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Abstract. In this paper we study existence and uniqueness of solutions for
a coupled system consisting of fractional differential equations of Caputo
type, subject to Riemann–Liouville fractional integral boundary conditions.
The uniqueness of solutions is established by Banach contraction principle,
while the existence of solutions is derived by Leray–Schauder’s alternative.
We also study the Hyers–Ulam stability of mentioned system. At the end,
examples are also presented which illustrate our results.

1. Introduction

The subject of fractional calculus (calculus of integrals and derivatives of any
arbitrary real or complex order) has gained considerable popularity and impor-
tance during the past three decades or so, mainly due to its demonstrated ap-
plications in numerous fields of science and engineering. Historically, the first
appearance of the concept of a fractional derivative was found in a letter by the
famous mathematician Gottfried Leibniz (1646 – 1716) in 1695 to a French mathe-
matician Guillaume de L’Hospital (1661 – 1704). Leibniz introduced the following
symbol dn

dtn f(t) which denotes the nth order derivative of a function f with the
hypothesis that n ∈ N and reported this to L’Hospital. So L’Hospital posed a
question; what will be the derivative if n = 1

2? Leibniz replied to him on Septem-
ber 13th, 1695 and wrote: "This is an apparent paradox from which, one day useful
consequences will be drawn" [8].
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In the last few decades, fractional differential equations have gained much at-
tention due to extensive applications of these equations in the mathematical mod-
eling of physical, engineering, biological phenomena and viscoelasticity etc, [13].
Several interesting and important results concerning the existence and uniqueness
of solutions, stability properties of solutions, analytic and numerical methods of
solutions for fractional differential equations can be found in the recent literature.
Fractional-order operators are nonlocal in nature and take care of the hereditary
properties of many phenomena and processes. Fractional calculus has also emerged
as a powerful modeling tool for many real world problems, see [2, 6, 9, 17].

The study of coupled systems involving fractional differential equations is also
important because these systems occur in various problems of applied nature.
Coupled systems of fractional differential equations have also been investigated by
many authors. Such systems appear naturally in many real world situations, for
example, see[4]. Some recent results on the topic can be found in [5, 7, 19, 18, 23,
24].

Moreover, the theory of fractional order differential equations, involving dif-
ferent kinds of boundary conditions has been a field of interest in pure and applied
sciences. Nonlocal conditions are used to describe certain features of applied math-
ematics and physics such as blood flow problems, cellular systems [1], chemical
engineering, thermo-elasticity, underground water flow, population dynamics[10],
and so on. For boundary value problems with integral boundary conditions and
comments on their importance, we refer the reader to [3, 21, 22, 26, 27, 29, 31, 30,
36, 37].

In 1940, Ulam asked: "Under what situation we can have a function(additive)
near an approximate function(additive)"? see [12]. After twelve months, Hyers
gave answer(partial) to Ulam [25] in the form of complete normed spaces. Since
then, this concept of stability is known as Ulam–Hyers stability. Rassias [16]
extended the mentioned concept of stability to general variables. For different
approaches [14, 15, 20, 28, 34, 32, 33, 35].

In this paper, we study the nonlinear sequential coupled system of Caputo frac-
tional differential equations with Riemann–Liouville fractional integral boundary
conditions of the following form

(cDq + kcDq−1)x(t) = f(t, x(t), y(t)), t ∈ [0, T ], 2 < q ≤ 3,

(cDp + kcDp−1)y(t) = g(t, x(t), y(t)), t ∈ [0, T ], 2 < p ≤ 3,

x(0) = 0, x(T ) =
n∑
i=1

αiI
ρiy(ηi),

y(0) = 0, y(T ) =
m∑
j=1

βjI
γjy(θj),

(1)

where cDq, cDp denote the Caputo fractional derivatives of order p, q, Iρi , Iγj

are the Riemann–Liouville fractional integral of order ρi, γj > 0, ηi, θj ∈ (0, T ),
k ∈ R+, f, g : [0, T ]×R2 → R and αi, βj ∈ R, i = 1, 2, . . . , n, j = 1, 2, . . . ,m are
real constants such that
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n∑
i=1

αiη
ρi+1
i

Γ(ρi + 2) ·
m∑
j=1

βjθ
γj+1
j

Γ(γj + 2) 6= T 2.

Here, we emphasize that the integral boundary conditions (1) can be under-
stood in the sense that the value of the unknown function at an arbitrary position
ηi, θj ∈ (0, T ) is proportional to the Riemann–Liouville fractional integral of the
unknown functions

n∑
i=1

αi

∫ ηi

0

(ηi − s)ρi−1

Γ(ρi)
y(s)ds,

m∑
j=1

βj

∫ θj

0

(θj − s)γj−1

Γ(γj)
y(s)ds,

where ρi, γj > 0. Further, for ηi = θj = 1, the integral boundary conditions reduce
to the usual form of a nonlocal integral conditions

n∑
i=1

αi

∫ ηi

0
y(s)ds,

m∑
j=1

βj

∫ θj

0
y(s)ds.

We show the existence of solutions for problem (1) by applying Leray–Schauder
alternative criterion while uniqueness of solutions for (1) relies on Banach contrac-
tion mapping principle. The rest of the paper is organized as follows: In Section
2 we recall some preliminary concepts which we will need in the sequel. Section 3
contains the main results for problem (1). In Section 4, we present the Hyers–Ulam
stability of problem (1).

2. Preliminaries and background materials

In this section, we introduce some notations and definitions of fractional cal-
culus and present preliminary results needed in our proofs.

Definition 2.1
The Riemann–Liouville fractional integral of order q > 0 of a function f : (0,∞)→
R is defined by

Iqf(t) = 1
Γ(q)

∫ t

0
(t− s)q−1f(s)ds,

provided the right-hand side is point-wise defined on (0,∞).

Definition 2.2
The Caputo fractional derivative of order q > 0 for a function f ∈ Cn[0,∞) is
defined by

cDqf(t) = 1
Γ(n− q)

∫ t

0
(t− s)n−q−1f (n)(s)ds, n− 1 < q < n,

where n = [q]+1, [q] denotes the integer part of q and Γ(.) is the Gamma function
defined by

Γ(q) =
∫ ∞

0
e−stq−1ds, q > 0.
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Lemma 2.3 ([13])
Let q > 0 and x ∈ C([0, T ],R) ∩ L1([0, T ],R). Then the fractional differential
equation

cDqx(t) = 0
has a unique solution

x(t) = c0 + c1t+ c2t
2 + · · ·+ cm−1t

m−1,

where ci ∈ R, i = 1, 2, . . . ,m− 1.

