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Transcranial Electrical Stimulation (TES) continues to demonstrate success as a medical

intervention for individuals with neurodegenerative diseases. Despite promising results

from these neuromodulation modalities, the cellular level mechanisms by which this

neurotherapy operates are not fully comprehended. In particular, the effects of TES on

ion channel gating and ion transport are not known. Using the Poisson-Nernst-Planck

model of electrodiffusion, coupled with a Hodgkin-Huxley based model of cellular ion

transport, we present a model of TES that, for the first time, integrates electric potential

energy, individualized ion species, voltage-gated ion channels, and transmembrane

ionic flux during TES administration. Computational simulations are executed on

a biologically-inspired domain with medically-based TES treatment parameters and

quantify neuron-level electrical processes resulting from this form of neurostimulation.

Results confirm prior findings that show that TES polarizes the cell membrane, however,

these are extended as simulations in this paper show that polarization occurs in a

location specific manner, where the type and degree of polarization depends on the

position on the membrane within a node of Ranvier. In addition, results demonstrate

that TES causes ion channel gating variables to change in a location specific fashion

and, as a result, transmembrane current from distinct ion species depends on both

time and membrane location. Another simulation finding is that intracellular calcium

concentrations increase significantly due to a TES-induced calcium influx. As cytosolic

calcium is critical in intracellular signaling pathways that govern proper neurotransmitter

secretion as well as support cell viability, this alteration in calcium homeostasis

suggests a possible mechanism by which TES operates at the neuronal level to

achieve neurotherapeutic success.

Keywords: location specificity of neuronal electrodynamics, neurostimulation induced calcium flux, mathematical

model, transcranial electrical stimulation model, finite element method simulation
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1. INTRODUCTION

Transcranial electrical stimulation (TES) is a group of
neurostimulation therapies that deliver low doses of electric
current to targeted brain regions via noninvasive electrodes
placed on a patient’s scalp. The most common type of TES
is transcranial direct current stimulation (tDCS), which
administers a constant amount of electrical energy during
therapy sessions. Other forms of TES include transcranial
alternating current stimulation (tACS) as well as transcranial
random noise stimulation (tRNS), both of which utilize
a non-constant dosage of electric current (Paulus, 2011;
Antal and Paulus, 2013). Most recently, high-definition
TES has been introduced as a neurostimulation approach
that achieves a more focused delivery of electrical energy
through the use of numerous smaller anode and cathode
electrodes, as opposed to just the single larger-sized anode
and cathode traditionally used in tDCS, tACS, and tRNS
(Borckardt et al., 2012; Caparelli-Daquer et al., 2012).

Clinical experiments clearly show that TES is an effective
intervention for treating conditions that manifest from
neurodegenerative disorders. Parkinson’s disease patients, for
example, have demonstrated enhanced movement capabilities
and memory skills from TES (Boggio et al., 2006; Johnson et al.,
2008). Also, individuals suffering from Alzheimer’s disease have
demonstrated improved recognition and memory capabilities
(Boggio et al., 2009, 2011). Further, TES has shown to improve
language re-learning in dementia patients (Wang et al., 2013;
Yun et al., 2016). In addition to clinical findings, biological
experiments have begun to show the effects of TES on membrane
polarization (Liebetanz et al., 2002; Bikson et al., 2004; Stagg
and Nitsche, 2011; Das et al., 2016) and calcium homeostasis
(Islam et al., 1995; Nitsche et al., 2003; Adams et al., 2017),
however difficulties in capturing ion channel state, ionic flux,
and intracellular calcium concentrations continuously over time
with a high sampling frequency yields limited neurostimulation
data at the cellular level (Adams et al., 2017). Thus, the direct
influence of an applied TES electric current on voltage-gated ion
channel states as well as other cellular level mechanism by which
TES operates is largely unknown (Nitsche et al., 2008).

In partnership with biomedical research, mathematical
modeling and computational simulation have helped to
enhance the neurological communities’ understanding of
TES. Recent models have begun to describe the impact of
electrical stimulation on electric potential around neural
tissue (Mandonnet and Pantz, 2011). In addition, biodomain
models have provided a means to begin to characterize the
influence of electrical energy on transmembrane potential using
volume averaging approaches (Sadleir, 2010; Dougherty et al.,
2014). These models support the physiological conclusion
that TES influences the neuron by slightly polarizing the cell
membrane (Nitsche et al., 2008), however, the level of biological
abstraction of their mathematical formulations inherently
prohibits a quantitative description of individual ion species
and their movements around and through the neuron cell
wall. A mathematical model of TES that incorporates the
electrodiffusion of distinct ion types throughout the intracellular

and extracellular domains, as well as their mobility across the
cell membrane via voltage-gated ion channels, would for the first
time give researchers the capability to computationally assess the
impact that a TES-based electric field has on ion channel gating
and subsequent ionic flux.

In this paper, we present a novel mathematical model of TES
that provides a description of its effects on cellular level neuronal
electrodynamics. The model integrates the Poisson-Nernst-
Planck electrodiffusion system of partial differential equations
(PDEs) and Hodgkin-Huxley motivated boundary conditions for
cell membrane ionic flux with extracellular boundary conditions
that model TES treatments. Four ion species, namely sodium,
potassium, chloride, and calcium, are incorporated in the model.
We include calcium in this model as cytosolic calcium is known
to be an essential member of the intracellular biochemical
network that triggers proper neurotransmitter secretion, and in
addition, holds an integral connection with neurodegenerative
diseases (Bezprozvanny, 2009; Marambaud et al., 2009; Calì et al.,
2014; Surmeier et al., 2017). The TES model is then simulated
on a biologically-inspired computational domain (Sosinsky et al.,
2005; Chang and Rasband, 2013; Arancibia-Cárcamo et al., 2017)
that includes intracellular, extracellular, and membrane regions.
Using in silico experiments, we examine the impact of TES on
(i) extracellular and intracellular electric potential, (ii) resting
membrane potential along the node of Ranvier, (iii) voltage-
dependent ion channel gating, (iv) ionic membrane flux, and (v)
extracellular and intracellular ion diffusion.

Results demonstrate that a simulated TES current does
in fact instantaneously polarize the transmembrane resting
potential, however, it does so in a location-dependent manner,
where depolarization occurs in a portion of the node of
Ranvier and hyperpolarization in other regions. In turn,
there is a location-dependent effect on voltage-gated ion
channel states, which directly impacts ion channel permeability.
Additionally, results show a location-dependent influence on
ion membrane flux, with regions along the membrane that
exhibit significant increases in sodium and calcium intracellular
influx. Of particular importance to applications focusing on
neurodegenerative diseases, simulations of TES show calcium
intracellular concentrations can increase by up to 71.65% along
some regions of the node of Ranvier. In addition, the total
calcium concentration in the intracellular domain increases by
63.86% due to TES.

To our knowledge, this paper presents the first model of TES
that incorporates neurophysiology with individual ion species
and transmembrane ionic fluxes. We hope that the models,
simulations, and results presented in this work help expand
the research communities’ understanding of the neurological
mechanisms by which TES operates, and in addition, broadens
the utility of mathematical modeling and simulation for
computational neuroscience research.

