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During the last century, eutrophication significantly reduced the depth distribution
and density of the habitat forming eelgrass meadows (Zostera marina) in Danish
coastal waters. Despite large reductions in nutrient loadings and improved water
quality, Danish eelgrass meadows are currently not as widely distributed as expected
from improvements in water clarity alone. This point to the importance of other
environmental conditions such as sediment quality, wave exposure, oxygen conditions
and water temperature that may limit eelgrass growth and contribute to constraining
current distributions. Recently, detailed local models have been set up to evaluate the
importance of such regulating factors in selected Danish coastal areas, but nationwide
maps of eelgrass distribution and large-scale evaluations of regulating factors are
still lacking. To provide such nationwide information, we applied a spatial habitat
GIS modeling approach, which combines information on six key eelgrass habitat
requirements (light availability, water temperature, salinity, frequency of low oxygen
concentration, wave exposure, and sediment type) for which we were able to obtain
national coverage. The modeled potential current distribution area of Danish eelgrass
meadows was 2204 km2 compared to historical estimates of around 7000 km2,
indicating a great potential for further distribution. While validating the modeled eelgrass
distribution area in three areas (83–111 km2) that hold large eelgrass meadows, we
found an agreement of 67% with in situ monitoring data and 77% for eelgrass areas
as identified from summer orthophotos. The GIS model predicted higher coverage
especially in shallow waters and near the depth limits. Areas of disagreement between
GIS-modeled and observed coverage generally exhibited higher exposure level, mean
summer temperature and salinity compared to areas of agreement. A sensitivity analysis
showed that the modeled area distribution of eelgrass was highly sensitive to light
conditions, with 18–38% increase in coverage following an increase in light availability
of 20%. Modeled coverage of eelgrass was also sensitive to wave exposure and
temperature conditions while less sensitive to changes in oxygen and salinity conditions.
Large regional differences in habitat conditions suggest spatial variation in the factors
currently limiting the recovery of eelgrass and, hence, variations in actions required for
sustainable management.
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INTRODUCTION

Benthic primary producers such as seagrasses play important
ecological roles as hotspots for production, storage and export
of organic carbon (Duarte et al., 2013; Duarte and Krause-
Jensen, 2017) in addition to efficiently retaining nutrients,
stabilizing sediments and stimulating biodiversity in shallow
coastal ecosystems (Hemminga and Duarte, 2000). They also
form important habitats for epifauna, fish and birds (Bostrom
et al., 2014). Reductions in water clarity of shallow coastal
waters, mostly due to eutrophication, have caused global losses
and reduced depth colonization of seagrass meadows (Short
and Wyllie-Echeverria, 1996; Orth et al., 2006). Historically,
most of the Danish estuaries were dominated by the seagrass
Zostera marina (eelgrass), but following the wasting disease in
the 1930s, and partial recovery thereafter, the extent and depth
distribution of eelgrass decreased markedly, as eutrophication
reduced water clarity (Nielsen et al., 2002; Krause-Jensen et al.,
2012; Bostrom et al., 2014). The distribution of eelgrass is
central in coastal water management, partly because of the
ecosystem functions and services it provides (Orth et al., 2006;
McGlathery et al., 2012), but also because of relatively strong
relationships between depth distribution and nutrient loading
driven mostly by reductions in light availability (Nielsen et al.,
2002). Eelgrass is therefore a key indicator species for the
assessment of marine water quality in Europe (Guidance, 2009).
Besides being sensitive to eutrophication, eelgrass meadows
reflect and integrate changes in water quality over longer time
periods making them an ideal indicator species (Krause-Jensen
et al., 2008). A recent study shows that seagrass recovery is
longer in systems with a long history of eutrophication altering
several growth conditions (O’Brien et al., 2017). Despite large
reductions in nutrient loadings and improved water quality
in Danish coastal waters, eelgrass meadows are not as widely
distributed as expected (Riemann et al., 2016). This indicating
the importance of other environmental conditions delaying
the recovery and growth of eelgrass. Besides light availability,
eelgrass distribution is also related to oxygen and temperature
conditions (Koch, 2001; Pulido and Borum, 2010; Raun and
Borum, 2013), salinity and nutrient regime (Krause-Jensen et al.,
2000; Carstensen et al., 2013). Wave and current exposure and
sediment conditions are also important controlling factors (Short
et al., 2002; Rasmussen et al., 2009; Yang et al., 2013; Kuusemäe
et al., 2016). In addition, overgrowth by epiphytes stimulated by
nutrients (Sand-Jensen, 1977; Borum, 1985) the negative physical
impact from drifting macroalgae (Canal-Verges et al., 2014),
burial of seeds and seedlings by the bioturbation generated by
lugworm (Valdemarsen et al., 2011), substrate competition from
pacific oyster (Tallis et al., 2009) and a range of anthropogenic
activities including dredging and fisheries (Hilary et al., 2005)
may affect eelgrass distribution and performance.

Recently, in some local Danish areas, detailed models have
been set up to evaluate the importance of such regulating
factors (Canal-Vergés et al., 2016; Flindt et al., 2016; Kuusemäe
et al., 2016). However, a nationwide map demonstrating the
eelgrass distribution and density in Danish coastal waters is still
lacking. To provide such nationwide information, we applied a

spatial modeling approach, which combines information from
different spatial layers available on the important regulating
environmental conditions mentioned above. The aims of this
Geographical Information System (GIS) model are to provide a
tool that enables a nationwide description of the potential spatial
distribution and density of eelgrass. Furthermore, the GIS tool
aims to enable and evaluate the importance of key environmental
conditions regulating eelgrass distribution, to identify limiting
factors for the expansion of current eelgrass populations and
thereby guide sustainable management of the meadows. In this
study we describe the data layers applied in the nationwide
GIS model, and how we combine these to provide a map of
the potential distribution of eelgrass. By potential, we mean
the most likely distribution, given the status of a number
of key environmental conditions known to represent habitat
requirements of eelgrass. To evaluate the GIS model output,
we compared the output with spatial eelgrass distribution data
obtained from summer ortho photos (SOP) and in situ eelgrass
monitoring data from the Danish nationwide marine monitoring
program (NOVANA). We tested for possible differences in
environmental conditions between areas where the GIS model
and observations both agree and disagree. Finally, we performed
a sensitivity analysis of the available data layers to evaluate
their relative importance and discuss future management and
optimization perspectives of the model.

MATERIALS AND METHODS

Study Area
The study area covers all Danish coastal waters including the
Kattegat, the Danish straits and the Wadden Sea as well as
estuaries, lagoons, bays and open stretches along the coastline.
In total, more than 7000 km of coastline of shallow waters
(<11 m depth) corresponding to 13125 km2 seafloor are
included in this study (Supplementary Figure S1). Although
the various water bodies are very different, they are almost all
characterized as eutrophic with turbid waters, organic enriched
sediments, with some of them exposed to increased risks of
anoxia (Riemann et al., 2016).