Lemma 2.4 ([13])
Let q > 0. Then for x ∈ C([0, T ],R) ∩ L1([0, T ],R) it holds

Iq cDqx(t) = x(t) + c0 + c1t+ c2t
2 + · · ·+ cm−1t

m−1,

where ci ∈ R, i = 1, 2, . . . ,m− 1, m = −[−q].

Lemma 2.5
Given that φ, ψ ∈ C([0, T ],R), the unique solution of the problem

(cDq + kcDq−1)x(t) = φ(t), t ∈ [0, T ], 2 < q ≤ 3,

(cDp + kcDp−1)y(t) = ψ(t), t ∈ [0, T ], 2 < p ≤ 3,

x(0) = 0, x(T ) =
n∑
i=1

αiI
ρiy(ηi),

y(0) = 0, y(T ) =
m∑
j=1

βjI
γjy(θj),

(2)

is

x(t) = υ1(t) + t

Ω

[ n∑
i=1

αiη
ρi+1
i

Γ(ρi + 2)

( m∑
j=1

βjI
γj

∫ θj

0
e−k(θj−s)Iq−1φ(θj)ds

−
∫ T

0
e−k(T−s)Ip−1ψ(T )ds

)
+ T

n∑
i=1

αiI
ρi

∫ ηi

0
e−k(ηi−s)Ip−1ψ(ηi)ds

− T
∫ T

0
e−k(T−s)Iq−1φ(T )ds

]
+
∫ t

0
e−k(t−s)Iq−1φ(t)ds

(3)

and

y(t) = υ2(t) + t

Ω

[ m∑
j=1

βjθ
γi+1
j

Γ(γj + 2)

( n∑
i=1

αiI
ρi

∫ ηi

0
e−k(ηi−s)Ip−1ψ(ηi)ds

−
∫ T

0
e−k(T−s)Iq−1φ(T )ds

)
+ T

m∑
j=1

βjI
γj

∫ θj

0
e−k(θj−s)Iq−1φ(θj)ds

− T
∫ T

0
e−k(T−s)Iq−1φ(T )ds

]
+
∫ t

0
e−k(t−s)Ip−1ψ(t)ds,

(4)
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where

Ω := T 2 −
n∑
i=1

αiη
ρi+1
i

Γ(ρi + 2)

m∑
j=1

βjθ
γj+1
j

Γ(γj + 2) 6= 0,

υ1(t) = A0(e−kt − 1) + t

Ω

[
TB0

n∑
i=1

αiI
ρi(e−kηi − 1) +

n∑
i=1

αiη
ρi+1
i

Γ(ρi + 2)

×
(
A0

m∑
j=1

βjI
γj (e−kθj − 1)−B0(e−kT − 1)

)
− TA0(e−kηi − 1)

]

and

υ2(t) = B0(e−kt − 1) + t

Ω

[
TA0

m∑
j=1

βjI
γj (e−kθj − 1) +

m∑
j=1

βjθ
γj+1
j

Γ(γj + 2)

×
(
B0

n∑
i=1

αiI
ρi(e−kηi − 1)−A0(e−kT − 1)

)
− TB0(e−kθj − 1)

]
.

Proof. Writing the linear sequential fractional differential equations in (2) as

cDq−1(D + k)x(t) = φ(t) and cDp−1(D + k)y(t) = ψ(t)

and then applying the Riemann–Liouville integral operator Iq−1 and Ip−1 on both
sides, followed by integration from 0 to t, we get

x(t) = A0e
−kt

+A1 +A2t+
∫ t

0
e−k(t−s)Iq−1φ(s))ds (5)

and

y(t) = B0e
−kt

+B1 +B2t+
∫ t

0
e−k(t−s)Ip−1ψ(s))ds, (6)

where A0, A1, A2, B0, B1 and B2 are arbitrary constants and

Iq−1x(t) =
∫ t

0

(t− s)q−2

Γ(q − 1) x(t)ds, Ip−1y(t) =
∫ t

0

(t− s)p−2

Γ(p− 1) y(t)ds,

for A0, A1, A2, B0, B1 and B2. The conditions x(0) = 0, y(0) = 0 imply that
A1 = −A0, B1 = −B0. Taking the Riemann–Liouville fractional integral of order
ρi > 0 for (5) and γj > 0 for (6) and using the property of the Riemann–Liouville
fractional integral, we get

A2 = 1
Ω

{ n∑
i=1

αiη
ρi+1
i

Γ(ρi + 2)

[ m∑
j=1

βjI
γj

(
A0(e−kθj − 1) +

∫ θj

0
e−k(θj−s)Iq−1φ(θj)ds

)

−B0(e−kT − 1)−
∫ T

0
e−k(T−s)Ip−1ψ(T )ds

]
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+ T

n∑
i=1

αiI
ρi

(
B0(e−kηi − 1) +

∫ ηi

0
e−k(ηi−s)Ip−1ψ(ηi)ds

)

− T
(
A0(e−kT − 1) +

∫ T

0
e−k(T−s)Iq−1φ(T )ds

)}
and

B2 = 1
Ω

{ m∑
j=1

βjθ
γj+1
j

Γ(γj + 2)

[ n∑
i=1

αiI
ρi

(
B0(e−kηi − 1) +

∫ ηi

0
e−k(ηi−s)Ip−1ψ(ηi)ds

)

−A0(e−kT − 1)−
∫ T

0
e−k(T−s)Iq−1φ(T )ds

]
+ T

m∑
j=1

βjI
γj

(
A0(e−kθj − 1) +

∫ θj

0
e−k(θj−s)Iq−1φ(θj)ds

)

− T
(
B0(e−kT − 1) +

∫ T

0
e−k(T−s)Ip−1ψ(T )ds

)}
.

Substituting the values of A1, A2, B1 and B2 in (5) and (6), we obtain the solutions
(3) and (4).