2. MATERIALS AND METHODS

2.1. Poisson-Nernst-Planck Model
The time-dependent Poisson-Nernst-Planck (PNP) system of
partial differential equations (PDEs) can be used to model ion
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electrodiffusion around and within a neuron (Horng et al., 2012;
Dione et al., 2016). The Nernst-Planck equation, which describes
particle movement due to both diffusion and electrostatic forces,
is given by

∂ni

∂t
+ ∇ · Fi = 0, (1)

where the ion flux, Fi, is given by

Fi = −Di(∇ni +
ni

αi
∇φ), (2)

where ni = ni(Ex, t) and φ = φ(Ex, t) represent the concentration
of the ith ion and the electric potential energy, respectively, both
of which are unknown quantities to be solved for. In addition,
constant Di is the diffusivity in water for the ith ion, and the
constant αi equals

RT
Fzi

, where R, T, and F are the gas constant,
temperature of the medium, and Faraday’s constant, respectively.

The Poisson equation portion of the PNP system quantifies
the electric potential energy due to ion concentrations and their
relative valences, and is given by

∇ · (ǫ∇φ) = −F
∑

i=1

zini, (3)

where zi is the valence of ion i. In addition, ǫ denotes the
permittivity of the medium, equaling ǫc · ǫ0 in intracellular
and extracellular regions, and ǫmemb · ǫ0 in the cell membrane.
Here, ǫ0 is given by vacuum permittivity while ǫc and ǫmemb are
relative permittivities of the intra/extra-cellular and membrane
domains, respectively.

In this paper, four ion species are used in the PNP model,
namely sodium (Na+), potassium (K+), calcium (Ca+2), and
chloride (Cl−); thus, equation 1 is realized four times, and the
summation term of equation 3 contains four terms.

2.2. Computational Domain
The model is simulated on a biologically-inspired two-
dimensional domain representing a portion of a neuron axon
that includes a single node of Ranvier, the neuronal region rich
in ion channels and transmembrane ionic transport. The domain
was constructed using both the myelinated and unmyelinated
regions of the membrane, and biologically accurate dimensions
were incorporated (Sosinsky et al., 2005; Lopreore et al., 2008;
Briegel et al., 2009; Chang and Rasband, 2013; Pods et al., 2013;
Maxwell, 2014; Dione et al., 2016; Arancibia-Cárcamo et al., 2017;
Rogers and Team of Encyclopedia, 2018). The three subregions of
the computational domain consists of (i) intracellular space, (ii)
membrane, (iii) and extracellular space.

Figure 1 presents the domain, noting the locations of the three
regions as well as all domain boundaries. The length of the axon
portion of the domain is 4 µm (Lopreore et al., 2008; Dione et al.,
2016) with the nodal portion having a length of 1 µm (Sosinsky
et al., 2005; Lopreore et al., 2008; Dione et al., 2016; Arancibia-
Cárcamo et al., 2017; Rogers and Team of Encyclopedia, 2018).
The radius of the myelinated and unmyelinated sections of
the membrane are 0.406 µm (Lopreore et al., 2008; Dione
et al., 2016) and 0.005 µm (Briegel et al., 2009; Chang and
Rasband, 2013; Pods et al., 2013), respectively. The radius of the

intracellular space is 0.434µm (Lopreore et al., 2008; Dione et al.,
2016), and the whole domain, i.e., intracellular, membrane, and
extracellular spaces, has a radius of 2 µm (Lopreore et al., 2008;
Dione et al., 2016).

Figure 2 displays the discretized computational mesh used in
each simulation; in this mesh, there are 725,528 elements, with
67,810 nodes in the membrane, 502,644 in the intracellular space,
and 159,410 in the extracellular space. The mesh has a much finer
grid resolution in the Debye layer, the extracellular space directly
adjacent to the membrane, as well as its neighboring intracellular
space; this finer discretization is necessary to accurately model
the rapid solution changes that take place in these regions of the
domain (Pods et al., 2013).

FIGURE 1 | Diagram of computational domain with intracellular (�I ),

membrane (�M ), and extracellular (�E ) subdomains. The diagram also

includes labels for each boundary in the domain. ŴL and ŴR are the

boundaries for the left and right sides of the extracellular space, respectively.

Ŵ1 is the boundary for the top of the extracellular space and Ŵ2 labels the

exterior boundaries for the intracellular subdomain. Ŵ3 is the exterior boundary

of the membrane and Ŵ5 labels the boundary between the membrane and

intra/extra-cellular space other than in the node of Ranvier, which is

labeled by Ŵ4.

FIGURE 2 | Computational mesh with nodes on which the PDEs are solved.

Intracellular and extracellular subdomains are shown in blue and the

membrane region is shown in red.
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2.3. Boundary Conditions
Equation (1) is defined on the intracellular and extracellular
regions of the domain, namely �I ∪ �E, whereas Equation (3)
is defined on the entire domain � = �I ∪ �M ∪ �E (Pods
et al., 2013). Thus, boundary conditions for these equations
must be stipulated on these respective boundaries. In addition,
to appropriately model TES at the cellular level, boundary
conditions for the Nernst-Planck equation and the Poisson
equation must be specified to model TES administration as well
as ion transport across the cell membrane. These conditions are
described in the following sections.

2.3.1. TES Boundary Conditions
On the extracellular space top boundary (Ŵ1), the concentrations
of each ion are set to a constant bulk solution value using the
non-homogeneous Dirichlet boundary condition

ni = n0i , Ex ∈ Ŵ1. (4)

In this work, we focus on a constant stimulation source, i.e.,
tDCS, and the next two boundary conditions achieve this form of
TES. The electric potential on right side of the extracellular space
(ŴR) is maintained at a value of zero using the homogeneous
Dirichlet boundary condition

φ = 0, Ex ∈ ŴR. (5)

For the first 2 ms of the simulation, the electric potential on the
left side of the extracellular space (ŴL) is set to zero; after this
time, TES is simulated by changing this value to 0.1 V (Faria
et al., 2011; Gasca et al., 2011; Datta et al., 2013). This TES
administration is represented with the time-dependent Dirichlet
boundary condition

φ =

{

0 : t ≤ 2 ms, Ex ∈ ŴL

0.1 : t > 2 ms, Ex ∈ ŴL
(6)

Note that alternative forms of TES can be simulated simply by
implementing a non-constant value of φ once stimulation is
activated in Equation (6).

For Equation (1), on all boundaries except the membrane, ion
flux is set to zero:

Fi · En = 0, Ex ∈ Ŵ2 ∪ Ŵ3 ∪ Ŵ5 ∪ ŴL ∪ ŴR, (7)

and the charge density flux for Equation (3) is set to zero on all
the boundaries not governed by the TES source or ground using
the homogeneous Neumann condition

ǫ∇φ · En = 0, Ex ∈ Ŵ1 ∪ Ŵ2 ∪ Ŵ3. (8)

2.3.2. Hodgkin-Huxley Gating Equations
The transport of ions across the membrane wall within the
node of Ranvier is governed by the non-homogeneous Neumann
boundary condition

Fi · En = fmemb
i (ni,φ, t), Ex ∈ Ŵ4, (9)

where fmemb
i is a time and position dependent function that

incorporates a Hodgkin-Huxley based model (Hodgkin and
Huxley, 1952; Kay and Wong, 1987; Tuckwell, 2012) to
quantify sodium, potassium, chloride, and calcium ion flux (see
Appendix B). Themembrane flux fmemb

i uses the transmembrane
voltage V = φI - φE in its calculation, which is computed
at every point along the membrane in the discretized mesh
(Dione et al., 2016).