Environmental Data
Environmental parameters were selected a priori based on
existing knowledge on eelgrass habitat requirements and
constraints on growth and distribution. These variables
included bathymetry (depth), bottom water temperature,
salinity and oxygen concentrations, light attenuation, sediment
characteristics and physical exposure to waves and tides (Table 1).
While other biotic and abiotic conditions have proven to be
relevant (Figure 1), we had to simplify our model approach to
the availability of data on a national scale. Data for estimating the
pelagic variables (temperature, salinity, oxygen, light attenuation,
and Secchi depth) were provided by the NOVANA monitoring
program for the period 1994–2010. Pelagic variables represent
sampling biweekly to monthly throughout the year by local
departments of the Danish Nature Agency and the results are
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TABLE 1 | Description of GIS data layers used to model the probability of eelgrass with a spatial resolution of 100 m × 100 m.

Data layer Unit Data origin Notes

Bathymetry (m) Combined data from Danish Maritime Safety
Administration, 50 m grid, BALANCE 200 m
grid (Baltic Sea to Skagerak) and ETOPO 1
arc-minute rest plus transect depths

Danish Maritime Safety Administration data
set with 50 m does not cover all of EEZ but
covers all areas between 0 and 10 m
depth. The depths for the most relevant
shallow waters are not very good in that
dataset and were therefore improved based
on transect data.

Light at bottom (Iz) (µmol photons m−2 s−1) Light profiles, Light attenuation and secchi
depth

Combines Kd, depth and surface light
according to Murray and Markager (2011).
Data from April to Oct during 2000 to 2010

Temperatures at
seafloor (TWbottom)

Summer mean temperature (
◦

C) CTD profiles Combines CTD and bathymetry. Frequency
based on Tbottom from April to October
during 2000 to 2010

Salinity at bottom
(Salt bot)

Summer mean salinity (psu) CTD profiles Combines CTD and bathymetry

Low oxygen at
bottom (DObottom)

# of events per year DO < 2 mg/L/total
# measurements

CTD profiles Combines CTD and bathymetry. Frequency
based on DObottom from April to Oct during
2000 to 2010

Physical exposure Relative exposure (no units) EUseamaps (waver energy) DHI (frequency of
wave base reaching the seabed)

A merged product where each map has
been normalized to vary between 0 and 1.

Sediment conditions Information from 7 sediment categories
reduced into 3 sediment groups

EUSeamaps + GEUS

FIGURE 1 | Conceptual model of linkages between abiotic and biotic conditions influencing the distribution of eelgrass plants in coastal waters. Increase in e.g.,
water clarity, oxygen concentration and salinity are expected to stimulate eelgrass distribution, whereas increases in e.g., physical exposure and water temperature
are expected to limit eelgrass distribution. Conditions, for which we have access to nationwide data layers are marked as full black squares.

reported to a national database1 maintained by the Danish Center
for Energy and Environment (DCE) at Aarhus University. Data
on temperature, light attenuation and salinity were averaged
over the summer season (April to October), except for oxygen
where we extracted information on the frequency of low oxygen

1https://oda.dk/main.aspx

concentrations to assess the potential impact of hypoxia/anoxia
on eelgrass distribution. To provide bottom temperature, bottom
salinity and frequency of low oxygen concentrations (<2 mg/L)
for the geographic area relevant for eelgrass, we applied a
geographically weighted regression tool in ArcMap, with the
depths information of the observations as explanatory variable.
In the extrapolation analysis we separated the coastal zone into
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open waters and fjords. A similar approach was used to estimate
light attenuation (KD) at shallow depth. To improve the number
of light attenuation observations KD was estimated both from
light profiles and Secchi depths observations as described in the
section on light index. Afterward we combined the data into a
single raster layer per parameter.

The GIS data layer on sediment characteristics was provided
by the Geological Survey of Denmark and Greenland (GEUS)
and consists of seven sediment classes: bedrock, hard bottom
complex, gravel, sand, hard clay, muddy sand and mud. The
sediment map has a scale of 1:250000. The coverage of the
seafloor features varies within the area depending on the
resolution of the different surveys (Cameron and Askew, 2011).
The bathymetric maps for the Kattegat, inner Danish waters
Danish estuaries and coastal zones were provided by the Danish
Maritime Safety Administration at a nominal resolution of
50 m. Data on wave exposure and current velocities in the
Wadden Sea and Western coastline of Jutland were provided by
a hydrodynamic North Sea model (MIKE, DHI), whereas wave
and current energy at the seafloor (hereafter named exposure)
for the inner Danish waters and estuaries were provided from
EUseamaps. Finally, as the spatial layers varied in resolution we
aggregated data and exported these as gridded files with a spatial
resolution of 100 m× 100 m.

Model Approach
Our modeling approach largely follows the recommendation
by Hirzel and Le Lay (2008) for habitat suitability models.
The model assumes that the coverage of eelgrass to a large
extent reflects the suitability of the coastal habitats for eelgrass
growth and survival. In addition, we assume that this overall
suitability can be evaluated based on spatial information on a
number of key environmental conditions for which we used the
most suitable data.

The model consists of spatial data layers with environmental
parameters (input data), which are either used directly in the
eelgrass model or used to generate derived data layers, which
are important for eelgrass growth (Figure 1). For each of the
six environmental parameters we explored the relationship with
in situ measured eelgrass coverage observed along transects. For
a given spatial layer (e.g., bottom temperature) we extracted data
on eelgrass coverage and the environmental value (here bottom
temperature) on a pixel (50 × 50 m) level. The eelgrass coverage
within the pixel was calculated as a mean value within the range
of 0–100% coverage.

Correlations between eelgrass coverage and each of the six
environmental conditions were modeled using relations derived
from statistical analysis of the present data in combination
with information from the literature on important thresholds,
if available. The resulting data layers were then transformed into
continuous index functions with a value between 0 (i.e., eelgrass
growth/survival is impossible) and 1 (i.e., the parameter is
not limiting eelgrass). Below, we briefly present the individual
index functions. A detailed description of the index functions is
available in the Supplementary Material.

Although habitat suitability models can be derived from
discrete functionalities (Brooks, 1997), continuous non-linear

functionalities (or smoothened threshold functions) are
commonly used (Hirzel and Le Lay, 2008). Non-linear functions
were chosen as these provided better fits and commonly used to
estimate threshold values (Andersen et al., 2009).

Light Index
To develop a light index we used both light extinction coefficient
(KD) derived from light profiles and from Secchi depth converted
to KD following the method of Murray and Markager (2011).
Here we parameterized the importance of the actually available
light reaching the seafloor, rather than different indices of water
clarity. First, we applied a standard equation (Beer’s law) to
model bottom light levels (Iz) from measured light attenuation
coefficients (KD), light at the Sea surface (Isurface) and water
column depth as:

Iz= Isurface · e−KD·depth (1)

For Isurface, a constant value (384 µmol photons m−2 s−1),
calculated as the mean daily light reaching the sea surface during
summer (April to October) based on a 10 years data set from a
measurement station at Højbakkegaard, Denmark. Rather than
an arbitrary percent of surface light, we choose to evaluate the
importance of light by comparing IZ with the eelgrass coverage
(in pct) observed at depth during a period from 1994 to 2010.
This resulted in a data set of 7750 observations of pct cover and Iz
(Supplementary Figure S2A). Data on light at depth represents
cell sizes of 50 × 50 m compared to the mean eelgrass cover
within the associated transects.

