapable

7 [33.3 40 46.6] [24 30 36] [40.7 44 47.3] [31 34 37] noncentered-
noncapable

*This process is barely capable in the second variable.

Table 3. Specification and process limits – VAR(1) – p = 3.
Parameters Case 8 Case 9 Case 10

Specification limits – variable 1 [33.0 40 47.0] [33.0 40 47.0] [33.0 40 47.0]
Specification limits – variable 2 [21.6 30 38.4] [21.6 30 38.4] [21.6 30 38.4]
Specification limits – variable 3 [13.6 20 26.4] [13.6 20 26.4] [13.6 20 26.4]

Process limits – variable 1 [36.5 40 43.5] [42.5 46 49.5] [42.5 46 49.5]
Process limits – variable 2 [25.7 30 34.3] [26.8 31 35.2] [30.8 35 39.2]
Process limits – variable 3 [16.8 20 23.2] [16.8 20 23.2] [20.8 24 27.2]

Process condition centered-capable noncentered-
noncapable noncentered-noncapable
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Figure 1. Elipses (99.73%) and the specification region – Var(1), bivariate, p = probability of 
non-conforming units according to the specification limits.

a b

c d

the observations. After the parameters of the model are estimated the values of any 
capability index presented in this paper can be calculated since the matrices Φ, Σpxp and 
Γ(0) are estimated by maximum likelihood or other methods (Lutkepohl, 2005). As an 
illustration we will consider data from a blast charcoal furnace of pig iron production. 
Two variables were used for this example: X1, the air flow measured inside the furnace 
and X2,  the air pressure measured at the bottom of the furnace. The specification 
vectors are USL = (21.82 6.56)’, LSL = (20.44 5.5)’ and µs = (21.13; 6.03). A total of 
n = 360 observations were taken in a regular run when the process was under control 
(every observation was taken at every second). Figure 2 shows the series of observations 
from both variables and Figure 3 shows the respective partial autocorrelation functions. 
A VAR(1) model was indicated by the plots since for each variable an autoregressive 
model was suggested. The estimated parameters for the complete VAR(1) model are 
shown in (20). Since the cross-parameters estimates were close to zero the VAR(1) model 
was then adjusted without the cross parameters given the estimates shown in (21) and 
the residual analysis has shown that it was a well adjusted model (results not shown).
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Table 5. Capability indices results- VAR (1) – p = 3.

Capability index By matrix Σ 
cases

By matrix Γ(0)  
cases

Ratio 
between indices

8 9 10 8 9 10 8 9 10

CP – variable 1 2.33 2.33 2.33 2.02 2.02 2.02 1.15 1.15 1.15

CP – variable 2 2.80 2.80 2.80 2.00 2.00 2.00 1.40 1.41 1.41

CP – variable 3 2.13 2.13 2.13 2.03 2.03 2.03 1.05 1.05 1.05

CPk – variable 1 2.33 0.33 0.33 2.02 0.29 0.29 1.15 1.14 1.14

CPk – variable 2 2.80 2.47 1.13 2.00 1.76 0.81 1.40 1.40 1.40

CPk – variable 3 2.13 2.13 0.8 2.03 2.04 0.76 1.05 1.04 1.05

CP (Veevers) 1.25 1.24 1.24 1.15 1.15 1.15 1.09 1.08 1.08

CPk (Veevers) 1.25 0.33 0.27 1.15 0.29 0.18 1.09 1.14 1.50

CP (geometric) 2.41 2.41 2.41 2.02 2.02 2.02 1.19 1.19 1.19

CPk (geometric) 2.41 1.21 0.67 2.02 1.01 0.56 1.19 1.20 1.20

CP (Niverthi-Dey) 1.33 1.33 1.33 1.17 1.18 1.17 1.14 1.13 1.14

CPk (Niverti-Dey) 1.33 –1.41 –0.30 1.17 –1.14 –0.23 1.14 1.24 1.30

Cpm  
(Mingoti-Glória) 2.10 2.03 2.03 1.91 1.97 1.97 1.10 1.03 1.03

Cpkm  
(Mingoti-Glória) 2.10 0.32 0.32 1.91 0.28 0.28 1.10 1.14 1.14

Table 4. Capability indices results – VAR(1) – p = 2.
Capability 

indices
By matrix Σ 

cases
By matrix Γ(0) 