2.4. Numerical Implementation
Equations (1) and (3) are decoupled using the Gauss-Seidal
method (Sundnes et al., 2006). The solution algorithm consists
of the following steps:

1. Solve equation 3 for φ at time step k + 1 given ion
concentrations at time step k, nki , with boundary conditions

given by Equations (5), (6), and (8). Let φk+1 denote this
solution.

2. Solve for fmemb
i given nki and φk+1 (see section 2.3.2).

3. Solve Equation (1) for ni, for each ion type, at time step k + 1
given φk+1, with boundary conditions given by Equations (4),

(7), and (9). Let nk+1
i denote these solutions.

The result is numerical solutions of φ and ni at time step
k + 1. This iterative sequence is initiated using prescribed
intracellular and extracellular initial concentrations of each ion
type, and is repeated until the end of the simulation. Within
this loop, an inner iteration is used in step 2 to solve the
Hodgkin-Huxley system with a smaller time step. This approach
ensures the accuracy of the ion flux at the membrane and
enables a larger time step for the more computationally intensive
PDE solvers in steps 1 and 3. Given that the transmembrane
voltage and subsequent flux vary along the node of Ranvier,
a different realization of these ordinary differential equations
(ODEs) is needed to be solved at every point along the
membrane. In this work, the discretized domain generates 1,700
nodes along the membrane, thus the Hodgkin-Huxley ODE
system was instantiated and solved for 1,700 times at each
simulation time step.

The PDE in step 1 is solved using the finite element method.
The PDE system in step 3 is discretized in time using the θ-
rule and space using the finite element method (Mardal et al.,
2003). The value of θ was set equal to 1, which corresponds
to the Backward Euler method, due to its L-stability properties
(Hairer and Wanner, 1996). Resulting weak formulations for
these equations are presented in Appendix A. The Hodgkin-
Huxley ODEs are solved using LSODE (Hindmarsh, 1983; Hairer
and Wanner, 1996). This iterative implementation approach
enables numerical solvers tailored to each individual equation to
be used (Langtangen and Tveito, 2003), as well as individualized
time steps for the PDEs and ODEs.

2.5. Computational Tools
The computational domain (Figure 2) was constructed and
discretized using GMSH (Geuzaine and Remacle, 2009). The
FEniCS computing platform (Alnæs et al., 2015) was used to
solve the partial differential equations. This Python based library
offers packages to solve finite element weak formulations subject
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to all boundary and initial conditions. In addition, Python’s SciPy
library was used to access the LSODEmethod (Jones et al., 2001).

Given the complexity of the mathematical model and
solution approach, an object-oriented implementation of the
code was developed. This approach compartmentalizes major
modeling components into “classes,” and in doing so, facilitates
debugging as each class can be analyzed independently, and
in addition, improves code readability. Furthermore, while
object-oriented implementations often take more time to design
and implement than traditional procedural implementations,
a significant advantage of using a class-based structure is
its inherent ability to support alternative applications. For
example, changes in domain geometry, mesh resolution, TES
parameters, or even in the set of ions used can be effortlessly
incorporated with virtually no changes to the software
(Dougherty and Turner, 2016).

A class for the Nernst-Planck equation incorporates all
information needed to solve this equation. This includes
its associated weak formulation, diffusivity values, boundary
conditions, time steps, and domain information. There are eight
instantiations of this class, one for each ion type for both
the intracellular and extracellular domains. A separate class
is used to solve for fmemb

i needed in step 2 of the iterative
solution algorithm. There is an instantiation of this class for
each of the four ion types. These membrane current classes
in turn possess an object dedicated to solving the Hodgkin-
Huxley differential equations, which generates solutions for the
gating variables m, n, and h (see section 2.3.2). There are 1,700
instantiations of this class, one for each discretized point on
the membrane. Information in this Hodgkin-Huxley class is
used by the membrane current class to resolve fmemb

i along the
membrane, which is then used by the Nernst-Planck class via
access to the membrane current class.

2.6. Numerical Simulations
A 20 ms simulation of TES was performed via the boundary
condition given by Equation (6). A time step of 0.01 ms was
selected for the outer iteration of the solution algorithm (section
2.4) as this value is small enough to accurately model the changes
in electric potential and ion concentrations (Pods et al., 2013).
For solving the inner iteration of step 2, the ODE system was
solved with a maximal time step of 0.0005 ms. As described
by Equation (6), TES is simulated by changing the Dirichlet
boundary condition value from 0 V to 0.1 V on the left boundary
of the extracellular space after t = 2 ms, which was selected as this
allows concentration gradients and transmembrane ionic flux to
achieve equilibrium; this stimulation dosage is consistent with
electric potentials achieved during TES sessions (Fregni et al.,
2006; Miranda et al., 2006; Datta et al., 2013). This allows the
electric potential, transmembrane voltage, ion channel gating
variables, ionic flux, and ion concentrations before and after
electrical stimulation to be directly compared, thus enabling a
direct assessment of the specific impact of TES on neuronal
electrodynamics. All simulation parameter values are presented
in Table 1, and all values used in the model and simulations
are taken from published biomedical literature and previous
neuronal mathematical models (Lopreore et al., 2008; Pods et al.,

TABLE 1 | Simulation parameters.

Parameter Value

Perfect gas constant 8.31454 J
mole·K

Faraday’s constant 96485 C
mole

Temperature 279.450 K

Vacuum permittivity 8.88542 · 10-12 C
m·V

Cytosol relative permittivity 80

Membrane relative permittivity 2

Initial Na+ intracellular concentration 12 mM

Initial Na+ extracellular concentration 145 mM

Initial K+ intracellular concentration 155 mM

Initial K+ extracellular concentration 4 mM

Initial Ca+2 intracellular concentration 0.0001 mM

Initial Ca+2 extracellular concentration 1 mM

Initial Cl− intracellular concentration 166.8 mM

Initial Cl− extracellular concentration 123.27 mM

Na+ Diffusivity 1.33 · 10-9 m2

s

K+ Diffusivity 1.96 · 10-9 m2

s

Ca+2 Diffusivity 0.5 · 10-9 m2

s

Cl− Diffusivity 2.0 · 10-9 m2

s

Time step 0.01 ms

Hodgkin-Huxley time step 0.0005 ms

Simulation start 0 ms

Time of TES application 2 ms

Total simulation time 20 ms

2013; Dione et al., 2016). Simulation run time was approximately
3 days, 18 min, and 9 seconds, on a computer using a fourth
generation Intel XEON processor with 3.7 GHz and eight cores.