3. Main results

Throughout this paper, for convenience, we use the following expression

Iwh(t, x(t), y(t)) = 1
Γ(w)

∫ v

0
(v − s)w−1h(s, x(s), y(s))ds,

where v ∈ {t, T, ηi, θj}, w = {p, q} and h = {f, g}, i = 1, 2, . . . , n, j = 1, 2, . . . ,m.
Let C = C([0, T ],R) denotes the Banach space of all continuous functions from
[0, T ] to R. Let us introduce the space X = {x(t) : x(t) ∈ C1([0, T ])} endowed
with the norm ‖x‖ = sup{|x(t)|, t ∈ [0, T ]}. Obviously, (X, ‖.‖) is a Banach
space. Also let Y = {y(t) : y(t) ∈ C1([0, T ])} be endowed with the norm ‖y‖ =
sup{|y(t)|, t ∈ [0, T ]}. Clearly, the product space (X × Y, ‖(x, y)‖) is a Banach
space with the norm ‖(x, y)‖ = ‖x‖ + ‖y‖. In view of Lemma 2.5, we define the
operator T : X × Y → X × Y by

T (x, y)(t) =
(
T1(x, y)(t)
T2(x, y)(t)

)
,

where

T1(x, y)(t) = υ1(t) + t

Ω

[
T

n∑
i=1

αiI
ρi

∫ ηi

0
e−k(ηi−s)Ip−1g(s, x(s), y(s))(ηi)ds

+
n∑
i=1

αiη
ρi+1
i

Γ(ρi + 2)

( m∑
j=1

βjI
γj

∫ θj

0
e−k(θj−s)Iq−1f(x, x(s), y(s))(θj)ds
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−
∫ T

0
e−k(T−s)Ip−1g(s, x(s), y(s))(T )ds

)
− T

∫ T

0
e−k(T−s)Iq−1f(x, x(s), y(s))(T )ds

]
+
∫ t

0
e−k(t−s)Iq−1f(x, x(s), y(s))(t)ds

and

T2(x, y)(t) = υ2(t) + t

Ω

[
T

m∑
j=1

βjI
γj

∫ θj

0
e−k(θj−s)Iq−1f(x, x(s), y(s))(θj)ds

+
m∑
j=1

βjθ
γi+1
j

Γ(γj + 2)

( n∑
i=1

αiI
ρi

∫ ηi

0
e−k(ηi−s)Ip−1g(x, x(s), y(s))(ηi)ds

−
∫ T

0
e−k(T−s)Iq−1f(x, x(s), y(s))(T )ds

)
− T

∫ T

0
e−k(T−s)Iq−1f(x, x(s), y(s))(T )ds

]
+
∫ t

0
e−k(t−s)Ip−1g(x, x(s), y(s))(t)ds.

For the sake of convenience, we set

M1 = T

|Ω|Γ(q)

[ n∑
i=1

|αi|ηρi+1
i

Γ(ρi + 2)

m∑
j=1
|βj |θq−1

j Iγj

∫ θj

0
e−k(θj−s)ds

+ T q
∫ T

0
e−k(T−s)ds

]
+ T q−1

Γ(q)

∫ T

0
e−k(T−s)ds,

(7)

M2 = T 2

|Ω|Γ(p)

[ n∑
i=1
|αi|ηp−1

i Iρi

∫ ηi

0
e−k(ηi−s)ds

+ T p−2
n∑
i=1

|αi|ηρi+1
i

Γ(ρi + 2)

∫ T

0
e−k(T−s)ds

]
,

(8)

M3 = T 2

|Ω|Γ(q)

[ m∑
j=1
|βj |θq−1

j Iγj

∫ θj

0
e−k(θj−s)ds

+ T q−2
m∑
j=1

|βi|θ
γj+1
j

Γ(γi + 2)

∫ T

0
e−k(T−s)ds+ T q−1

∫ T

0
e−k(T−s)ds

]
,

(9)

M4 = T

|Ω|Γ(p)

[ m∑
j=1

|βj |θ
γj+1
j

Γ(γj + 2)

n∑
i=1
|αi|ηp−1

i Iρi

∫ ηi

0
e−k(ηi−s)ds

]

+ T p−1

Γ(p)

∫ T

0
e−k(T−s)ds

(10)
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and
M0 = min{1− (M1 +M3)k1 − (M2 +M4)λ1,

1− (M1 +M3)k2 − (M2 +M4)λ2},

The first result is concerned with the existence and uniqueness of the solution
for the problem (1) and is based on Banach contraction principle.

Theorem 3.1
Assume that f, g : [0, T ] ×R2 → R are continuous functions and there exist con-
stants mi, ni, i = 1, 2 such that for all t ∈ [0, T ] and xi, yi ∈ R, i = 1, 2,

|f(t, x2, y2)− f(t, x1, y1)| ≤ m1|x2 − x1|+m2|y2 − y1|

and
|g(t, x2, y2)− g(t, x1, y1)| ≤ n1|x2 − x1|+ n2|y2 − y1|.

In addition, assume that

(M1 +M3)(m1 +m2) + (M2 +M4)(n1 + n2) < 1,

where Mi, i = 1, 2, 3, 4 are given by (7) – (10). Then the boundary value problem
(1) has a unique solution.

Proof. Define sup
t∈[0,1]

f(t, 0, 0) = N1 <∞ and sup
t∈[0,1]

g(t, 0, 0) = N2 <∞ such that

r > max
{

M4N2 +M3N1 + |υ1(T )|
1− (M4n1 +M3m1 +M4n2 +M3m2) ,

M1N1 +M2N2 + |υ2(T )|
1− (M2n1 +M1m1 +M2n2 +M1m2)

}
.

We show that T Br ⊂ Br, where Br = {(x, y) ∈ X × Y : ‖(x, y)‖ < r}.
For (x, h) ∈ Br, we have∣∣T1(x, y)(t)

∣∣
= sup
t∈[0,T ]

{
υ1(t) + t

Ω

[
T

n∑
i=1

αiI
ρi

∫ ηi

0
e−k(ηi−s)Ip−1g(s, x(s), y(s))(ηi)ds

+
n∑
i=1

αiη
ρi+1
i

Γ(ρi + 2)

( m∑
j=1

βjI
γj

∫ θj

0
e−k(θj−s)Iq−1f(x, x(s), y(s))(θj)ds

−
∫ T

0
e−k(T−s)Ip−1g(s, x(s), y(s))(T )ds

)
− T

∫ T

0
e−k(T−s)Iq−1f(x, x(s), y(s))(T )ds

]
+
∫ t

0
e−k(t−s)Iq−1f(x, x(s), y(s))(t)ds

}
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≤ |υ1(T )|+ T

|Ω|

[
T

n∑
i=1
|αi|Iρi

∫ ηi

0
e−k(ηi−s)Ip−1(|g(s, x(s), y(s))