To deduce a pattern from the scattered cover vs. light data set
(Supplementary Figure S2A), we calculated percent cover for a
range of binned light data. This resulted in a bell shaped curve,
which we then normalized to 1 (Figure 2). The light index model
(red line in Supplementary Figure S2B) was parameterized using
a combination of a polynomial function shown as a dotted blue
line. Also, we included a threshold for the minimum light required
for eelgrass plants to have a net positive growth (IC). A first
condition was therefore that IZ should be >IC for eelgrass to
occur. The critical light level is known to vary as a function of
water temperature and to display a strong seasonal variation,
reflecting physiological acclimation of plants to prevailing light,
temperature and nutrient conditions (Staehr and Borum, 2011).
However, to simplify our light model we choose to apply an
IC value of 25 µmol photons m−2 s−1, which represents light
requirements when summer mean water temperature ranges
between 11 and 17◦C with a median of 15◦C (Staehr and Borum,
2011). Data show an apparent negative effect of high light levels
(Supplementary Figure S2A), which we assume is an artifact
driven by effects of other factors, such as physical exposure at
shallow depth. Therefore, above the peak of the polynomial model
(140 µmol photons m−2 s−1) we assigned a light index value of 1.
Below the IC value of 25 µmol photons m−2 s−1, the index value
was set to zero. The light index model is described in Equation (2):

Lightindex = IF(IZ > 140 THEN 1, ELSEIF(140 > IZ > 25

THEN (0.000000047 ∗ IZ
3
− 0.0000515 ∗ IZ

2

+ 0.0135 ∗ IZ), ELSEIF IZ < 25 THEN 0)) (2)
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FIGURE 2 | Map of eelgrass distribution potential area derived from spatial habitat modeling.

Sediment Suitability Index
Sea bottom characteristics such as organic matter content affect
the ability for eelgrass to become established, as well as the
suitability for anchoring, growth and seed survival (Krause-
Jensen et al., 2011; Flindt et al., 2016). In this GIS model,
we applied a national wide sediment map with information on
seven sediment categories (Cameron and Askew, 2011), which
we merged into three substrate groups: (1) Mud, sandy mud,
muddy sand and bedrock, (2) Sand (3) Hard bottom complex
and gravel and coarse sand. To include information on sediment
conditions as a determining factor for eelgrass distribution we
assigned the following sediment index values ranging between
0 and 1 (unsuitable to suitable): Mud, sandy mud, muddy sand
and bedrock (grp1) = 0.1; Hard bottom complex and gravel and
coarse sand (grp3) = 0.5; Sand (grp2) = 1. The eelgrass coverage
in these three groups is shown in Supplementary Figure S3. The
final sediment index model is described in Equation (3)

Sedimentindex = IF (grp = 1 THEN 0.1, ELSE (3)

(IF GRP = 2 THEN 1, ELSE 0.5))

Physical Exposure Index
Waves and tides limit eelgrass distribution especially in shallow
waters where bottom exposure is most pronounced. To para-
meterize the effect of the physical exposure on eelgrass cover,
we combined two data sources which both have weaknesses or
data gaps in sub regions: (1) a map of the frequency with which

the wave base reaches the bottom; produced by DHI covering
the Danish waters without Limfjorden and (2) an EUSeaMap
wave energy map (Log transformed) covering the North Sea
including Limfjorden and the southwestern Baltic Sea but not the
waters around Bornholm. Before combining the two layers, they
were normalized.

Comparing the modeled exposure levels with eelgrass
coverage on a pixel basis (5505 observations), showed that
eelgrass coverage declined strongly when the normalized
physical exposure exceeded a value around 0.2 (Supplementary
Figure S4A). To parameterize the effect of physical exposure
we applied a function, which represents the red line in
Supplementary Figure S4B. Below the cut off value of 0.2,
exposure levels are considered to be sufficiently low to enable full
coverage of eelgrass, providing an index value of 1. In parallel to
the reasoning conducted for eelgrass cover as a function of light,
we interpreted that the apparent decline in eelgrass cover at low
levels of physical exposure is largely due to deeper water where
light levels limit distribution. The final exposure index model is
described by Equation (4).

Exposureindex = IF ((exposure > 0.2) THEN

(20 ∗ EXP (−15 ∗ exposure)), ELSE 1) (4)

Temperature Index
To develop a temperature index, we made a map of summer mean
(April to October) bottom water temperatures by interpolating
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data from CTD profiles. These modeled bottom temperature
data were then combined with the gridded transect observation
values (7006 observations). A comparison of eelgrass cover
and bottom temperatures in the gridded cells are shown in
Supplementary Figure S5A. This resulted in a bell shaped curve
somewhat similar in shape to what has previously been shown
in experimental studies (Nejrup and Pedersen, 2008; Staehr and
Borum, 2011). To deduce a pattern from the scattered cover
vs. water temperature plot (Supplementary Figure S5A) we
calculated percent cover for a range of binned temperature
data, which we then normalized to range between 0 and 1
(Supplementary Figure S5B). The temperature index model was
parameterized using a polynomial function (Equation (5)):

Tempindex = −0.006079 ∗ Tw4
+ 0.3074 ∗ Tw3

− 5.7604 ∗ TW2
+ 47.587 ∗ Tw – 146.49 (5)

where Tw is the mean summer bottom water temperature.

Oxygen Index
We compared eelgrass coverage at local sites with corresponding
oxygen concentrations, obtained from oxygen depth profile
measurements within the national monitoring program. As we
did not have high frequency continuous oxygen data available,
we used monitoring data to determine the frequency of low
oxygen concentrations (<2 mg/L) at the sea floor during the
summer growth season (April to October). These frequencies of
low oxygen data were then combined with the gridded transect
observation values providing 5576 observations (Supplementary
Figure S6A). We interpret the low oxygen frequency data as
an information layer reflecting the sensitivity of eelgrass to low
oxygen conditions. According to this, we expect low coverage of
eelgrass due to mortality and poor performance in areas with high
occurrence/frequency of low oxygen.

The negative impact of low oxygen conditions was included in
the model by an oxygen index function (Equation (6)):

Oxygenindex = 1− ((1/(1+ EXP(− (DOLow ∗ 20)+ 6)))) (6)

Where DOLow is the relative frequency (ranging between
0 to 1) of days per summer (May to September) with observed
DO at depth below 2 mg/L (Supplementary Figure S6B).

Salinity Index
An experimental study of the effect of salinity on several eelgrass
performance parameters showed that optimal salinities range
between 10 and 25 psu, with increased mortality and lowered
performance at low salinities and moderate effects at high
salinities (Nejrup and Pedersen, 2008). The potential success
of eelgrass is therefore expected to be reduced in areas of low
salinity, but remains only weakly affected by high salinities.
To evaluate this further, we compared eelgrass cover at 7750
sites with summer mean bottom salinities (Supplementary
Figure S7A). The comparison does suggest a somewhat bell
shaped dependency/effect of salinity. Since no experimental
evidence exists for the apparent negative effect of high salinities,
we expect that this arises from other confounding factors such
as higher levels of exposure in high saline waters and lower

light levels at larger depths where salinities usually increase
during stratification.

The effect of low salinity on plant performance and survival
was included in the model by a salinity index function
(Equation (7); Supplementary Figure S7B):

salinityindex = IF ((salt < 7 THEN (EXP(1 ∗ (salt-7))),

ELSE 1)) (7)

Where salt is the bottom water salinities determined from
CTD profiles and interpolated to the corresponding eelgrass
monitoring sites.