An iterative implementation and testing approach was used
to verify the accuracy of the model implementation. First,
individual solvers for the PDEs given by Equation (1) and (3)
were constructed and validated against the online PDE solver
DiffpackSE (Bruaset and Langtangen, 1997; Langtangen, 2003).
Second, the Hodgkin-Huxley ODE model was implemented
and verified independently of the PDEs, thus ensuring that
changes in intracellular and extracellular electric potential and
ion concentrations at the membrane correctly compute gating
variable states as well as flux during membrane polarization
(Hodgkin and Huxley, 1952; Kay and Wong, 1987; Tuckwell,
2012). Third, these three solvers were integrated into a single
solution code using the object-oriented approach as detailed
in section 2.5. Fourth, verification of the complete code came
by comparing sodium and potassium membrane flux time
courses and magnitudes to results from previous PNP modeling
implementations (Lopreore et al., 2008; Pods et al., 2013; Dione
et al., 2016). Fifth, the transmembrane voltages, intra/extra-
cellular ion concentrations, ion channel gating variables, and
membrane current fluxes predicted by the complete, fully-
coupled model were compared to the isolated Hodgkin-Huxley
code (see section 2.5) to validate the accuracy of the fully
integrated, coupled implementation used in all simulations.
Finally, we draw comparisons between results of the model and
those of published medical studies and biological experiments
when available.
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FIGURE 3 | Electric potential energy (φ) throughout the computational domain at t = 0 ms (A) and t = 20 ms (B).

3. RESULTS

3.1. Transmembrane Voltage Polarization
Exhibits Location Specificity
The electric potential energy, φ, throughout the neuronal
domain at both the beginning and the end of the simulation
is shown in Figure 3. Here, changes in both the distribution
and magnitude of φ from TES are observed. In particular,
prior to neurostimulation application, the electric potential
distribution is highly symmetric (Figure 3A), however, after
TES administration, the domain is highly asymmetric; the
majority of high voltage areas are concentrated on the left
side of the domain, juxtaposed with the stimulation source
boundary condition φ = 0.1 V, and electric potential declines
more rapidly as the ground boundary is approached (Figure 3B).
In addition, the maximum extracellular electric potential value
increases by 55.2% from 0.096 V at the start of the simulation
to 0.149 V at the end, which due to ionic electrodiffusion,
is 49.0% greater than the anode source voltage of 0.1 V.
Further, intracellular values for φ increase themselves from a
minimum and maximum of 0.020 V and 0.026 V to 0.063 V and
0.078 V, respectively.

Along the neuron membrane, there is a change in
transmembrane voltage upon application of electrical stimulation
after t = 2 ms (Figure 4). Figure 4A shows the transmembrane

voltage throughout the simulation at 11 equispaced points within
the node of Ranvier. These points are labeled as a percent based
on their position along the node of Ranvier where, for example,
0, 50, and 100% refer to the points on the far left, middle, and
far right of the node. The resting transmembrane voltage for
each of these points is approximately -70.23 mV. For the point
in the center of the node the transmembrane voltage does not
change upon stimulation, maintaining its value of -70.23 mV
throughout the simulation. For all other points, immediately
at stimulation application, there is an instantaneous jump in
transmembrane voltage, however, this change depends on the
location along the membrane (Figure 4B).

These results demonstrate the location dependence of
changes in transmembrane voltage due to TES. Specifically,
transmembrane voltages at points left of center become
hyperpolarized, whereas depolarization occurs on the right-
hand side. In addition, the magnitude of the polarization from
TES administration varies depending on proximity to the edges
and center of the node of Ranvier; these values change to a
greater degree near the edges as compared to locations near the
center. Furthermore, Figure 4B shows that maximum changes in
transmembrane voltage do not occur at the extreme edges of the
node, but rather at locations situated at 1.64 · 10-6 µm and 2.35 ·
10-6 µm, which correspond to approximately 9 and 91%, both
well within the the edge of the node of Ranvier. Interestingly,
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FIGURE 4 | (A) Shows the transmembrane voltages due to TES application at equispaced locations within the node of Ranvier. (B) Shows the percent change in the

transmembrane voltage due to TES at each point along the membrane; 1.585 · 10-6 µm is the far-left, 2 · 10-6 µm is the center, and 2.385 · 10-6 µm is the far right. A

positive percent change indicates depolarization and a negative percent change indicates hyperpolarization.

hyperpolarization occurs for locations on the side with the 0.1
V stimulation source, whereas depolarization occurs on the side
adjacent to the ground boundary condition.

In addition to these findings, it is observed that membrane
voltage polarization is sustained throughout the TES application,
which is consistent with clinical results that show that TES
effects persist in sessions consisting of tens of minutes (Miniussi
et al., 2008; Nitsche et al., 2008). This sustained increase in
neural impulse sensitivity in specific regions of a node of Ranvier
permits the TES treatment efficacy recognized by the medical
field (Nitsche et al., 2008; Caparelli-Daquer et al., 2012). Our
results are also consistent with clincal research that shows
that TES has the net effect of increasing neuron excitability
by depolarizing to sub-threshold potential (Liebetanz et al.,
2002; Bikson et al., 2004; Stagg and Nitsche, 2011; Das et al.,
2016). In addition, changes in transmembrane voltage magnitude
are consistent with previous mathematical simulations of TES
(Dougherty et al., 2014).

3.2. Voltage Gated Ion Channel State
Variables Exhibit Location Specificity
The changes in transmembrane voltage due to TES directly
impact the behavior of voltage gated ion channels due to changes
in their gating variables (Figure 5). Like Figure 4A, Figure 5
displays the values of each gating variable throughout the
simulation at the same 11 equispaced points within the node
of Ranvier. The location specificity previously observed with
transmembrane voltage is also present for the changes in all
gating variables.

Prior to stimulation application, m, n, and h show minimal
position dependence as their respective values are essentially
equal throughout the membrane. For example, before TES
application, m is approximately 0.0281 everywhere in the node
of Ranvier. When stimulation is applied, changes in m, n,
and h become location specific; points where the cell becomes
hyperpolarized, i.e., locations between 0 and 50%, result in
decreases inm and n as well as increases in h. On the other hand,

at sites of depolarization, namely positions between 50 and 100%,
m and n increase while h decreases.

Directly corresponding to the locations of maximum change
in transmembrane voltage, positions of greatest change in all
gating variables also occur off of the membrane edges near 10
and 90%. In addition, the curves of the gating variables are
directly associated to the polarized membrane voltages at the
same 11 points. In particular, the amplitudes of the gating variable
curves correspond to their associated transmembrane voltages,
as well as distances between the curves; more precisely, the
ranking of each curve of m based on plot amplitude is identical
to the ranking of the transmembrane voltage curves, and in
addition, the amount of spacing between m curves (Figure 5A)
is proportional to the spacing between transmembrane voltage
curves (Figure 4A). The same observations apply for n
(Figure 5B), and h (Figure 5C) as well with the exception that
the ordering is inverted due to characteristics of h that are
subsequently discussed.

While the dependence of gating variables on transmembrane
voltage is not unexpected, the location specificity of the gating
variables due to TES shown here is novel, and in addition, begins
to explain how neurostimulation impacts ion channel gating
and subsequent ionic flux. Of particular interest in this regard,
a clear difference in the shapes, magnitudes and trajectories of
the m, n, and h time course curves is observable; the m gating
variable changes rapidly, hitting a limiting value early in the
simulation, whereas n and h grow more slowly, and fail to
reach an asymptotic value within 20 ms. However, m has the
lowest amplitude change of the three, with a maximum change
of 0.0013, which is only 26.1 and 16.25% of the changes in n and
h, respectively.