− g(s, 0, 0)|+ |g(s, 0, 0)|)(ηi)ds

+
n∑
i=1

|αi|ηρi+1
i

Γ(ρi + 2)

( m∑
j=1
|βj |Iγj

∫ θj

0
e−k(θj−s)Iq−1(|f(x, x(s), y(s))

− f(s, 0, 0)|+ |g(s, 0, 0)|)(θj)ds

+
∫ T

0
e−k(T−s)Ip−1(|g(s, x(s), y(s))− g(s, 0, 0)|+ g(s, 0, 0)|)(T )ds

)
+ T

∫ T

0
e−k(T−s)Iq−1(|f(x, x(s), y(s)− f(s, 0, 0)|+ |f(s, 0, 0)|))(T )ds

]
+
∫ T

0
e−k(T−s)Iq−1(|f(x, x(s)− f(s, 0, 0)|+ |f(s, 0, 0)|), y(s))(T )ds

≤ |υ1(T )|+ T

|Ω|

[
T

n∑
i=1
|αi|Iρi

∫ ηi

0
e−k(ηi−s)Ip−1(n1‖x‖+ n2‖y‖+N2)(ηi)ds

+
n∑
i=1

|αi|ηρi+1
i

Γ(ρi + 2)

( m∑
j=1
|βj |Iγj

∫ θj

0
e−k(θj−s)Iq−1(m1‖x‖

+m2‖y‖+N1)(θj)ds

+
∫ T

0
e−k(T−s)Ip−1(n1‖x‖+ n2‖y‖+N2)(T )ds

)
+ T

∫ T

0
e−k(T−s)Iq−1(m1‖x‖+m2‖y‖+N1)(T )ds

]
+
∫ T

0
e−k(T−s)Iq−1(m1‖x‖+m2‖y‖+N1), y(s))(T )ds

= (m1‖x‖+m2‖y‖+N1)

·
[
T

|Ω|

n∑
i=1

|αi|ηρi+1
i

Γ(ρi + 2)

m∑
j=1
|βj |Iγj

∫ θj

0
e−k(θj−s)Iq−1(1)(θj)ds

+ T

|Ω|T
∫ T

0
e−k(T−s)Iq−1(1)(T )ds+

∫ T

0
e−k(T−s)Iq−1(1)(T )ds

]
+ (n1‖x‖+ n2‖y‖+N2)

[
T

|Ω|T
n∑
i=1
|αi|Iρi

∫ ηi

0
e−k(ηi−s)Ip−1(1)(ηi)ds

+ T

|Ω|

n∑
i=1

|αi|ηρi+1
i

Γ(ρi + 2)

∫ T

0
e−k(T−s)Ip−1(1)(T )ds

]
+ |υ1(T )|

= (m1‖x‖+m2‖y‖+N1)

·
[

T

|Ω|Γ(q)

( n∑
i=1

|αi|ηρi+1
i

Γ(ρi + 2)

m∑
j=1
|βj |θq−1

j Iγj

∫ θj

0
e−k(θj−s)ds
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+ T q
∫ T

0
e−k(T−s)ds

)
+ T q−1

Γ(q)

∫ T

0
e−k(T−s)ds

]
+ (n1‖x‖+ n2‖y‖+N2)

[
T 2

|Ω|Γ(p)

( n∑
i=1
|αi|ηp−1

i Iρi

∫ ηi

0
e−k(ηi−s)ds

+ T p−2
n∑
i=1

|αi|ηρi+1
i

Γ(ρi + 2)

∫ T

0
e−k(T−s)ds

)]
+ |υ1(T )|

= M1(m1‖x‖+m2‖y‖+N1) +M2(n1‖x‖+ n2‖y‖+N2) + |υ1(T )|
= (M1m1 +M2n1)‖x‖(+M1m2 +M2n2)‖y‖+M1N1 +M2N2 + |υ1(T )|
≤ (M1m1 +M2n1 +M1m2 +M2n2)r +M1N1 +M2N2 + |υ1(T )| ≤ r.

In the same way, we can obtain that

|T2(x, y)(t)|

≤ (m1‖x‖+m2‖y‖+N1)
[

T 2

|Ω|Γ(q)

( m∑
j=1
|βj |θq−1

j Iγj

∫ θj

0
e−k(θj−s)ds

+ T q−2
m∑
j=1

|βi|θ
γj+1
j

Γ(γi + 2)

∫ T

0
e−k(T−s)ds+ T q−1

∫ T

0
e−k(T−s)ds

)]
+ (n1‖x‖+ n2‖y‖+N2)

·
[

T

|Ω|Γ(p)

( m∑
j=1

|βj |θ
γj+1
j

Γ(γj + 2)

n∑
i=1
|αi|ηp−1

i Iρi

∫ ηi

0
e−k(ηi−s)ds

)

+ T p−1

Γ(p)

∫ T

0
e−k(T−s)ds

]
+ |υ2(T )|

= (m1‖x‖+m2‖y‖+N1)M3 + (n1‖x‖+ n2‖y‖+N2)M4 + |υ2(T )|
= (M4n1 +M3m1)‖x‖(+M4n2 +M3m2)‖y‖+M3N1 +M4N2 + |υ2(T )|
= (M4n1 +M3m1 +M4n2 +M3m2)r +M3N1 +M4N2 + |υ2(T )| ≤ r.