cases
Ratio between 

Indices
1 2 3 4 1 2 3 4 1 2 3 4

CP – variable 1 3.33 3.33 3.33 3.33 2.00 2.00 2.00 2.00 1.66 1.66 1.66 1.66

CP – variable 2 2.80 0.67 1.40 2.80 2.00 0.48 0.99 2.00 1.40 1.39 1.41 1.40

CPk – variable 1 3.33 3.33 3.33 0.67 2.00 2.00 2.00 0.40 1.66 1.66 1.66 1.67

CPk – variable 2 2.80 0.67 1.40 2.80 2.00 0.48 0.99 2.00 1.40 1.39 1.41 1.40

CP (Veevers) 1.82 0.67 1.25 1.82 1.33 0.48 0.99 1.33 1.36 1.39 1.26 1.36

CPk (Veevers) 1.82 0.67 1.25 0.67 1.33 0.48 0.99 0.40 1.36 1.39 1.26 1.67

CP (geometric) 3.05 1.49 2.16 3.05 2.00 0.97 1.41 2.00 1.52 1.53 1.53 1.52

CPk (geometric) 3.05 1.49 2.16 1.37 2.00 0.97 1.41 0.89 1.52 1.53 1.53 1.53

CP  
(Niverthi-Dey) 2.13 –0.25 0.57 2.13 1.60 –0.09 0.49 1.60 1.33 2.77 1.16 1.33

CPk  
(Niverti-Dey) 2.13 –0.25 0.57 –0.09 1.60 –0.09 0.49 –0.08 1.33 2.77 1.16 1.12

Cpm  
(Mingoti-Glória) 2.89 0.69 1.45 2.89 1.99  0.47 0.95 1.99 1.45 1.46 1.52 1.45

Cpkm  
(Mingoti-Glória) 2.89 0.69 1.45 0.69 1.99  0.47 0.95 0.39 1.45 1.46 1.52 1.76
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where r̂(0) is the estimated correlation matrix based on  0Γ and m̂0 is the process vector 
mean estimate. For a confidence level of 99.73% (i.e. α = 0.0027) the constant m is 
3 and Crα is 3.014. The capability estimates are shown in Table 7. As one can see the 
non-capability condition of the process is signaled by the Cpk univariate indices as well 
as by their geometric means. Among the other multivariate capability indices Veevers’ 
and Mingoti and Glória’s were more sensitive to the non-capability condition of the 
process. On the contrary, Niverthi and Dey’s indices were not able to signal the non-
capability given numerical values larger than 1.

The bootstrap methodology (Efron and Tibashirani, 1993) was used 
to generate confidence intervals for the true process capability indices for each 

Table 6. Capability indices results - VARMA (1,1) – p = 2.

Capability index By matrix Σ cases By matrix Γ(0) cases
Ratio

between indices
5 6 7 5 6 7 5 6 7

CP – variable 1 2.22 2.22 2.22 2.01 2.01 2.01 1.10 1.10 1.10

CP – variable 2 2.00 0.33 2.00 2.00 0.33 2.00 1.00 1.00 1.00

CPk – variable 1 2.20 2.22 0.86 2.00 2.00 0.79 1.10 1.11 1.09

CPk – variable 2 2.00 0.33 0.66 2.00 0.33 0.66 1.00 1.00 1.00

CP (Veevers) 1.38 0.33 1.38 1.33 0.33 1.34 1.04 1.00 1.03

CPk (Veevers) 1.38 0.33 0.58 1.33 0.33 0.52 1.04 1.00 1.12

CP (geometric) 2.10 0.86 2.10 2.00 0.82 2.00 1.05 1.05 1.05

CPk (geometric) 2.10 0.86 0.76 2.00 0.82 0.72 1.05 1.05 1.06

CP (Niverthi-Dey) 1.57 –0.29 1.57 1.63 –0.19 1.63 0.96 1.53 0.96

CPk (Niverti-Dey) 1.57 –0.29 0.48 1.63 –0.18 0.51 0.96 1.61 0.94

Cpm (Mingoti-Glória) 2.04 0.34 2.04 2.02 0.34 2.02 1.01 1.00 1.01

Cpkm (Mingoti-Glória) 2.04 0.34 0.68 2.02 0.34 0.67 1.01 1.00 1.01
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methodology. A total of m = 1000 bootstrap samples of sizes n = 360 were selected 
with replacement. For each bootstrap sample the estimates of all multivariate capability 
indices discussed in this paper were calculated at α = 0.0027 and compared to the 
corresponding bootstrap values of Table 7. The Mean Error (ME), the Absolute Mean 
Error (AME) and the Squared Mean Error (SME) were calculated (see Table 7 for the 
results). As we can see the ME, AME and the SME values were larger for Niverthi and 
Dey estimates than for Mingoti and Glória, the geometric means and Veevers indices. 
All indices are practically unbiased (mean errors close to zero) and their distributions 