Eelgrass Habitat Model
We tested different combinations of the six environmental index
maps to produce a national map of the potential habitat occupied
by eelgrass plants in Danish coastal waters. In all cases the
environmental index maps were combined to produce an eelgrass
habitat map with values ranging from 0 to 1, reflecting 0–100%
expected presence of eelgrass. As suggested by Hirzel and Le Lay
(2008) we tested different combination of the data layers in our
GIS model. These varied in the prioritization of the importance
of the different data layers, especially light and physical exposure
which we expected to be of greater importance. However, a
comparison between the measured and modeled cover showed
that a simple multiplicative model, which gives equal importance
to each data layer (Equation (8)), was best:

Eelgrassindex = Lightindex ∗ Exposureindex ∗ Tempindex

∗ Oxygenindex ∗ Sedimentindex

∗ salinityindex (8)

Conversion of parameter layers to index layer and calculation
of the eelgrass model index was done on the 100 m × 100 m
resolution raster layers with arcpy in ArcGIS 10.3.

Model Performance
To assess the performance of the GIS probability map (Zost
GISmodel), we performed a validation using independent
datasets of eelgrass cover from recent years (Table 2). One
data set (Zost Map2012) covered three selected study areas
encompassing 292 km2 within 0–5 m depth. The areas were Nibe-
Gjøl Bredning in Limfjorden, Saltholm including the Zealand
coast facing Saltholm, and the South Funen Archipelago. The
eelgrass coverage in these three areas were derived from a
pixel based supervised image analysis of aerial SOP from 2012
performed with linear discriminant analysis of color bands (red,
green, blue) involving two classes, ‘eelgrass’ and ‘bare sand’
(Ørberg et al., 2018). Indeed, other marine vegetation was most
likely classified as eelgrass, but the mapping was performed in
areas with eelgrass as the dominant vegetation type. A second
data set used to validate the GIS modeled distribution was based
on NOVANA monitoring transects from 2012 covering Nibe-
Gjøl Bredning, Saltholm, South Funen (Zost Moni2012) and all
Danish coastal waters also in 2012 (Tot Zost Moni2012). Finally,
we used a high-resolution ground truth data set from Mariager
Fjord (Zost Obs2009) (Clausen et al., 2015).
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TABLE 2 | Data layers used in the validation of the map derived from the GIS
model predicting potential distribution of eelgrass in Danish coastal waters.

Data layer Description References

Zost GISmodel Eelgrass GIS model on the potential
eelgrass distribution given as the
probability of eelgrass presence, which
was translated to % cover (Raster:
100 × 100 m grid)

This study

Zost Map2012 The estimated distribution of eelgrass
based on 2012 aerial orthophoto image
analysis in 3 areas (Nibe-Gjøl, Saltholm,
South Funen) given as presence/
absence (Raster: 16 × 16 cm grid).

Zost Moni2012 NOVANA ground truth observations of
eelgrass cover given as % cover from
2012 in 3 areas (Nibe Gjøl, Saltholm,
South Funen) (Points).

Ørberg et al., 2018

Tot Zost Moni2012 NOVANA ground truth observations of
eelgrass cover given as % cover from
2012 in all Danish coastal waters
(Points).

Ørberg et al., 2018

Zost obs2009 High resolution ground truth dataset of
eelgrass cover from 2009 covering
outer Mariager Fjord. Every dot
represents mean coverage based on
up to 100 samples in a 100 × 100 m
quadrat net.

Clausen et al., 2015

Prior to validation of the GIS model coverage with SOPs
and monitoring data points, all data layers were converted into
raster’s, matching the bathymetry grid size (50 m× 50 m). Hence,
the Zost Map2012 values (presence = 100, absence = 0) were
averaged within each grid, resulting in values ranging between
0 and 100. Similarly, the Zost Moni2012 and Tot Zost Moni2012
data points (pct cover) were averaged within each grid and the
Zost GISmodel was converted from a 100 m × 100 m grid to
a 50 m × 50 m grid. We did not average the Zost Obs2009
data within each grid because there was approximately one data
point per pixel.

With equal grid sizes of 50 m × 50 m, we translated the
reshaped data layers into presence/absence data by the following
rules: Values <10 define the absence of eelgrass, and values
≥10 define the presence of eelgrass. Hereafter, we calculated
the accuracy of the Zost GISmodel displayed in confusion
matrices. To identify areas of particularly low/high accuracy
compared to the Zost Map2012, we created maps displaying
the agreement/disagreement between Zost GISmodel and Zost
Map2012 for the three selected areas with shallow water. Similar
to recent evaluations of eelgrass distributions, we used 10%
cover of eelgrass as a threshold for defining areas where eelgrass
meadows are present (Bostrom et al., 2014).

Importance of Environmental Conditions
We applied two different approaches to evaluate the importance
of variations in the applied environmental conditions. These
consisted of a statistical analysis and a sensitivity analysis. The
statistical analysis investigated the importance of environmental
variables for areas showing disagreement between predicted and

measured eelgrass cover. Here we defined three groups of data:
Agreement (grp 0) between predicted (Zost GISmodel) and
observed (Zost Map2012); Prediction of eelgrass presence while
Zost Map2012 show no eelgrass (−1) or vice versa (1). We
applied a non-parametric Kruskal–Wallis test and a multiple
comparison post hoc test (nemenyi from Desctools) in R to test
whether environmental parameters differed significantly between
the three groups. We only studied parameters for which eelgrass
habitat requirements and thereby thresholds are less understood
(physical exposure, oxygen, temperature, and salinity) compared
to the basic requirements, such as light and sediment type.

To investigate the sensitivity of the eelgrass distribution (km2)
calculated by the GIS model, we performed a series of model runs
where each input data layer (except the sediment map) was varied
separately between −20 and + 20%. To gain information about
possible regional differences in the sensitivity of the selected
variables, we divided the Danish waters into three regions,
covering Limfjorden, the Kattegat and the Eastern Baltic Sea
(Supplementary Figure S8).

RESULTS

Based on the eelgrass spatial habitat model, we produced a
nationwide map (Zost GISmodel) of the potential distribution
area of Danish eelgrass meadows (Figure 2). From this map, we
calculated the total potential eelgrass distribution area in Danish
waters to be 2204 km2 (probability >10% × pixel size × pixel
numbers). Furthermore, we compared the Zost GISmodel with
ground truth observations and orthophoto mapping of eelgrass
cover from recent years.

Model Validation With Monitoring
Data and SOP
As an initial step, we calculated the accuracy of the Zost GISmodel
and the SOP based map (Zost Map2012) compared to in situ
observations (Zost Moni2012) on eelgrass cover in three shallow
areas (a total of 538 pixels). The GIS modeled distribution
showed an accuracy of 67.1% (Table 3A). In comparison, the
Zost Map2012 displayed a higher accuracy (80.3%) (Table 3D),
thereby serving as a relevant map to validate Zost GISmodel
on a larger spatial scale (Table 3B). While the accuracy of
Zost Map2012 varied between the three areas (Figures 3B–D)
the level of agreement with in situ data was overall high and
stable across all depth intervals (Figure 3A). In comparison, the
level of agreement of the Zost GISmodel was lower and tended
to increase with depth (Figure 4A). The low accuracy, caused
by the Zost GISmodel underestimating eelgrass distribution at
shallower depths, was most pronounced in Nibe-Gjøl Bredning
(Figure 4B). In comparison, both the Zost GISmodel and the
SOP map overestimated eelgrass distribution compared to in situ
observations in the very shallow areas (0–1 m) at Saltholm and
South Funen (Figures 3C,D, 4C,D).