Consequently, |T (x, y)(t)| ≤ r. Now for (x2, y2), (x1, y1) ∈ X × Y , and for any
t ∈ [0, T ], we get

|T1(x2,y2)(t)− T1(x1, y1)(t)|

≤ T

|Ω|

[
T

n∑
i=1
|αi|Iρi

∫ ηi

0
e−k(ηi−s)Ip−1|g(s, x2, y2)− g(s, x1, y1)|(ηi)ds

+
n∑
i=1

|αi|ηρi+1
i

Γ(ρi + 2)

( m∑
j=1
|βj |Iγj

∫ θj

0
e−k(θj−s)Iq−1|f(s, x2, y2)

− f(s, x1, y1)|(θj)ds

−
∫ T

0
e−k(T−s)Ip−1|g(s, x2, y2)− g(s, x1, y1)|(T )ds

)
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− T
∫ T

0
e−k(T−s)Iq−1|f(s, x2, y2)− f(s, x1, y1)|(T )ds

]
+
∫ T

0
e−k(T−s)Iq−1|f(s, x2, y2)− f(s, x1, y1)|(T )ds

≤(m1‖x2 − x1‖+m2‖y2 − y1‖)

·
[

T

|Ω|Γ(q)

( n∑
i=1

|αi|ηρi+1
i

Γ(ρi + 2)

m∑
j=1
|βj |θq−1

j Iγj

∫ θj

0
e−k(θj−s)ds

+ T q
∫ T

0
e−k(T−s)ds

)
+ T q−1

Γ(q)

∫ T

0
e−k(T−s)ds

]
+ (n1‖x2 − x1‖+ n2‖y2 − y1‖)

·
[

T 2

|Ω|Γ(p)

( n∑
i=1
|αi|ηp−1

i Iρi

∫ ηi

0
e−k(ηi−s)ds

+ T p−2
n∑
i=1

|αi|ηρi+1
i

Γ(ρi + 2)

∫ T

0
e−k(T−s)ds

)]
= M1(m1‖x2 − x1‖+m2‖y2 − y1‖) +M2(n1‖x2 − x1‖+ n2‖y2 − y1‖)
= (M1m1 +M2n1)‖x2 − x1‖+ (M1m2 +M2n2)‖y2 − y1‖.

Consequently we obtain

|T1(x2, y2)(t)− T1(x1, y1)(t)|
≤ (M1m1 +M2n1 +M1m2 +M2n2)[‖x2 − x1‖+ ‖y2 − y1‖].

(11)

Similarly,

|T2(x2, y2)(t)− T2(x1, y1)(t)|
≤ (M3m1 +M4n1 +M3m2 +M4n2)[‖x2 − x1‖+ ‖y2 − y1‖].

(12)

It follows from (11) and (12) that

|T (x2, y2)(t)− T (x1, y1)(t)| ≤ [(M1 +M3)(m1 +m2) + (M2 +M4)(n1 + n2)]
· (‖x2 − x1‖+ ‖y2 − y1‖).

Since (M1 +M3)(m1 +m2)+(M2 +M4)(n1 +n2) < 1, therefore, T is a contraction
operator. So, By Banach fixed point theorem, the operator T has a unique fixed
point, which is the unique solution of problem (1). This completes the proof.

In the next result, we prove the existence of solutions for the problem (1) by
applying Leray–Schauder alternative.

Lemma 3.2 (Leray–Schauder alternative, [11])
Let F : E → E be a completely continuous operator (i.e. a map that restricted to
any bounded set in E is compact). Let

ℵ(F ) = {x ∈ E : x = λF (x) for some 0 < λ < 1}.

Then either the set ℵ(F ) is unbounded, or F has at least one fixed point.



[114] Akbar Zada, Mohammad Yar and Tongxing Li

Theorem 3.3
Assume that there exist real constants ki, λi > 0, i = 1, 2 and k0 > 0, λ0 > 0 such
that for all xi ∈ R, i = 1, 2 we have

|f(t, x1, x2)| ≤ k0 + k1|x1|+ k2|x2|

|g(t, x1, x2)| ≤ λ0 + λ1|x1|+ λ2|x2|.

In addition, it is assumed that

[(M1 +M3)k1 + (M2 +M4)λ1] ≤ 1 and [(M1 +M3)k2 + (M2 +M4)λ2] ≤ 1,

where Mi for i = 1, 2, 3, 4 are given by (7) – (10). Then there exists at least one
solution for the boundary value problem (1).

Proof. First we show that the operator T : X × Y → X × Y is completely contin-
uous. By continuity of functions f and g the operator T is continuous.

Let Θ ⊂ X × Y be bounded. Then there exist positive constants L1 and L2
such that for all (x, y) ∈ Θ,

|f(t, x(t), y(t))| ≤ L1 and |g(t, x(t), y(t))| ≤ L2.

Then for any (x, y) ∈ Θ, we have

‖T1(x, y)(t)‖

≤ |υ1(T )|+ T

|Ω|

[
T

n∑
i=1

αiI
ρi

∫ ηi

0
e−k(ηi−s)Ip−1|g(s, x(s), y(s))|(ηi)ds

+
n∑
i=1

|αi|ηρi+1
i

Γ(ρi + 2)

( m∑
j=1
|βj |Iγj

∫ θj

0
e−k(θj−s)Iq−1|f(x, x(s), y(s))|(θj)ds

+
∫ T

0
e−k(T−s)Ip−1|g(s, x(s), y(s))|(T )ds

)
+ T

∫ T

0
e−k(T−s)Iq−1|f(x, x(s), y(s))|(T )ds

]
+
∫ T

0
e−k(T−s)Iq−1|f(x, x(s), y(s))|(T )ds

≤ |υ1(T )|+
[

T

|Ω|Γ(q)

( n∑
i=1

|αi|ηρi+1
i

Γ(ρi + 2)

m∑
j=1
|βj |θq−1

j Iγj

∫ θj

0
e−k(θj−s)ds

+ T q
∫ T

0
e−k(T−s)ds

)
+ T q−1

Γ(q)

∫ T

0
e−k(T−s)ds

]
L1

+ T 2

|Ω|Γ(p)

[ n∑
i=1
|αi|ηp−1

i Iρi

∫ ηi

0
e−k(ηi−s)ds

+ T p−2
n∑
i=1

|αi|ηρi+1
i

Γ(ρi + 2)

∫ T

0
e−k(T−s)ds

]
L2,
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which implies that

‖T1(x, y)(t)‖

≤ |υ1(T )|+
[

T

|Ω|Γ(q)

( n∑
i=1

|αi|ηρi+1
i

Γ(ρi + 2)

m∑
j=1
|βj |θq−1

j Iγj

∫ θj

0
e−k(θj−s)ds

+ T q
∫ T

0
e−k(T−s)ds

)
+ T q−1

Γ(q)

∫ T

0
e−k(T−s)ds

]
L1

+ T 2

|Ω|Γ(p)

[ n∑
i=1
|αi|ηp−1

i Iρi

∫ ηi

0
e−k(ηi−s)ds

+ T p−2
n∑
i=1

|αi|ηρi+1
i

Γ(ρi + 2)

∫ T

0
e−k(T−s)ds

]
L2

= M1L1 +M2L2 + |υ1(T )|.

