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Novel high-throughput phenotyping (HTP) approaches are needed to advance the
understanding of genotype-to-phenotype and accelerate plant breeding. The first
generation of HTP has examined simple spectral reflectance traits from images and
sensors but is limited in advancing our understanding of crop development and
architecture. Lodging is a complex trait that significantly impacts yield and quality in
many crops including wheat. Conventional visual assessment methods for lodging
are time-consuming, relatively low-throughput, and subjective, limiting phenotyping
accuracy and population sizes in breeding and genetics studies. Here, we demonstrate
the considerable power of unmanned aerial systems (UAS) or drone-based phenotyping
as a high-throughput alternative to visual assessments for the complex phenological trait
of lodging, which significantly impacts yield and quality in many crops including wheat.
We tested and validated quantitative assessment of lodging on 2,640 wheat breeding
plots over the course of 2 years using differential digital elevation models from UAS.
High correlations of digital measures of lodging to visual estimates and equivalent broad-
sense heritability demonstrate this approach is amenable for reproducible assessment
of lodging in large breeding nurseries. Using these high-throughput measures to assess
the underlying genetic architecture of lodging in wheat, we applied genome-wide
association analysis and identified a key genomic region on chromosome 2A, consistent
across digital and visual scores of lodging. However, these associations accounted for
a very minor portion of the total phenotypic variance. We therefore investigated whole
genome prediction models and found high prediction accuracies across populations and
environments. This adequately accounted for the highly polygenic genetic architecture
of numerous small effect loci, consistent with the previously described complex genetic
architecture of lodging in wheat. Our study provides a proof-of-concept application of
UAS-based phenomics that is scalable to tens-of-thousands of plots in breeding and
genetic studies as will be needed to uncover the genetic factors and increase the rate
of gain for complex traits in crop breeding.

Keywords: Triticum aestivum, GWAS, genomic selection, high-throughput phenotyping, lodging, UAV/UAS,
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INTRODUCTION

A deeper understanding of the biological processes mediated
by plant genomes is needed to develop crops with improved
stress resilience and yield potential. Connecting genotype to
phenotype for quantitative plant traits on a genome level
necessitates high-density genetic markers and large population
sizes to gain sufficient power and resolution. While the recent
advancements in sequencing technologies have provided almost
unlimited access to high-density genetic markers, large-scale
rapid and accurate phenotyping of complex traits remains a
major constraint. High-throughput phenotyping (HTP) tools
with improved spatial and temporal resolution can help
address this phenotyping bottleneck (Furbank and Tester,
2011; White et al., 2012).

Several HTP platforms including greenhouse, ground-based,
and aerial systems have been demonstrated for crops (Andrade-
Sanchez et al., 2014; Honsdorf et al., 2014; Crain et al., 2016),
such as enabling the dissection of stress and growth traits
in controlled conditions (Chen et al., 2014; Campbell et al.,
2015; McCormick et al., 2016). For targeting the scope of field
experiments, unmanned aerial systems (UAS) offer a flexible
alternative to ground-based phenotyping platforms, particularly
for large-breeding nurseries and genetic studies with thousands
or tens-of-thousands of plots (Poland, 2015). Recently, UAS have
been deployed in HTP of wheat breeding nurseries (Sankaran
et al., 2015; Haghighattalab et al., 2016), expanding previous
work using multi-rotor UAS of varying sizes and payload
capacity to phenotype small-sized test plots (Bendig et al.,
2014; Chapman et al., 2014; Shi et al., 2016). With rapid
development of low-cost consumer-grade sensors and platforms,
UAS phenotyping holds great potential to be an integral part of
plant genomics and breeding for precise, quantitative assessment
of otherwise low-throughput and complex traits on large
populations. However, significant developments in processing,
methodology and analysis of UAS-derived data are needed to
realize its full potential.

Lodging, the permanent displacement of the plant stem from
vertical position, is an example of a complex trait that is
difficult to quantify in the field (Pinthus, 1974). Conventional
phenotyping methods for lodging are based on visual ratings
of incidence and severity scores, and can be associated with
stem or root lodging (Berry et al., 2003; Piñera-Chavez et al.,
2016). A lodging-resistant ideotype target for wheat has been
described as a strong root system, wider root plates, larger stem
diameter, and moderate to short height (Berry et al., 2007). The
physiology of lodging in wheat is associated with a complex
genetic architecture (Verma et al., 2005; Liu et al., 2015; Miller
et al., 2016). Only a few small to moderate effect quantitative
trait loci (QTL) explaining 2–27% variation for lodging and stem
strength have been identified (Keller et al., 1999; Hai et al., 2005;
Berry and Berry, 2015). As such, the complex genetic architecture
of lodging is a good target for field-based HTP to enable precise
measurement of very large populations needed for genomics
studies and breeding progress.

Image-derived lodging assessments have been proposed in
wheat, maize, and rice (Chapman et al., 2014; Chu et al., 2017;

Yang et al., 2017). Albeit on a limited number of plots and
without quantitative assessment or ground-truth validations, a
proof-of-concept study by Chapman et al. (2014) demonstrated
the possibility to assess the presence of lodging with UAS. An
image-based lodging assessment was validated relative to visual
scores of lodging on 288 maize plots (Chu et al., 2017). Thus, with
strong proof of concept and scalable potential, UAS assessment
of lodging phenotypes in large wheat breeding nurseries has
potential to transform throughput, and hence the power, for
genetic studies and breeding programs.