A direct comparison of the eelgrass distribution between
the Zost GISmodel and the SOP map resulted in an overall
agreement of 77.3% (a total of 114938 pixels) in the three case
study areas (Table 3B and Figures 5A–D). Disagreements
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TABLE 3 | Confusion matrices comparing classification results of the GIS model
(Zost GISmodel) with (A) in situ monitoring data in three smaller areas (Zost
Moni2012); (B) 2012 aerial orthophoto image analysis in three smaller areas
(ZOST MAP2012); (C) in situ monitoring data in all monitored areas in 2012
(Tot Zost Moni2012). In (D) we compare results from in situ monitoring and
orthophotos in 2012 and finally in (E) we evaluate the GIS model performance
against high-resolution from Mariager fjord in 2009. For each pixel, data were
categorized into presence or absence of eelgrass, while less than 10% cover was
considered as absence. Correct classification gives the % of pixels classified
correctly to each category and in total.

(A) Zost Estimated by % Correct

Moni2012 Zost GISmodel classification

Actual Presence Absence

Cover ≥ 10% Presence 392 309 83 78.83

cover < 10% Absence 146 94 52 35.62

Total 538 67.1

(B) Zost Estimated by % Correct

MAP2012 Zost GISmodel classification

Actual Presence Absence

Cover ≥ 10% Presence 90026 70790 19236 78.63

Cover < 10% Absence 24912 6812 18100 72.66

Total 114938 77.34

(C) Tot Zost Estimated by % Correct

Moni2012 Zost GISmodel classification

Actual Presence Absence

Cover ≥ 10% Presence 1240 945 295 76.21

Cover < 10% Absence 1642 1179 463 28.2

Total 2882 48.85

(D) Zost Estimated by % Correct

Moni2012 Zost Map2012 classification

Actual Presence Absence

Cover ≥ 10% Presence 392 373 19 95.15

Cover < 10% Absence 146 87 59 40.41

Total 538 80.3

(E) Zost Estimated by % Correct

obs2009 Zost GISmodel classification

Actual Presence Absence

Cover ≥ 10% Presence 90 86 4 95.56

Cover < 10% Absence 1029 775 254 24.68

Total 1119 30.38

between the Zost GISmodel and the SOP maps in 2012
were highest in the very shallow areas (38%). However, this
decreased with depth, suggesting that the Zost GISmodel
mainly underestimated eelgrass presence in the 0–1 m
depth interval (Figure 5A), particularly around Saltholm
(Figure 5C). The level of agreement/disagreement between the
GIS modeled, SOP mapped and in situ monitored distribution
of eelgrass were visualized in maps representing the three

case study areas (Figure 6). While agreement between
GIS and SOP maps dominate all three areas, they all have
deeper zones where only in situ monitoring data indicate the
presence of eelgrass.

In addition to the three case study areas, we evaluated
the nationwide accuracy of the Zost GISmodel against an
in situ data set representing all Danish coastal waters (Tot
Zost Moni2012). We found an overall accuracy of 48.9% of
the modeled eelgrass cover (a total of 2882 pixels) (Table 3C).
While there was a high agreement (76.2%) in areas where
in situ data show presence of eelgrass, the agreement was
much lower (28.2%) in areas where in situ data show less
than 10% coverage of eelgrass (Table 3C), suggesting that the
Zost GISmodel most often overestimates the eelgrass cover.
The level of disagreement between in situ observations and the
Zost GISmodel was consistent throughout all depths (Figure 7).
A similar comparison with high-resolution in situ observations
from Mariager fjord 2009 (Zost Obs2009, Supplementary
Figure S9) gave an overall accuracy of the Zost GISmodel
of 30.4%, which also highlights that the agreement is lowest
in areas where in situ data show less than 10% coverage of
eelgrass (Table 3E).

Importance of Environmental Conditions
Comparing monitored eelgrass data with the geographically
interpolated environmental data layers, showed that eelgrass
coverage was higher in areas characterized by high light
levels, shallow depth, high wave exposure, low frequency of
oxygen depletion and higher temperatures (Table 4). Although
the dependency of eelgrass cover was far from linear (see
Supplementary Material), we expect the GIS model to perform
overall well in such areas. As a first approach to investigate
the importance of environmental conditions for the accuracy
of the GIS model, we calculated the levels of three of
the selected environmental parameters (exposure level, mean
summer temperature and salinity) in areas with agreement
and disagreement with the orthophoto mapped eelgrass areas
in 2012. For areas of disagreement, we found that we found
that mean exposure level, mean summer temperature and
mean salinity were all significantly higher (p < 0.0001) higher
compared to areas of agreement between the Zost GISmodel
and SOP validation data. In areas of disagreement, exposure
was higher by 0.063 exposure units, mean summer temperature
was higher by 0.17◦C, and mean salinity was higher by 1.16
psu. As disagreement may also depend on habitat characteristics,
we further tested whether all three possible outcomes [i.e.,
0 = Agreement, 1 = the orthophoto map (Zost Map2012) predict
eelgrass while the GIS model does not, −1 = GIS model predict
eelgrass while Zost Map2012 does not] differed in level/intensity
of each environmental parameter. The exposure level differed
between all groups with significantly higher exposure level in
areas where the GIS model underestimated eelgrass coverage
(Supplementary Table S1). Small, but significant differences
in mean summer bottom temperature and salinity between
the three groups were also apparent. This suggests that the
GIS model is currently less reliable in areas where exposure
levels are higher than 0.33 on the exposure scale, where mean
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FIGURE 3 | Agreement and disagreement (%) between Zost Map2012 and Zost Moni2012 across depth intervals for Nibe Gjøl bredning, Saltholm, and South
Funen. (A) All areas combined, (B) Nibe Gjøl bredning, (C) Saltholm, and (D) South Funen. Green displays the percentage of all pixels where the models agree.
Orange and blue display the disagreement between models. Blue show the percentage of pixels where Zost Map2012 displays the presence of eelgrass when Zost
Moni2012 displays the absence of eelgrass. Orange is vice versa.

summer temperatures are higher than 14.7◦C and where salinity
is higher than 15.1 psu. The correlation analysis of relationships
between the applied environmental variables suggested that the
high levels of wave exposure prevailed at shallow depths in
both Kattegat, Limfjorden and the Baltic Sea regions (Table 4).
Moreover, temperatures tend to increase toward shallow waters
(except Limfjorden), while salinities increased with depth. Areas
associated with higher light levels were, as expected, associated
with shallower depth, and higher wave exposure, but lower
frequency of low oxygen conditions.