Similarly, we get

‖T2(x, y)(t)‖

≤ |υ2(T )|+ T 2

|Ω|Γ(q)

[ m∑
j=1
|βj |θq−1

j Iγj

∫ θj

0
e−k(θj−s)ds

+ T q−2
m∑
j=1

|βi|θ
γj+1
j

Γ(γi + 2)

∫ T

0
e−k(T−s)ds+ T q−1

∫ T

0
e−k(T−s)ds

]
L1

+
[

T

|Ω|Γ(p)

( m∑
j=1

|βj |θ
γj+1
j

Γ(γj + 2)

n∑
i=1
|αi|ηp−1

i Iρi

∫ ηi

0
e−k(ηi−s)ds

)

+ T p−1

Γ(p)

∫ T

0
e−k(T−s)ds

]
L2

= M3L1 +M4L2 + |υ2(T )|.

Thus, it follows from the above inequalities that the operator T is uniformly
bounded.

Next, we show that T is equicontinuous. Let t1, t2 ∈ [0, T ] with t1 < t2. Then
we have

|T1(x(t2), y(t2))− T1(x(t1), y(t1))|
≤ |υ1(t2)− υ1(t1)|

+ |t2 − t1|
|Ω|

[
T

n∑
i=1
|αi|Iρi

∫ ηi

0
e−k(ηi−s)Ip−1|g(s, x(s), y(s))|(ηi)ds

+
n∑
i=1

|αi|ηρi+1
i

Γ(ρi + 2)

( m∑
j=1
|βj |Iγj

∫ θj

0
e−k(θj−s)Iq−1|f(x, x(s), y(s))|(θj)ds

+
∫ T

0
e−k(T−s)Ip−1|g(s, x(s), y(s))|(T )ds

)
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− T
∫ T

0
e−k(T−s)Iq−1|f(x, x(s), y(s))|(T )ds

]
+
∫ t1

0
|(e−k(t2−s) − e−k(t1−s))|Iq−1|f(x, x(s), y(s))|(t1)ds

+
∫ t2

t1

e−k(t2−s)Iq−1|f(x, x(s), y(s))|(t2)ds

≤ A0(e−kt1 − e−kt2) + |t2 − t1|
|Ω|

[
TB0

n∑
i=1
|αi|Iρi |(e−kηi − 1)|

+
n∑
i=1

|αi|ηρi+1
i

Γ(ρi + 2)

(
A0

m∑
j=1
|βj |Iγj |(e−kθj − 1)|

+B0|(e−kT − 1)|
)

+ TA0|(e−kηi − 1)|
]

+ |t2 − t1|
|Ω|

[
T

n∑
i=1
|αi|Iρi

∫ ηi

0
e−k(ηi−s)Ip−1|g(s, x(s), y(s))|(ηi)ds

+
n∑
i=1

|αi|ηρi+1
i

Γ(ρi + 2)

( m∑
j=1
|βj |Iγj

∫ θj

0
e−k(θj−s)Iq−1|f(x, x(s), y(s))|(θj)ds

+
∫ T

0
e−k(T−s)Ip−1|g(s, x(s), y(s))|(T )ds

)
− T

∫ T

0
e−k(T−s)Iq−1|f(x, x(s), y(s))|(T )ds

]
+
∫ t1

0
|(e−k(t2−s) − e−k(t1−s))|Iq−1|f(x, x(s), y(s))|(t1)ds

+
∫ t2

t1

e−k(t2−s)Iq−1|f(x, x(s), y(s))|(t2)ds.

Analogously, we can obtain

|T2(x(t2), y(t2))− T2(x(t1), y(t1))|

≤ B0(e−kt1 − e−kt2) + |t2 − t1|
|Ω|

[ m∑
j=1

|βj |θ
γj+1
j

Γ(γj + 2)

(
B0

n∑
i=1
|αi|Iρi |(e−kηi − 1)|

+A0|(e−kT − 1)|
)

+ TA0

m∑
j=1
|βj |Iγj |(e−kθj − 1)|+ TB0|(e−kT − 1)|

]

+ |t2 − t1|
|Ω|

[ m∑
j=1

|βj |θγi+1
j

Γ(γj + 2)

( n∑
i=1
|αi|Iρi

∫ ηi

0
e−k(ηi−s)Ip−1|g(x, x(s), y(s))|(ηi)ds

+
∫ T

0
e−k(T−s)Iq−1|f(x, x(s), y(s))|(T )ds

)
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+ T

m∑
j=1
|βj |Iγj

∫ θj

0
e−k(θj−s)Iq−1|f(x, x(s), y(s))|(θj)ds

+ T

∫ T

0
e−k(T−s)Iq−1|f(x, x(s), y(s))|(T )ds

]
+
∫ t1

0
|(e−k(t2−s) − e−k(t1−s))|Ip−1|g(x, x(s), y(s))|(t1)ds

+
∫ t2

t1

e−k(t2−s)Ip−1|g(x, x(s), y(s))|(t2)ds.

Obviously, the right-hand sides of the above inequalities tend to zero independently
of f, g ∈ Br as t2− t1 → 0. Therefore, the operator T (x, y) is equicontinuous, and
thus it is completely continuous.

Finally, it will be verified that the set

ℵ = {(x, y) ∈ X × Y : (x, y) = λT (x, y), 0 ≤ λ ≤ 1}

is bounded. Let (x, y) ∈ ℵ, then (x, y) = λT (x, y). For any t ∈ [0, T ], we have
x(t) = λT1(x, y)(t) and y(t) = λT2(x, y)(t). Then

|x(t)| ≤ |υ1(T )|+ (k0 + k1‖x‖+ k2‖y‖)

·
[

T

|Ω|Γ(q)

( n∑
i=1

|αi|ηρi+1
i

Γ(ρi + 2)

m∑
j=1
|βj |θq−1

j Iγj

∫ θj

0
e−k(θj−s)ds

+ T q
∫ T

0
e−k(T−s)ds

)
+ T q−1

Γ(q)

∫ T

0
e−k(T−s)ds

]
+ (λ0 + λ1‖x‖+ λ2‖y‖)

[
T 2

|Ω|Γ(p)