Figure 6 shows the values of each gating variable at every point
along the discretized membrane at seven different simulation
times. At t = 2 ms, each gating variable maintains the same value
along the membrane as TES application has not yet started; after
administration, the value of each gating variable changes over
time based upon its location in the membrane. The speed at
which m reaches its limiting value is also seen here as the curves
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FIGURE 5 | Gating variable values due to TES application at equispaced locations within the node of Ranvier. (A) Shows m, (B) shows n, and (C) shows h.

FIGURE 6 | Gating variable values at each location along the node of Ranvier at simulation times t = 2.0, 2.1, 2.2, 2.5, 5, 10, and 20 ms. (A) Shows m, (B) shows n,

and (C) shows h.

for 5, 10, and 20 ms are virtually identical. In contrast, all curves
for n and h are visible and continually change throughout the 20
ms simulation. Similar to transmembrane voltage, maximum and
minimum values occur approximately at the 9 and 91% locations.
Furthermore, it is seen that on the left-half of the node of Ranvier,
the m and n probability values are lower than those attained on
the right-half, and the opposite is true for h. As will be shown
in section 3.3, the time and location dependence of changes in
these gating variables as a result of TES has a direct impact on
transmembrane ionic current.

3.3. Membrane Ion Flux Exhibits Location
Specificity
As the gating variables dictate ion channel permeability, the
location specificity observed in transmembrane voltage as well
as m, n, and h has a direct influence on ion flux into and out of
the neuron. Figure 7 shows the ion flux for sodium, potassium,
and calcium over time at the 11 equispaced points within the
node of Ranvier. Given the sign convention of the boundary
condition governing membrane current (Equation 9), a negative
value for flux indicates current coming into the cell from the
extracellular space.

Due to passive electrodiffusion forces from the multi-ion
environment, as well as a transmembrane voltage not precisely
equal to -70 mV, a slight flux of ions across the membrane
occurs prior to TES application. Upon activation after t =
2.0 ms, there are significant changes in neuronal flux. For
locations on the right-half of the node of Ranvier, where the
cell becomes depolarized (Figure 4B), there is an increase in
sodium influx (Figure 7A). This is precisely predicted by the

gating variable results (Figures 5A,C); as m represents sodium
channel activation, which increases on the right-hand side, and
h, sodium channel inactivation, which decreases on the right,
an increase in sodium influx is this region is expected, and
as shown in Figure 7A is attained. In addition, this influx
is greatest at the 91% mark, which correlates with all prior
results including (i) where the cell experiences its greatest
depolarization, (ii) where m is maximal, and (iii) where h in
minimal. On the hyperpolarized left-hand side, sodium influx
still occurs, but at a decreased rate as m decreases and h
increases here.

Them gating variable also controls calcium channel activation
(see Appendix B), and so trends in calcium flux function
similarly to sodium flux (Figure 7C). Specifically, locations where
the cell becomes depolarized yield an increase in calcium influx
and hyperpolarized regions experience a decreased influx. For
potassium, due to its reversal potential, the opposite occurs
and an efflux transpires throughout the entire node of Ranvier.
In addition, as n governs potassium activation, potassium
efflux increases on the left side where hyperpolarization
presents and decreases on the right half of the node of
Ranvier (Figure 7B).

These results are consistent with published TES studies
that show an increase in calcium influx from a membrane
depolarization due to an electric field applied in the extracellular
medium (Nitsche et al., 2003; Adams et al., 2017). In addition,
like the biological literature, our model predicts that this influx
is governed by voltage gated calcium channel permeability
(Islam et al., 1995). The novelty of this model is in extending
this knowedge to provide a description of how the voltage
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FIGURE 7 | Membrane flux for sodium (A), potassium (B), and calcium (C) over the course of the simulations for the 11 equispaced points on the node of Ranvier. A

negative flux indicates ion flow into the cell from the extracellular space, and a positive value indicates an efflux out of the cell.

gated calcium channels within the node of Ranvier operate
to achieve this. First, the model allows to see the changes in
flux at a greater frequency and with more spacial detail than
has been captured with experiments. In addition, the model
identifies the gating variable m as driving the changes in flux.
Finally, these results reveal a time and spatial based dependence
of the gating variable, voltage gated channel activation, and
calcium flux.

3.4. TES Causes Intracellular Calcium
Dyshomeostasis
As shown in section 3.3, calcium flows into the neuron from
the extracellular space at different rates depending on the
region within the node of Ranvier (Figure 7C). Thus, over
the course of the TES simulation, an increase in intracellular
calcium concentration occurs. However, the magnitude and
rate of this increase is unknown. Figure 8 shows intracellular
calcium concentrations at six simulation time steps. At t = 0
ms, the entire intracellular space has a constant concentration
of 10-4 mM, which is the initial condition for calcium in
this domain. Over time, an increase in calcium concentrations
from calcium flux due to TES is seen at all subsequent time
steps. In addition, for times t > 0, a larger concentration
of calcium is noticed at the membrane region, precisely due
to calcium influx at the membrane, along with a diffusion
throughout the intracellular domain. At the 91% membrane
location calcium concentrations increase by 71.65% over the
course of the simulation. Furthermore, the total amount of
calcium within the intracellular space increases by 63.86% during
the course of the simulation. This increase is approximately
linear, as can be seen from the color gradients of the intracellular
concentration plots.

These results are consistent with prior experiments that found
an increase in calcium concentration due to an influx of calcium
in the presence of electrical stimulation (Islam et al., 1995; Adams
et al., 2017). In fact, the values predicted by the model are within
one order of magnitude of those shown in electrical stimulation
biological studies (Adams et al., 2017). Moreover, the model
augments this knowledge by provding a detailed prediction of
how, where, and when calcium ion flow into the neuron as
described in section 3.3.

FIGURE 8 | Concentration of calcium in the intracellular space (�I in Figure 1)

during the simulation at time t = 0, 2, 5, 10, 15, and 20 ms.

4. DISCUSSION

Mathematical modeling and computer-based simulation
has shown to be a valuable component in enhancing
neurostimulation efficacy as well as providing an instrument for
helping the research community learn about the mechanisms
by which it operates. While both in silico and biological
experimentation have facilitated a greater understanding of
neuromodulation, the cellular-level electrodynamics during
electrical stimulation treatments still remain highly elusive.
To help address this contention, we have presented a novel
mathematical model of transcranial electrical stimulation that
describes the effect of TES on ion channel dynamics and
transmembrane ionic flux. The model is based on the Poisson-
Nernst-Planck system of partial differential equations, and
to our knowledge is the first that integrates electric potential
energy, individualized ion species, voltage-gated ion channels,
and transmembrane flux with a medically-based TES induced
electric field, and within a biologically-inspired computational
domain, showcases how this treatment effects neuronal
electrical functioning.

A key finding of this work is the location specificity exhibited
by the cell’s electrical processes due to TES. In particular, results
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FIGURE 9 | Electric potential energy due to TES throughout a computational domain of a neuron with three nodes of Ranvier.