Varying the value of each environmental variable in each
pixel between −20% and +20% relative to baseline conditions,
provided a simple sensitivity assessment of the GIS model to
the applied data layers and their parameterization of eelgrass
suitability except for the sediment conditions. Comparing three
regions, the Kattegat, Limfjorden and the Baltic Sea (Figure 8),
we found a strong sensitivity in all areas to variations in light
conditions. The modeled eelgrass area was also quite sensitive
to changes in wave exposure, low oxygen conditions and low
bottom water temperatures, while salinity did not appear to
have any influence. Limfjorden was the most sensitive area for
changes in light and wave exposure, but less sensitive to low
oxygen conditions. All three regions were surprisingly sensitive

to changes in temperature. However, while higher temperatures
had a negative impact on eelgrass coverage in Limfjorden and
the Baltic Sea, the sensitivity analysis suggested that the coverage
would increase significantly in the Kattegat area with increasing
temperatures (Figure 8).

DISCUSSION

Model Performance
Applying different independent data sets (in situ monitoring
data and SOPs) to validate the GIS model showed overall good
agreement with the GIS model. In addition, the GIS model
performance seems reasonable when comparing with previous
modeling efforts (Krause-Jensen et al., 2003; Bekkby et al.,
2008). However, model performance varied greatly between
geographical areas, and the model did not perform well in
predicting small-scale distribution patterns. It should be noted
that the GIS model aims to provide estimates of the potential
distribution and cover of eelgrass given a combination of
key environmental conditions, for which we have spatial data
available at the national scale. The overall (national scale) good
agreement between model results and data indicate that the
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FIGURE 4 | Agreement and disagreement (%) between GIS habitat model (Zost GISmodel) and Monitoring data (Zost Moni2012) across depth intervals for Nibe Gjøl
bredning, Saltholm, and South Funen. (A) All areas combined, (B) Nibe Gjøl bredning, (C) Saltholm and (D) South Funen. Green displays the percentage of all pixels
where the models agree. Orange and blue display the disagreement between models. Blue shows the percentage of pixels where Zost GISmodel displays the
presence of eelgrass when Zost Moni2012 displays the absence of eelgrass. Orange is vice versa.

model contains the main controlling parameters determining
eelgrass distribution, whereas factors not included in the model
(e.g., drifting macroalgae, epiphytes and bioturbation) locally
may play a significant role for eelgrass growth and distribution.

The GIS model estimated a total area of eelgrass with
10% coverage or more to be 2204 km2, which is close
to the range recently estimated by Bostrom et al. (2014)
(ca. 1400–2100 km2). In agreement with the empirical data on
which the GIS model was parameterized, our model validation
provided high eelgrass coverage in areas characterized by shallow
sheltered waters such as the South Funen area. This area is also
know to host many water birds which depend on eelgrass as a
food source (Clausen, 2000).

Under-estimation of eelgrass presence at shallower depth
in some areas such as Nibe-Gjøl Bredning suggests that the
environmental thresholds for eelgrass presence in the GIS
model may be too conservative. However, in other areas
such as Saltholm, both the GIS model and the SOP maps
indicated higher eelgrass distribution compared to in situ
monitoring. While higher estimates of eelgrass cover by the GIS
model may indicate potential areas of near future colonization,

deviations may also reflect inaccuracies in the in situ data
or simply inadequacies in the GIS model. Interestingly, the
shallow areas around Saltholm (0–1.5 m) are known to be
dominated by other rooted macrophytes such as Ruppia sp.
rather than eelgrass (Noer and Petersen, 1993; Krause-Jensen
and Christensen, 1999). Concerning inaccuracies in the in situ
data, our comparison of the GIS model with a high-resolution
data set from Mariager Fjord, showed that the GIS model
overestimated the current distribution of eelgrass. However,
similar to Saltholm, the vegetation at shallow depths in Mariager
Fjord was dominated by Ruppia species (Clausen et al., 2015).
Overestimation of eelgrass cover by both the GIS model and the
SOP maps at shallow depth suggest that they are not capable
of distinguishing between different rooted macrophytes such as
Ruppia sp. and eelgrass. Future work should investigate specific
habitat requirements and possibilities to distinguish RGB signals
of different species. Incorporating biotic parameters, such as
interspecific competition and foraging, would likely improve the
GIS model. Currently, we must acknowledge that both the SOP
maps and the GIS model to some extent estimate coverage of
not just eelgrass, but rooted macrophytes in general. While the
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FIGURE 5 | Agreement and disagreement (%) between GIS habitat model Zost GISmodel and the summer orthophoto map from 2012 (Zost Map2012) across
depth intervals for Nibe Gjøl bredning, Saltholm and South Funen. (A) All areas combined, (B) Nibe Gjøl bredning, (C) Saltholm and (D) South Funen. Green displays
the percentage of all pixels where the models agree. Orange and blue display the disagreement between models. Blue show the percentage of pixels where Zost
Map2012 displays the presence of eelgrass when Zost GISmodel displays the absence of eelgrass. Orange is vice versa.

FIGURE 6 | Agreement and disagreement (%) between Zost GISmodel and Tot Zost Moni2012 across depth intervals for all Danish coastal waters. Green displays
the percentage of all pixels where the models agree. Orange and blue display the disagreement between models. Blue show the percentage of pixels where Zost
GISmodel displays the presence of eelgrass when Tot Zost Moni2012 displays the absence of eelgrass. Orange is vice versa.
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FIGURE 7 | Map of areas of agreement and disagreement between the summer orthophoto maps (Zost Map2012) and the GIS habitat map (Zost GISmodel).
(A) Nibe Gjøl bredning, (B) South Funen and (C) Saltholm. Green displays where the models agree. Orange and blue display the disagreement between models.
Blue shows where Zost Map2012 displays the presence of eelgrass when Zost GISmodel displays the absence of eelgrass. Orange is vice versa. Ground truth data
from NOVANA 2012 of eelgrass cover are annotated with points grading from gray to dark purple, where gray = 0% cover and dark purple = 100% cover. Gray line
marks 2.5 m depth contour line.

GIS model compares reasonably well with the overall trends in
eelgrass cover, the current coarse resolution makes it inadequate
to thoroughly investigate conditions determining the distribution
and size of eelgrass patches. Such analysis would be possible
with the detailed SOP’s which gives information at 10–20 cm
scales in shallow waters. While this would be interesting, this was
outside the scope of this current study, which primarily focuses
on developing a model that enable us to understand changes at
the landscape scale.

Perhaps a large source of uncertainty and error in our
GIS habitat suitability model is the use of extrapolation of
pelagic data (oxygen, temperature, salinity, light attenuation)
from central stations in deeper waters into the nearshore shallow
waters. Unfortunately, there are very limited datasets available
for Danish waters for the required parameters. Aggregation of
a new nationwide coastal dataset was therefore only possible
by extrapolation. One key thing to be noted is that the central
stations are not really deep, as Danish waters are quite shallow
in general with depths typically of less than 20 m at the central
sampling stations. Comparisons with a limited data set from the
shallow Roskilde Fjord suggests that measurements in the upper

part of the water column represented conditions in the shallow
sites reasonably well (data not shown). In addition, the station
grid is quite dense and as the calibration of the GIS model was
done with the extrapolated values, the actual values have less
importance. Furthermore, the morphometry and environmental
conditions vary substantially in the Danish coastal zone (Conley
et al., 2000), hence any error associated with extrapolation will
not be systematic.