( n∑
i=1
|αi|ηp−1

i Iρi

∫ ηi

0
e−k(ηi−s)ds

+ T p−2
n∑
i=1

|αi|ηρi+1
i

Γ(ρi + 2)

∫ T

0
e−k(T−s)ds

)]
and

|y(t)| ≤ |υ2(T )|+ (λ0 + λ1‖x‖+ λ2‖y‖)

·
[

T

|Ω|Γ(p)

( m∑
j=1

|βj |θ
γj+1
j

Γ(γj + 2)

n∑
i=1
|αi|ηp−1

i Iρi

∫ ηi

0
e−k(ηi−s)ds

)

+ T p−1

Γ(p)

∫ T

0
e−k(T−s)ds

]
+ (k0 + k1‖x‖+ k2‖y‖)

[
T 2

|Ω|Γ(q)

( m∑
j=1
|βj |θq−1

j Iγj

∫ θj

0
e−k(θj−s)ds

+ T q−2
m∑
j=1

|βi|θ
γj+1
j

Γ(γi + 2)

∫ T

0
e−k(T−s)ds+ T q−1

∫ T

0
e−k(T−s)ds

)]
.
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Hence we have

‖x(t)‖ ≤ |υ1(T )|+ (k0 + k1‖x‖+ k2‖y‖)M1 + (λ0 + λ1‖x‖+ λ2‖y‖)M2

and

‖y(t)‖ ≤ |υ2(T )|+ (λ0 + (k0 + k1‖x‖+ k2‖y‖)M3 + λ1‖x‖+ λ2‖y‖)M4,

which imply that

‖x(t)‖+ ‖y(t)‖ = |υ1(T )|+ |υ2(T )|+ (M1 +M3)k0 + (M2 +M4)λ0

+ [(M1 +M3)k1 + (M2 +M4)λ1]‖x‖
+ [(M1 +M3)k2 + (M2 +M4)λ2]‖y‖.

Consequently,

‖(x, y)‖ ≤ (M1 +M3)k0 + (M2 +M4)λ0 + |υ1(T )|+ |υ2(T )|
M0

for any t ∈ [0, T ], where M0 is defined by (5), which proves that ℵ is bounded.
Thus, by Lemma 3.2 the operator T has at least one fixed point. Hence, the
boundary value problem (1) has at least one solution.

4. Hyers–Ulam stability of system (1)

This section is devoted to the investigation of Hyers–Ulam stability for our
proposed system. Consider the following inequality:{

|(cDq + kcDq−1)x(t)− f(t, x(t), y(t))| ≤ ε1, t ∈ [0, T ],

|(cDp + kcDp−1)y(t)− g(t, x(t), y(t))| ≤ ε2, t ∈ [0, T ],
(13)

where ε1, ε2 are given two positive real numbers.

Definition 4.1
Problem (1) is Hyers–Ulam stable if there exist Mi > 0, i = 1, 2, 3, 4 such that for
given ε1, ε2 > 0 and for each solution (x, y) ∈ C([0, T ]×R2,R) of inequality (13),
there exists a solution (x∗, y∗) ∈ C([0, T ]×R2,R) of problem (1) with{

|x(t)− x∗(t)| ≤M1ε1 +M2ε2, t ∈ [0, T ],
|y(t)− y∗(t)| ≤M3ε1 +M4ε2, t ∈ [0, T ].

Remark 4.2
(x, y) is a solution of inequality (13) if there exist functions Qi ∈ C([0, T ],R),
i = 1, 2 which depend upon x, y respectively, such that

• |Q1(t)| ≤ ε1, |Q2(t)| ≤ ε2, t ∈ [0, T ]] .

•

{
(cDq + kcDq−1)x(t) = f(t, x(t), y(t)) +Q1(t), t ∈ [0, T ],

(cDp + kcDp−1)y(t) + g(t, x(t), y(t)) +Q2(t), t ∈ [0, T ].
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Remark 4.3
If (x, y) represent a solution of inequality (13), then (x, y) is a solution of following
inequality {

|x(t)− x∗(t)| ≤M1ε1 +M2ε2, t ∈ [0, T ],
|y(t)− y∗(t)| ≤M3ε1 +M4ε2, t ∈ [0, T ].

As from Remark 4.2, we have{
(cDq + kcDq−1)x(t) = f(t, x(t), y(t)) +Q1(t), t ∈ [0, T ],

(cDp + kcDp−1)y(t) = g(t, x(t), y(t)) +Q2(t), t ∈ [0, T ].

With the help of Definition 4.1 and Remark 4.2 we verified Remark 4.3, in the
following lines

|x(t)− υ1(t)|

=
∣∣∣∣ tΩ
[
T

n∑
i=1

αiI
ρi

∫ ηi

0
e−k(ηi−s)Ip−1g(s, x(s), y(s))(ηi)ds

+
n∑
i=1

αiη
ρi+1
i

Γ(ρi + 2)

( m∑
j=1

βjI
γj

∫ θj

0
e−k(θj−s)Iq−1f(s, x(s), y(s))(θj)ds

−
∫ T

0
e−k(T−s)Ip−1g(s, x(s), y(s))(T )ds

)
− T

∫ T

0
e−k(T−s)Iq−1f(s, x(s), y(s))(T )ds

]
−
∫ t

0
e−k(t−s)Iq−1f(s, x(s), y(s))(t)ds

]∣∣∣∣
≤ T

|Ω|

[
T

n∑
i=1
|αi|Iρi

∫ ηi

0
e−k(ηi−s)Ip−1|Q2(t)|(ηi)ds

+
n∑
i=1

|αi|ηρi+1
i

Γ(ρi + 2)

( m∑
j=1
|βj |Iγj

∫ θj

0
e−k(θj−s)Iq−1|Q1(t)|(θj)ds (14)

+
∫ T

0
e−k(T−s)Ip−1|Q2(t)|(T )ds

)
+ T

∫ T

0
e−k(T−s)Iq−1|Q1(t)|(T )ds

]
+
∫ T

0
e−k(T−s)Iq−1|Q1(t)|(T )ds

∣∣∣∣
≤ ε1

[
T

|Ω|Γ(q)

( n∑
i=1

|αi|ηρi+1
i

Γ(ρi + 2)

m∑
j=1
|βj |θq−1

j Iγj

∫ θj

0
e−k(θj−s)ds

+ T q
∫ T

0
e−k(T−s)ds

)
+ T q−1

Γ(q)

∫ T

0
e−k(T−s)ds

]
+ ε2

[
T 2

|Ω|Γ(p)

( n∑
i=1
|αi|ηp−1

i Iρi

∫ ηi

0
e−k(ηi−s)ds
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+ T p−2
n∑
i=1

|αi|ηρi+1
i

Γ(ρi + 2)

∫ T

0
e−k(T−s)ds

)]
= M1ε1 +M2ε2.