FIGURE 10 | Extracellular concentration of calcium during TES in a

three-dimensional computational domain.

show that TES polarizes the neuron as expected, however,
the degree of voltage change is dependent on the location
within a node of Ranvier, a phenomena reported by the deep
brain stimulation modeling community (McIntyre et al., 2003,
2004). In turn, results show that the states of the ion channels
also exhibit location-dependent changes, which directly impacts
membrane flux and subsequent intracellular sodium, potassium,
calcium, and chloride concentrations. While the degree and
type of electrical polarization is location dependent, these
results show that TES effectively elevates resting membrane
potential so that ultimately neuron firing is more achievable
(Nitsche et al., 2008).

It is well-known that cytosolic calcium is a key element in
the intracellular signaling cascade that enables neurotransmitter
secretion as well as cell viability. In addition, a disruption to
calcium homeostasis is correlated with neurodegenerative disease
(Bezprozvanny, 2009; Marambaud et al., 2009; Calì et al., 2014;
Surmeier et al., 2017). Our results augment these findings by
showing that TES directly alters calcium membrane flux and
intracellular calcium concentration via voltage gated calcium
channels, by almost 64% over the course of the simulation.
These findings may suggest that a possible mechanism by which
neurostimulation achieves therapeutic success, in addition to
depolarizing the cell, is by altering calcium dyshomeostasis in
diseased neurons.

By implementing the simulation software using an object-
oriented approach, its utility can be seamlessly extended
to other computational studies and future work. Using
these tools, we have begun investigating the impact of
TES on more biologically complex domains, including

one that encompasses three nodes of Ranvier (Figure 9).
In addition, we are starting to examine the effect of TES
on three-dimensional domains (Figure 10). We have
also begun to compare the influence of different forms
of neurostimulation, like deep brain stimulation, on
transmembrane ionic flux. Finally, we are interested in examining
the effects of ionic flux and cytosolic ion concentrations on
intracellular signaling pathways that have implications to
neurodegenerative disorders.

DATA AVAILABILITY

The raw data supporting the conclusions of this manuscript will
be made available by the authors, without undue reservation, to
any qualified researcher.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct and
intellectual contribution to the work, and approved it
for publication.

FUNDING

ED and KL were supported by the Summer Undergraduate
Research Fellowship (SURF) Program of the Rhode Island
Institutional Development Award (IDeA) Network for
Biomedical Research Excellence from the National Institute
of General Medical Sciences of the National Institutes of Health
under grant number P20GM103430.

ACKNOWLEDGMENTS

We thank Professor Christoph Börgers for helpful
correspondence and information about the calcium component
of the Hodgkin-Huxley model. Also, many thanks to
Abigail Small for helping with GMSH and meshing related
activities. We also thank Andrew DelSanto for assistance with
three-dimensional result visualization.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fncom.
2019.00017/full#supplementary-material

Frontiers in Computational Neuroscience | www.frontiersin.org 10 April 2019 | Volume 13 | Article 17

https://www.frontiersin.org/articles/10.3389/fncom.2019.00017/full#supplementary-material
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Lindberg and Dougherty Mathematical Model of TES Location Specificity

REFERENCES

Adams, R. D., Gupta, B., and Harkins, A. B. (2017). Validation of electrical

stimulation models: intracellular calcium measurement in three-dimensional

scaffolds. J. Neurophysiol. 118, 1415–1424. doi: 10.1152/jn.00223.2017

Alnæs, M. S., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A.,

et al. (2015). The fenics project version 1.5. Arch. Numer. Softw. 3:100.

doi: 10.11588/ans.2015.100.20553

Antal, A., and Paulus, W. (2013). Transcranial alternating current stimulation

(tACS). Front. Hum. Neurosci. 7:317. doi: 10.3389/fnhum.2013.00317

Arancibia-Cárcamo, I. L., Ford, M. C., Cossell, L., Ishida, K., Tohyama, K., and

Attwell, D. (2017). Node of ranvier length as a potential regulator of myelinated

axon conduction speed. Elife 6:e23329. doi: 10.7554/eLife.23329

Bezprozvanny, I. (2009). Calcium signaling and neurodegenerative diseases.

Trends Mol. Med. 15, 89–100. doi: 10.1016/j.molmed.2009.01.001

Bikson, M., Inoue, M., Akiyama, H., Deans, J. K., Fox, J. E., Miyakawa,

H., et al. (2004). Effects of uniform extracellular dc electric fields on

excitability in rat hippocampal slices in vitro. J. Physiol. 557(Pt 1):175–190.

doi: 10.1113/jphysiol.2003.055772

Boggio, P. S., Ferrucci, R., Rigonatti, S. P., Covre, P., Nitsche, M., Pascual-

Leone, A., et al. (2006). Effects of transcranial direct current stimulation on

workingmemory in patients with Parkinson’s disease. J. Neurol. Sci. 249, 31–38.

doi: 10.1016/j.jns.2006.05.062

Boggio, P. S., Khoury, L. P., Martins, D. C., Martins, O. E., de Macedo,

E. C., and Fregni, F. (2009). Temporal cortex direct current stimulation

enhances performance on a visual recognition memory task in Alzheimer

disease. J. Neurol. Neurosurg. Psychiatr. 80, 444–447. doi: 10.1136/jnnp.2007.

141853

Boggio, P. S., Valasek, C. A., Campanha, C., Giglio, A. C., Baptista, N. I., Lapenta,

O. M., et al. (2011). Non-invasive brain stimulation to assess and modulate

neuroplasticity in Alzheimer’s disease. Neuropsychol. Rehabil. 21, 703–716.

doi: 10.1080/09602011.2011.617943

Borckardt, J. J., Bikson, M., Frohman, H., Reeves, S. T., Datta, A., Bansal, V.,

et al. (2012). A pilot study of the tolerability and effects of high-definition

transcranial direct current stimulation (HD-tDCS) on pain perception. J. Pain

13, 112–120. doi: 10.1016/j.jpain.2011.07.001

Briegel, A., Ortega, D. R., Tocheva, E. I., Wuichet, K., Li, Z., Chen, S., et al. (2009).

Universal architecture of bacterial chemoreceptor arrays. Proc. Natl. Acad. Sci.

U.S.A. 106, 17181–17186. doi: 10.1073/pnas.0905181106

Bruaset, A. M., and Langtangen, H. P. (1997). “Diffpack: a software environment

for rapid protoptying of PDE solvers,” in Proceedings of the 15th IMACS

World Congress on Scientific Computation, Modeling and Applied Mathematics

(Berlin), 553–558.

Calì, T., Ottolini, D., and Brini, M. (2014). Calcium signaling in parkinson’s

disease. Cell Tissue Res. 357, 439–454. doi: 10.1007/s00441-014-1866-0

Caparelli-Daquer, E. M., Zimmermann, T. J., Mooshagian, E., Parra, L. C., Rice,

J. K., Datta, A., et al. (2012). A pilot study on effects of 4 x 1 high-definition

tDCS on motor cortex excitability. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2012,

735–738. doi: 10.1109/EMBC.2012.6346036

Chang, K.-J., and Rasband, M. N. (2013). “Chapter five - excitable domains of

myelinated nerves: axon initial segments and nodes of ranvier,” in Functional

Organization of Vertebrate Plasma Membrane, volume 72 of Current Topics in

Membranes, ed V. Bennett (Oxford: Academic Press), 159–192.