Importance of Environmental Conditions
In agreement with recent spatial predictive probability models,
our GIS model also predicts that the probability of finding
eelgrass is highest in shallow and sheltered areas (Bekkby
et al., 2008), where light conditions are within the optimal
range for the species (Canal-Vergés et al., 2016; Flindt et al.,
2016; Kuusemäe et al., 2016). These areas were also highly
represented by independent data sets based on in situ monitoring
and SOP’s. Comparing levels of the environmental variables in
areas with agreement and disagreement with the independent
validation data sets indicated that disagreement was higher in
areas with elevated levels of exposure, as well as temperature
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TABLE 4 | Spearman correlation analysis of relationships between environmental
variables used in the GIS model to estimate eelgrass coverage.

Area DOlow Temp Salinity Iz Depth Eelgrass

Kattegat Exposure −0.32 0.33 −0.32 0.61 −0.79 0.44

n = 1333 DOlow −0.37 0.04 −0.35 0.57 −0.12

Temp −0.76 −0.13 −0.34 0.27

Salinity 0.15 0.19 −0.34

Iz −0.82 0.31

Depth −0.38

Limfjorden Exposure 0.07 0.03 −0.24 0.74 −0.76 0.24

n = 403 DOlow −0.52 −0.68 −0.02 −0.16 −0.16

Temp 0.34 0.09 0.03 0.12

Salinity −0.25 0.39 0.11

Iz −0.95 0.31

Depth −0.24

Baltic Sea Exposure −0.38 0.53 −0.12 0.64 −0.74 0.18

n = 3605 DOlow −0.47 0.36 −0.32 0.52 −0.15

Temp −0.18 0.50 −0.76 0.38

Salinity −0.11 0.10 −0.10

Iz −0.95 0.24

Depth −0.29

All Exposure −0.32 0.46 0.11 0.57 −0.75 0.16

n = 5341 DOlow −0.41 0.17 −0.34 −0.49 −0.13

Temp −0.26 0.26 −0.62 0.31

Salinity 0.04 −0.05 −0.20

Iz −0.80 0.24

Depth −0.26

DOlow is the frequency of dissolved oxygen concentrations below 2 mg/L,
Temperature and salinity represents mean summer bottom values. Iz is an estimate
of the mean summer light intensity reaching the seafloor. Depth is the depth (m) at
which eelgrass cover (%) was recorded. Values highlighted in bold are significant at
p < 0.05. n is the number of observations.

and salinity, although the latter were significantly less important.
Underestimation by the GIS model therefore mostly occurred in
areas with high exposure levels, suggesting a high sensitivity to
this variable. A recent model of eelgrass coverage in two Danish
fjords, similarly showed that physical exposure, in terms of waves
has a strong negative impact on eelgrass growth and distribution
(Kuusemäe et al., 2016). The physical exposure data layer applied
in our analysis had to be merged from two normalized data sets
to cover the entire Danish area. This disabled us from using
a physical unit which would have been preferable. However,
as the GIS model was calibrated with the derived data, the
actual values have less importance. Our highest concern was
to obtain a homogeneous data set. A nationwide detailed map
of physical exposure should be developed for future models of
eelgrass habitats.

A sensitivity analysis of environmental variables underlines
that light is a strong determinant of the depth distribution of
eelgrass in the Danish coastal waters. This agrees well with the
established statistical relationship between maximum eelgrass
colonization depth and water transparency, as measured by KD
or Secchi depth (Nielsen et al., 2002; Carstensen et al., 2013).
The applied light dependency in our GIS model included a

minimum light requirement threshold value which is known to
exist for eelgrass (Staehr and Borum, 2011). However, our data
set did not support the importance of such a clear minimum light
threshold for the coverage of eelgrass. Rather, eelgrass coverage
decreased gradually toward zero as light approached zero.
Different studies have shown that seagrass light requirements
depend on the environmental conditions and are higher in turbid
waters (Duarte et al., 2007) and in areas with higher sediment
organic matter content (Kenworthy et al., 2014) compared to
seagrasses growing in clearer waters. The apparent absence of
such a minimum threshold limit, indicated by our data, suggests
that we have underestimated the in situ light levels at the
depth limits. Alternatively, interpolating over a large pixel size
(100× 100 m) caused an overestimation of eelgrass coverage.

Both the correlation and sensitivity analysis suggested high
importance of temperature for regulating the cover of eelgrass
in Danish waters. Temperature affects eelgrass performance
directly via effects on photosynthesis, respiration (Staehr and
Borum, 2011), growth and survival (Nejrup and Pedersen, 2008),
hence affecting eelgrass distribution through several processes
(Bostrom et al., 2014). All enzymatic processes related to
plant metabolism are temperature dependent (Drew, 1978), and
specific life cycle events, such as flowering and germination,
are often strongly dependent on temperature (De Cock, 1981;
Phillips et al., 1983; Blok et al., 2018). In addition, biogeochemical
processes are also affected by temperature, thereby influencing
the interaction between plant, sediment and water column.
Furthermore, temperature impacts seagrass performance by
lowering water column oxygen content, increasing the oxygen
diffusion coefficient, increasing respiration (Borum et al., 2006)
and greatly reducing plant tolerance to anoxia (Pulido and
Borum, 2010). Effects of temperature on eelgrass performance
have previously been described by a bell shaped temperature
dependency with optimum temperatures around 20◦C (Nejrup
and Pedersen, 2008; Staehr and Borum, 2011). In this study,
we also applied a bell shaped curve, but by setting a much
lower optimum temperature (15◦C). This is because we used
the mean summer temperatures at the local sites, calculated as a
mean of ca.10–20 measurements during April to October at each
eelgrass site. The fact that our data suggests maximum coverage
at 5◦C below the normal temperature optimum, implies that
high mean temperatures are related to much higher maximum
temperatures, which can extend beyond 20◦C. The sensitivity
analysis showed surprisingly high sensitivity to changes in the
temperature layer. Lowering the bottom temperatures compared
to current conditions were all associated with lower cover, and
except for the Kattegat area, elevating the temperatures resulted
in substantial declines in eelgrass. Given the ability of eelgrass to
grow successfully in waters with significantly lower and higher
temperatures (Bostrom et al., 2014), we find it unlikely that the
occurring increases in summer water temperatures (Riemann
et al., 2016) per se will cause major shifts in eelgrass coverage in
Danish waters. While temperature is undoubtedly an important
parameter affecting growth and distribution of eelgrass, the
high sensitivity documented by our model, indicates that the
temperature parameterization should be optimized by including
better data on the high temperature conditions experienced by
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FIGURE 8 | Assessment of the sensitivity of the GIS modeled eelgrass area to changes in environmental conditions. We compare three regions, the Kattegat,
Limfjorden and the Baltic Sea region (see Supplementary Figure S8). The input value in each pixel was varied between −20% to +20% relative to baseline
conditions. Sensitivity was assessed from changes in the potential eelgrass area relative to baseline.

the plants. We recommend that future spatial modeling of large-
scale eelgrass coverage applies data on frequency of temperatures
above optimum. This should reduce the co-variation of mean
summer temperatures with other important regulating factors
(depth, light, salinity, exposure).