Figure 2. Series of observations of both variables - the blast charcoal furnace of pig iron 
production.
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Figure 3. Partial autocorrelation of the blast charcoal furnace of pig iron production series.

resemble the univarite normal except Veevers Cp (Figure 4). For all multivariate indices, 
except Niverthi and Dey, the 95% bootstrap confidence limits for the true capability 
show that the process is non-capable since the upper limit is lower or very close to 
1. The lower limits of the confidence interval built using Niverthi and Dey’s indices 
were very far from 1 giving no sign at all of the non-capability of the process. The 
confidence interval using Mingoti and Glória’s, Cm

pk , resulted in smaller range (0.139) 
than Niverthi and Dey’s, CpkND (0.262) and Veeevers’ Cpkmulti (0.171).



Brazilian Journal of Operations & Production Management
Volume 8, Number 1, 2011, pp. 133-152

148

Final Remarks
This paper shows the importance of taking into account the autocorrelation 

of the process in the calculation of capability multivariate indices. As we have shown, 
in the presence of autocorrelation a non-capable process may be considered capable 
if the capability index is not properly corrected. In a real situation the user needs to 
collect enough data to correctly identify the multivariate time series model which had 
generated the observations of the process. For a VAR(1) model the routine mAr.est from 
the software R for windows may be used to estimate the matrices Φpxp, Σpxp, Γ(0) and 
ρ(0). The estimation procedure is based upon a minimum squares stepwise (Neumaier 
and Schneider, 2001). The user can also make its own program to obtain a maximum 
likelihood solution (Lutkepohl, 2005). By doing so any capability multivariate index 

Figure 4. Histograms from the capability bootstrap estimates.
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discussed in this paper can be calculated. Confidence intervals for the true capability 
index can also be built by using the bootstrap methodology as an alternative. 

The results of this paper had shown that Veever’s and Mingoti and Glória’s 
multivariate capability indices performed better than Niverthi and Dey’s and were less 
subject to wrong conclusions about the capability or non-capability of the process. 
Since they are even easier to calculate they should be preferred. 

Finally, in this paper for VAR(1) and p = 2 it was presented the correspondence 
between the capability index value and the probability (p) of non-conforming units 
generated by the process according to the specification limits. As a future work it would 
be interesting to establish some reference values for the multivariate indices to be used 
to classify the process capability in bands similar as done for univariate processes.

Table 7. Estimate capability and bootstrap results for the blast charcoal furnace example.

Capability  
Indices Estimate (*) Bootstrap 

estimate
Bootstrap 95% 

confidence interval EM AEM SME

Cp -  
variable 1 1.013647 1.008772 (0.946561; 

1.087939) –0.0049 0.0289 0.0013

Cp -  
variable 2 1.168415 1.193694 (1.092717; 

1.242791) 0.0253 0.0381 0.0022

Cpk -  
variable 1 0.969903 0.964912 (0.891059; 

1.058655) 0.0778 0.0781 0.0072

Cpk -  
variable 2 0.887130 0.900900 (0.822696; 

0.955191) 0.0138 0.0299 0.0014

Cp 
 (Veevers) 0.994767 1.001413 (0.946561; 

1.013515) 0.0066 0.0114 0.0003

Cpk 
 (Veevers) 0.855012 0.869290 (0.770196; 

0.940605) 0.0143 0.0374 0.0021

Cp  
(geometric) 1.088044 1.097344 (1.033706; 

1.147314) 0.0093 0.0254 0.0010

CpK  
(geometric) 0.927210 0.932357 (0.877608; 

0.982263) 0.0051 0.0221 0.0008

Cp  
(Niverthi-Dey) 1.617019 1.700645 (1.484890; 

1.774682) 0.0836 0.0961 0.0129

CpK  
(Niverti-Dey) 1.465741 1.532651 (1.345717; 

1.607757) 0.0669 0.0810 0.0093

Cp 
 (Mingoti-Glória) 1.016766 1.041212 (0.940826; 

1.098406) 0.0244 0.0389 0.0023

Cpk 
 (Mingoti-Glória) 0.888364 0.927983 (0.819098; 

0.958860) 0.0396 0.0446 0.0028

*The estimate is obtained by using the original data (sample size n = 360).
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