Das, S., Holland, P., Frens, M. A., and Donchin, O. (2016). Impact of transcranial

direct current stimulation (tdcs) on neuronal functions. Front. Neurosci. 10:550.

doi: 10.3389/fnins.2016.00550

Datta, A., Zhou, X., Su, Y., Parra, L. C., and Bikson, M. (2013). Validation

of finite element model of transcranial electrical stimulation using

scalp potentials: implications for clinical dose. J. Neural Eng. 10:036018.

doi: 10.1088/1741-2560/10/3/036018

Dione, I., Deteix, J., Briffard, T., Chamberland, E., andDoyon, N. (2016). Improved

simulation of electrodiffusion in the node of ranvier by mesh adaptation. PLoS

ONE 11:e0161318. doi: 10.1371/journal.pone.0161318

Dougherty, E., Turner, J., and Vogel, F. (2014). Multiscale coupling of

transcranial direct current stimulation to neuron electrodynamics:

modeling the influence of the transcranial electric field on neuronal

depolarization. Comput. Math. Methods Med. 2014, 1–14. doi: 10.1155/2014/

360179

Dougherty, E. T., and Turner, J. (2016). An object-oriented framework for versatile

finite element based simulations of neurostimulation. J. Comput. Med. 2016,

1–15. doi: 10.1155/2016/9826596

Faria, P., Hallett, M., and Miranda, P. (2011). A finite element analysis of

the effect of electrode area and inter-electrode distance on the spatial

distribution of the current density in tDCS. J. Neural Eng. 8:066017.

doi: 10.1088/1741-2560/8/6/066017

Fregni, F., Boggio, P. S., Santos, M. C., Lima, M., Vieira, A. L., Rigonatti,

S. P., et al. (2006). Noninvasive cortical stimulation with transcranial direct

current stimulation in Parkinson’s disease. Mov. Disord. 21, 1693–1702.

doi: 10.1002/mds.21012

Gasca, F., Marshall, L., Binder, S., Schlaefer, A., Hofmann, U., and Schweikard,

A. (2011). “Finite element simulation of transcranial current stimulation in

realistic rat head model,” in Neural Engineering (NER), 2011 5th International

IEEE/EMBS Conference on, Cancun 36–39.

Geuzaine, C., and Remacle, J.-F. (2009). Gmsh: a 3-d finite element mesh generator

with built-in pre- and post-processing facilities. Int. J. Numer. Methods Eng. 79,

1309–1331. doi: 10.1002/nme.2579

Hairer, E., and Wanner, G. (1996). Solving Ordinary Differential Equations II: Stiff

and Differential-Algebraic Problems. Heidelberg: Springer.

Hindmarsh, A. C. (1983). Odepack, a systematized collection of ode solvers. Sci.

Comput. 1, 55–64.

Hodgkin, A. L., and Huxley, A. F. (1952). A quantitative description of membrane

current and its application to conduction and excitation in nerve. J. Physiol.

117, 500–544. doi: 10.1113/jphysiol.1952.sp004764

Horng, T. L., Lin, T. C., Liu, C., and Eisenberg, B. (2012). PNP equations with

steric effects: a model of ion flow through channels. J. Phys. Chem. B 116,

11422–11441. doi: 10.1021/jp305273n

Islam, N., Aftabuddin, M., Moriwaki, A., Hattori, Y., and Hori, Y. (1995). Increase

in the calcium level following anodal polarization in the rat brain. Brain Res.

684, 206–208. doi: 10.1016/0006-8993(95)00434-R

Johnson, M. D., Miocinovic, S., McIntyre, C. C., and Vitek, J. L. (2008).

Mechanisms and targets of deep brain stimulation in movement disorders.

Neurotherapeutics 5, 294–308. doi: 10.1016/j.nurt.2008.01.010

Jones, E., Oliphant, T., and Peterson, P. (2001). SciPy: Open Source Scientific Tools

for Python. Available online at: http://www.scipy.org (accessed June 10, 2018).

Kay, A. R., and Wong, R. K. (1987). Calcium current activation kinetics in isolated

pyramidal neurones of the ca1 region of the mature guinea-pig hippocampus.

J. Physiol. 392, 603–616. doi: 10.1113/jphysiol.1987.sp016799

Langtangen, H. P. (2003). Computational Partial Differential Equations: Numerical

Methods and Diffpack Programming. Texts in Computational Science and

Engineering. Berlin; Heidelberg: Springer.

Langtangen, H. P., and Tveito, A. (2003). Advanced Topics in Computational

Partial Differential Equations: Numerical Methods and Diffpack Programming.

Lecture Notes in Computational Science and Engineering. Berlin; Heidelberg:

Springer.

Liebetanz, D., Nitsche, M. A., Tergau, F., and Paulus, W. (2002). Pharmacological

approach to the mechanisms of transcranial dc–stimulation–induced

after–effects of human motor cortex excitability. Brain 125, 2238–2247.

doi: 10.1093/brain/awf238

Lopreore, C. L., Bartol, T. M., Coggan, J. S., Keller, D. X., Sosinsky, G. E.,

Ellisman, M. H., et al. (2008). Computational modeling of three-dimensional

electrodiffusion in biological systems: application to the node of ranvier.

Biophys. J. 95, 2624–2635. doi: 10.1529/biophysj.108.132167

Mandonnet, E., and Pantz, O. (2011). The role of electrode direction during axonal

bipolar electrical stimulation: a bidomain computational model study. Acta

Neurochir. (Wien) 153, 2351–2355. doi: 10.1007/s00701-011-1151-x

Marambaud, P., Dreses-Werringloer, U., and Vingtdeux, V. (2009).

Calcium signaling in neurodegeneration. Mol. Neurodegenerat. 4:20.

doi: 10.1186/1750-1326-4-20

Mardal, K. A., Sundes, J., Langtangen, H. P., and Tveito, A. (2003). “Systems of

pdes and block preconditioning,” in Advanced Topics in Computational Partial

Differential Equations:Numerical Methods and Diffpack Programming, Lecture

Notes in Computational Science and Engineering, eds H. P. Langtangen and A.

Tveito (Berlin; Heidelberg: Springer), 200–236.

Maxwell, W. (2014). “Nodes of ranvier,” in Encyclopedia of the Neurological

Sciences, 2nd Edn., eds M. J. Aminoff and R. B. Daroff (Oxford: Academic

Press), 601–604.