The effects of salinity on eelgrass performance have received
relatively little attention despite its potential relevance
particularly in estuarine environments, which typically are
strongly affected by variations in freshwater inputs from
precipitation, rivers and surface run-off (Conley et al., 2000).
Coastal waters and estuaries, in particular, are prone to large
and sometimes rapid changes in salinity. Eelgrass is a euryhaline
species, and is found in both low saline systems (2–5%) such
as rivers mouths, the inner estuaries and in waters of high
salinity (35–40%) (Nejrup and Pedersen, 2008; Bostrom et al.,
2014). It could therefore be argued that salinity is a relatively
“unimportant” factor for the distribution of eelgrass, as also

suggested by the sensitivity analysis in this study. However,
eelgrass does not thrive equally well at all salinities and previous
studies have shown that both survival and growth, as well as
reproduction and seed germination are affected at extreme
salinity (Phillips et al., 1983; Bostrom et al., 2014).

Low oxygen concentrations are also known to reduce growth
and increase eelgrass mortality and have been associated with
low coverage of eelgrass (Krause-Jensen et al., 2011; Canal-Vergés
et al., 2016). Even short periods (12 h) of exposure to anoxic
conditions reduce eelgrass performance whereas 24 h reduces the
growth and kills eelgrass leaves (Pulido and Borum, 2010). The
effect of anoxia is exacerbated when temperatures reach 25◦C and
severe at 30◦C (Pulido and Borum, 2010). As temperature itself
affects oxygen levels through changes in solubility of oxygen and
anabolic oxygen demand, some covariation between temperature
and oxygen can be expected, which we have currently not
taken into account in our sensitivity analysis. In our study, we
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included information on oxygen sensitivity through a data layer
representing the summer mean frequency of oxygen conditions
below 2 mg/L. The applied oxygen index allowed us to exclude
areas with too frequent anoxic events as previously done in
other studies (Canal-Vergés et al., 2016; Flindt et al., 2016).
As expected, eelgrass coverage showed a decreasing trend with
increasing frequency of low oxygen in all areas. In addition, the
sensitivity analysis suggested a significant influence of improved
oxygen conditions for areal coverage of eelgrass suggesting that
our parameterization was useful.

The long history of eutrophication has led to organically
enriched sediments with low critical shear stress, which is easy
to resuspend, providing poor anchoring for eelgrass (Krause-
Jensen et al., 2011; Canal-Vergés et al., 2016). For our large-scale
model, we applied a data layer that originally included seven
sediment groups. However, the resolution is rather coarse and the
seven categories do not contain specific information for eelgrass
suitability, such as organic matter content, and furthermore are
not exclusive but include areas dominated by other substrate
types. Accordingly, the group defined as mud and bedrock
contains significant areas with, e.g., sand and gravel which are
suitable for eelgrass plants. Considering these limitations, we
reduced the original seven sediment groups into three surrogate
sediment groups, which differed in the observed coverage of
eelgrass (Supplementary Figure S3). While sediment conditions
are most likely very important for determining the possible
coverage of eelgrass, limitations in the current classification
and the coarse resolution of the data restricted our ability to
fully evaluate the importance of sediment conditions. Future

analysis will undoubtedly benefit from better information on this
data layer, including higher spatial resolution and information
relevant for eelgrass performance (Canal-Vergés et al., 2016).

Management Perspectives
The GIS model has several obvious perspectives as a management
tool. One aspect is, as highlighted above, to identify key
distribution areas of eelgrass at a national scale, which is of
obvious interest with respect to generating awareness of the
vast overall distribution as well as to hotspots of eelgrass
associated ecosystem functions. Awareness of the presence
of the meadows and their functions is a first step toward
appreciation of the meadows which inspire incentives for
protection and restoration and, hence, sustainable management.
In addition, the model provides a tool to identify the conditions
which are currently restricting nationwide recovery of eelgrass.
Recent experiences from eelgrass restoration projects show
that recolonization in Danish waters will be from both sexual
and vegetative reproduction. Along the shallow edge of the
meadow, recolonization is primarily maintained by vegetative
recruitment whereas the deep edge to larger extent relies on
sexual recruitment. The intermediate depth zone may act as
a buffer zone supporting the maintenance of shallower and
deeper eelgrass through seed supply and vegetative expansion,
thereby stabilizing the meadow by increasing its resilience
toward disturbances and its recovery potential upon disturbances
(Olesen et al., 2017). In relation to this, the developed habitat
model and the potential eelgrass map can highlight areas where
eelgrass restoration efforts are likely to be successful because

FIGURE 9 | Sensitivity of modeled eelgrass coverage to changes in input values. The input value in each pixel was varied between −20% to +20% relative to
baseline conditions.
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habitat conditions are documented fulfilled while monitoring
data show that natural colonization has not yet happened.

Scenarios, such as effects on eelgrass distribution through
changes in light availability (Figure 9), is a way to quantify the
potential effect of actions to further improve water quality and
clarity. The model can, thereby, in several ways directly help
guide management interventions to protect and restore eelgrass
meadows. Absence of eelgrass in validation data sets compared
to the GIS model may accordingly indicate areas where there is a
potential for establishment of eelgrass, given that environmental
conditions remain favorable. Moreover, with some modifications,
the GIS model also provides a useful tool to evaluate different
climate scenarios by applying maps of high summer temperatures
and low oxygen conditions.

The limitations of the current model should, however, be
kept in mind. The GIS model applies data with a rather coarse
resolution (100 × 100 m), implying that not all subareas are
well represented by the model, simply due to absence of some
of the key input data. In addition, the quality of the input data
layers will largely determine the quality and predictability of
the output from the GIS map. These limitations also indicate
how the model can be improved in the future. Firstly, there is
potential for improving the quality of the different data layers
once better data are available at a national level. The physical
exposure layer is an obvious candidate here. Also, as data layers
representing additional potential stressors become available at a
national scale, this will also help to better account for and explain
local differences in regulating factors. For example, compared
with local modeling in Odense fjord by Kuusemäe et al. (2016),
the GIS model displays a good resemblance to scenario zero that
exclude stressors such as resuspension and lugworm burial of
seeds. We should also take note that the transect data, which
the GIS model was fitted by, do not represent all Danish coastal
waters equally. This may bias the model toward higher suitability
and accuracy in areas with more observations. For example,
we see that the visual fit between in situ eelgrass depth limits
from 2012 and the GIS model seems better in areas with more
transects and worse in areas with fewer transects. Moreover, the
algorithms used to combine the GIS data layers can be improved.
For example, adjustment of the applied sensitivity to water
temperature could probably reduce overestimation of eelgrass
presence at depth, particularly in the Kattegat region. Similarly,
adjustment of the sensitivity to wave exposure could probably
improve predictions in shallow waters such as Limfjorden.

However, since our model aimed at a national scale, such local
adjustment has not been undertaken in the current exercise.
Adjustment of the individual weights of the applied indices in
the combined index model could also be considered, although
initial trials did not indicate improved model performance when
the light and exposure indices were weighted higher. Finally,
reiterating the fact that the outcome of the eelgrass model is
strongly dependent on the quality of the GIS data layers used, the
GIS model described here will be strengthened as new and better
data layers become available. While some of these concern higher
spatial resolution (e.g., sediment characteristics), others involve
higher temporal resolution capable of discerning the duration of
periods unfavorable (e.g., low oxygen and high temperatures) for
eelgrass growth.

CONCLUSION

Despite limitations and precautions, the developed GIS model
provides a highly useful and long-needed estimate of the current
potential distribution of eelgrass in Danish waters as well as an
overview of key factors regulating the national distribution of
these important meadows. The model thereby constitutes a very
important tool to guide the sustainable management of eelgrass
meadows at a national scale.
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