By the same method we can obtain that

|y(t)− y∗(t)| ≤M3ε1 +M4ε2, (15)

where Mi, i = 1, 2, 3, 4 are given by (7)-(10). Hence Remark 4.3 is verified, with
the help of (14) and (15). Thus the nonlinear sequential coupled system of Caputo
fractional differential equations is Hyers–Ulam stable and consequently, the system
(1) is Hyers–Ulam stable.

5. Examples

Example 5.1
Consider the following system of coupled Caputo fractional differential equations
with Riemann–Liouville fractional integral boundary conditions

(cD5/2+2cD3/2)x(t)

= et
2

(t+ 7)2
|x(t)|

(1 + |x(t)|) + sin2(2πt)
(3et + 1)2

|y(t)|
1 + |y(t)| + 1

3 , t ∈ [0, 2],

(cD7/3+2cD4/3)y(t)

= 1
24 cosx(t) + 1

(t+ 6)2 sin y(t) + 1, t ∈ [0, 2],

x(0) = 0, x(2) = 3
2I

1/3y(2/3) +
√

2I3/7y(4/3),

y(0) = 0, y(2) =
√

3I1/4x(1/2) + 1
2I

4/7x(1) + 2I7/10x(3/2).

(16)

Here q = 5/2, p = 7/3, n = 2, m = 3, T = 2, α1 = 3/2, α2 =
√

2, β1 =
√

3,
β2 = 1/2, β3 = 2, ρ1 = 1/3, ρ2 = 3/7, γ1 = 1/4, γ2 = 4/7, γ3 = 7/10, η1 = 2/3,
η2 = 4/3, θ1 = 1/2, θ2 = 1, θ3 = 3/2 and

f(t, x, y) = (et
2

|x|)/(t+ 7)2)(1 + |x|) + (sin(2πt)|y|)/(3et + 1)2(1 + |y|) + 1/3

g(t, x, y) = (cosx/25) + (sin y)/((t+ 6)2) + 1.

Since
|f(t, x2, y2)− f(t, x1, y1)| ≤ (1/49)|x2 − x1|+ (1/16)|y2 − y1|

and
|g(t, x2, y2)− g(t, x1, y1)| ≤ (1/25)|x2 − x1|+ (1/36)|y2 − y1|

and we can find

Ω = T 2 −
n∑
i=1

αiη
ρi+1
i

Γ(ρi + 2)

m∑
j=1

βjθ
γj+1
j

Γ(γj + 2) ' −8.442 6= 0.
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With the given values, it is found that m1 = 1/49, m2 = 1/16, n1 = 1/25,
n2 = 1/36, M1 ' 3.358, M2 ' 1.795, M3 ' 3.303, M4 ' 2.331, and

(M1 +M3)(m1 +m2) + (M2 +M4)((n1 + n2) ' 0.825 < 1.

Thus all the conditions of Theorem 3.1 are satisfied. Therefore, by the conclusion
of Theorem 3.1, the problem (16) has a unique solution on [0, 2]. Further, it is
also straightforward to prove the problem (16) is Hyers–Ulam stable.

Example 5.2
Consider the following coupled fractional integral boundary conditions

(cD9/4+1
2

c

D5/4)x(t)

= |x(t)|
(t+ 3)4(1 + |x(t)|) + 1

63(1 + y2(t)) + 1
18 , t ∈ [0, 4],

(cD12/5+1
2

c

D7/5)y(t)

= sin(2πx(t))
172π + 1

10
√
t+ 4

+ |y(t)|
60(1 + |y(t)|) , t ∈ [0, 4],

x(0) = 0, x(4) = 3
2I

7/10y(1/2) +
√

5I3/7y(2/3),

y(0) = 0, y(4) =
√

7I3/4x(5/4) + 11
7 I

9/8x(2/3).

(17)

Here q = 9/4, p = 12/5, n = 2, m = 2, T = 4, α1 = 3/2, α2 = 27, β1 =
√

7,
β2 = 11/7, ρ1 = 7/10, ρ2 = 3/7, γ1 = 3/4, γ2 = 9/8, η1 = 1/2, η2 = 2/3, θ1 = 5/4,
θ2 = 2/3 and

f(t, x, y) = |x(t)|/(t+ 3)4(1 + |x(t)|) + 1/63(1 + y2(t)) + 1/18

g(t, x, y) = sin(2πx(t))/172π + 1/10
√
t+ 4 + |y(t)|/60(1 + |y(t)|).

Since
|f(t, x2, y2)− f(t, x1, y1)| ≤ (1/81)|x2 − x1|+ (1/63)|y2 − y1|

and
|g(t, x2, y2)− g(t, x1, y1)| ≤ (1/86)|x2 − x1|+ (1/60)|y2 − y1|

and we can find

Ω = T 2 −
n∑
i=1

αiη
ρi+1
i

Γ(ρi + 2)

m∑
j=1

βjθ
γj+1
j

Γ(γj + 2) ' −28.38879 6= 0.

With the given values, it is found that m1 = 1/81, m2 = 1/63, n1 = 1/86,
n2 = 1/60, M1 ' 14.38186, M2 ' 5.15674, M3 ' 7.46746, M4 ' 3.61879, and

(M1 +M3)(m1 +m2) + (M2 +M4)((n1 + n2) ' 0.86485 < 1.

Thus all the conditions of Theorem 3.1 are satisfied. Therefore, by the conclusion
of Theorem 3.1, the problem (17) has a unique solution on [0, 4]. Further, it is
also straightforward to prove the problem (17) is Hyers–Ulam stable.
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6. Conclusion

We discussed the existence and stability of nonlinear sequential coupled system
of Caputo fractional differential equations with Riemann–Liouville fractional in-
tegral boundary conditions. The existence and uniqueness of solutions is relies on
Banach contraction principle, while the existence of solutions is established by ap-
plying Leray–Schauder’s alternative. Finally examples are presented to illustrate
the main results.

Competing interests. There is no competing interests regarding this research
work.
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