Frontiers in Computational Neuroscience | www.frontiersin.org 11 April 2019 | Volume 13 | Article 17

https://doi.org/10.1152/jn.00223.2017
https://doi.org/10.11588/ans.2015.100.20553
https://doi.org/10.3389/fnhum.2013.00317
https://doi.org/10.7554/eLife.23329
https://doi.org/10.1016/j.molmed.2009.01.001
https://doi.org/10.1113/jphysiol.2003.055772
https://doi.org/10.1016/j.jns.2006.05.062
https://doi.org/10.1136/jnnp.2007.141853
https://doi.org/10.1080/09602011.2011.617943
https://doi.org/10.1016/j.jpain.2011.07.001
https://doi.org/10.1073/pnas.0905181106
https://doi.org/10.1007/s00441-014-1866-0
https://doi.org/10.1109/EMBC.2012.6346036
https://doi.org/10.3389/fnins.2016.00550
https://doi.org/10.1088/1741-2560/10/3/036018
https://doi.org/10.1371/journal.pone.0161318
https://doi.org/10.1155/2014/360179
https://doi.org/10.1155/2016/9826596
https://doi.org/10.1088/1741-2560/8/6/066017
https://doi.org/10.1002/mds.21012
https://doi.org/10.1002/nme.2579
https://doi.org/10.1113/jphysiol.1952.sp004764
https://doi.org/10.1021/jp305273n
https://doi.org/10.1016/0006-8993(95)00434-R
https://doi.org/10.1016/j.nurt.2008.01.010
http://www.scipy.org
https://doi.org/10.1113/jphysiol.1987.sp016799
https://doi.org/10.1093/brain/awf238
https://doi.org/10.1529/biophysj.108.132167
https://doi.org/10.1007/s00701-011-1151-x
https://doi.org/10.1186/1750-1326-4-20
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Lindberg and Dougherty Mathematical Model of TES Location Specificity

McIntyre, C. C., Grill, W. M., Sherman, D. L., and Thakor, N. V. (2004). Cellular

effects of deep brain stimulation: model-based analysis of activation and

inhibition. J. Neurophysiol. 91, 1457–1469. doi: 10.1152/jn.00989.2003

McIntyre, C. C., Svasta, M., Goff, L. K., and Vitek, J. L. (2003). Uncovering the

mechanism(s) of action of deep brain stimulation: activation, inhibition, or

both. Clin. Neurophysiol. 115, 1239–1248. doi: 10.1016/j.clinph.2003.12.024

Miniussi, C., Cappa, S. F., Cohen, L. G., Floel, A., Fregni, F., Nitsche, M. A., et al.

(2008). Efficacy of repetitive transcranial magnetic stimulation/transcranial

direct current stimulation in cognitive neurorehabilitation. Brain Stimulat.

1:326. doi: 10.1016/j.brs.2008.07.002

Miranda, P. C., Lomarev, M., and Hallett, M. (2006). Modeling the current

distribution during transcranial direct current stimulation. Clin. Neurophysiol.

117, 1623–1629. doi: 10.1016/j.clinph.2006.04.009

Nitsche, M., Liebetanz, D., Antal, A., Lang, N., Tergau, F., and Paulus, W.

(2003). Modulation of cortical excitability by weak direct current stimulation-

technical, safety and functional aspects. Suppl. Clin. Neurophysiol. 56, 255–276.

doi: 10.1016/S1567-424X(09)70230-2

Nitsche, M. A., Cohen, L. G., Wassermann, E. M., Priori, A., Lang, N., Antal, A.,

et al. (2008). Transcranial direct current stimulation: state of the art 2008. Brain

Stimul. 1, 206–223. doi: 10.1016/j.brs.2008.06.004

Paulus, W. (2011). Transcranial electrical stimulation (tes –

tdcs; trns, tacs) methods. Neuropsychol. Rehabil. 21, 602–617.

doi: 10.1080/09602011.2011.557292

Pods, J., Schönke, J., and Bastian, P. (2013). Electrodiffusion models of neurons

and extracellular space using the poisson-nernst-planck equations—numerical

simulation of the intra- and extracellular potential for an axon model. Biophys.

J. 105, 242–254. doi: 10.1016/j.bpj.2013.05.041

Rogers, K., and Team of Encyclopedia (eds.). (2018).Node of Ranvier. Encyclopedia

Britannica. Chicago, IL: Encyclopedia Britannica, Inc.

Sadleir, R. (2010). A bidomain model for neural tissue. Int. J. Bioelectromagn. 12,

2–6.

Sosinsky, G. E., Deerinck, T. J., Greco, R., Buitenhuys, C. H., Bartol, T. M.,

and Ellisman, M. (2005). Development of a model for microphysiological

simulations: small nodes of ranvier from peripheral nerves of mice

reconstructed by electron tomography. Neuroinformatics 3, 133–162.

doi: 10.1385/NI:3:2:133

Stagg, C. J., and Nitsche, M. A. (2011). Physiological basis of transcranial

direct current stimulation. Neuroscientist 17, 37–53. doi: 10.1177/1073858410

386614

Sundnes, J., Lines, G. T., Cai, X., Bjorn, F. N., Mardal, K. A., and Tveito, A. (2006).

Computing the Electrical Activity in the Heart. Berlin; New York: Springer.

Surmeier, D. J., Schumacker, P. T., Guzman, J. D., Ilijic, E., Yang, B., and Zampese,

E. (2017). Calcium and parkinson’s disease. Biochem. Biophys. Res. Commun.

483, 1013–1019. doi: 10.1016/j.bbrc.2016.08.168

Tuckwell, H. C. (2012). Quantitative aspects of l-type ca2+

currents. Prog. Neurobiol. 96, 1–31. doi: 10.1016/j.pneurobio.2011.

09.010

Wang, J., Wu, D., Chen, Y., Yuan, Y., and Zhang, M. (2013). Effects of transcranial

direct current stimulation on language improvement and cortical activation

in nonfluent variant primary progressive aphasia. Neurosci. Lett. 549, 29–33.

doi: 10.1016/j.neulet.2013.06.019

Yun, K., Song, I. U., and Chung, Y. A. (2016). Changes in cerebral

glucose metabolism after 3 weeks of noninvasive electrical stimulation

of mild cognitive impairment patients. Alzheimer’s Res. Ther. 8:49.

doi: 10.1186/s13195-016-0218-6

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2019 Lindberg and Dougherty. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Computational Neuroscience | www.frontiersin.org 12 April 2019 | Volume 13 | Article 17

https://doi.org/10.1152/jn.00989.2003
https://doi.org/10.1016/j.clinph.2003.12.024
https://doi.org/10.1016/j.brs.2008.07.002
https://doi.org/10.1016/j.clinph.2006.04.009
https://doi.org/10.1016/S1567-424X(09)70230-2
https://doi.org/10.1016/j.brs.2008.06.004
https://doi.org/10.1080/09602011.2011.557292
https://doi.org/10.1016/j.bpj.2013.05.041
https://doi.org/10.1385/NI:3:2:133
https://doi.org/10.1177/1073858410386614
https://doi.org/10.1016/j.bbrc.2016.08.168
https://doi.org/10.1016/j.pneurobio.2011.09.010
https://doi.org/10.1016/j.neulet.2013.06.019
https://doi.org/10.1186/s13195-016-0218-6
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles

	Location Specificity of Transcranial Electrical Stimulation on Neuronal Electrodynamics: A Mathematical Model of Ion Channel Gating Dynamics and Ionic Flux Due to Neurostimulation
	1. Introduction
	2. Materials and Methods
	2.1. Poisson-Nernst-Planck Model
	2.2. Computational Domain
	2.3. Boundary Conditions
	2.3.1. TES Boundary Conditions
	2.3.2. Hodgkin-Huxley Gating Equations

	2.4. Numerical Implementation
	2.5. Computational Tools
	2.6. Numerical Simulations

	3. Results
	3.1. Transmembrane Voltage Polarization Exhibits Location Specificity
	3.2. Voltage Gated Ion Channel State Variables Exhibit Location Specificity
	3.3. Membrane Ion Flux Exhibits Location Specificity
	3.4. TES Causes Intracellular Calcium Dyshomeostasis

	4. Discussion
	Data Availability
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