Here, we demonstrate novel field-based lodging assessment
approaches using a commercially available light-weight UAS.
By developing multiple time-points of three-dimensional digital
elevation models (DEM) from UAS-acquired stereo imaging,
we quantified lodging in 2640 wheat breeding plots with high
correlation to visual scores and comparable repeatability. Using
these precise phenotypic measurements, we identified genomic
regions associated with lodging in wheat from a genome-wide
association analysis. The limited genetic variation explained
by the genome-wide associations led us to test whole-genome
prediction models which accounted for a much larger portion of
the heritable variation and supported the need for large, precisely
measured populations to understand the functional genomics of
lodging. Here, we report an original application of UAS for large-
scale, high-throughput assessment of complex plant architecture
and physiology in breeding and genomic studies with evaluation
of lodging in wheat. This highly reproducible approach is
scalable to tens-of-thousands of plots or even individual plants
of different crops to rapidly quantify plant height, lodging, and
could potentially be extended to traits like growth rate.

MATERIALS AND METHODS

Plant Material and Field Layout
Advanced spring wheat (Triticum aestivum L.) breeding lines
from CIMMYT’s South Asia Bread Wheat Genomic Prediction
Yield Trials were sown in the first week of November (Nov 4,
2015 and Nov 7, 2016) at the Borlaug Institute for South Asia’s
Ludhiana (LDH), Punjab, India (30◦59′ N and 75◦44′ E) location
during seasons 2015–2016 and 2016–2017. A total of 590 and
595 unique wheat entries along with the check varieties were
planted in alpha-lattice field design during seasons 2016 and
2017, respectively. Entries in each year were divided into 11
trials with each trial containing 53 closely related entries and
7 checks laid out in two complete replicate blocks of 120 plots
per trial. Each replicate block was divided into six subblocks of
10 plots each. The experimental unit was an individual six-row
plot with dimensions 1.3 m × 3.8 m. Plot-to-plot spacing was
80 cm and 52 cm between ranges and columns, respectively. Sixty
best entries from the 2015–2016 season were repeated in the
2016–2017 season as an additional trial. The same experiment
was replicated in Faisalabad (FAS) in Pakistan (31◦24′ N and
73◦02′ E), without the 11th trial. The experimental location in
LDH is situated in the north-western wheat growing belt of India.
LDH and FAS environments are classified as irrigated mega-
environments (ME1) according to CIMMYT’s wheat breeding
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mega-environment classification system (Rajaram et al., 1995).
Field trials were managed following the established standard
agronomic practices at each location.

UAS and Sensor Specifications
Two different UAS quadcopters were deployed for data
acquisition during two seasons at LDH. In 2016 season, an IRIS+
quadcopter (3DR Robotics Inc., Berkeley, CA, United States)
equipped with a 3-channel Canon S100 digital camera (Canon,
United States) was used to collect data over the wheat plots. In
2017, the UAS platform was upgraded to a high payload carrying
capacity quadcopter DJI Matrice100 (DJI, United States) carrying
a 5-channel multispectral RedEdge camera (MicaSense Inc.,
United States). A detailed list of UAS and sensor specifications
is provided (Table 1).

UAS-Based Image Acquisition
Each year the semi-autonomous UAS flights were conducted
between 11AM and 2PM. Data acquisition followed the standard
operating procedures developed within the Poland Lab at Kansas
State University (Wang et al., 2018). In each of the years, the
field trials experienced natural lodging from the combination
of heavy rain and wind during the grain-filling stage. A total
of four UAS flights were made on days March 01, 2016, March
16, 2016, March 02, 2017, and March 15, 2017. The 2016 and
2017 flight dates correspond to pre- and post-lodging events,
respectively. The flight plans were created using Mission Planner
desktop application for Windows1 for IRIS+ UAS, and Litchi
Android App (VC Technology Ltd.) and CSIRO mission planner
application2 (accessed October 2, 2018) for DJI Matrice100. All
flights were made at a ground altitude of 25 m in 2016 and 2017.

1http://ardupilot.org/planner/
2https://croptsrv-cdc.it.csiro.au/shiny/users/zhe00a/missionplanner/

TABLE 1 | Experimental details of the study.

Season 2016 Season 2017

No. unique entries 590 595

No. of plots 1,320 1,320

Plot size 1.3 × 3.8 m2 1.3 × 3.8 m2

Field design α-Lattice α-Lattice

Pre-lodging flight March 01 March 02

Post-lodging flight March 16 March 15

Ground-truth date March 18 March 15

UAS platform 3DR IRIS+ DJI M100

In-air flight duration 25–30 min 20–25 min

Flight speed 2 m/s 2 m/s

Flight altitude 25 m 25 m

DEM resolution 1.5 cm/pixel 3.5 cm/pixel

Camera sensor Modified Canon S100 MicaSense RedEdge

Camera bands (nm) Blue (460), green (525),
near infrared (710)

Blue (475), green (560),
red (668), RedEdge
(717), near infrared

(840)

UAS, unmanned aerial system; DEM, digital elevation model.

In both years, the image overlap rate between two geospatially
adjacent images was set to 80% sequentially and 78% laterally to
ensure optimal orthomosaic photo stitching quality. Accordingly,
the flight speed, the flight elevation above the ground, and the
width between two parallel flight paths were adjusted based on
the overlap rate and the camera field of view. Both cameras
were automatically triggered with the onboard GPS following a
constant interval of distance traveled.

To ensure highly accurate digital elevation maps, the UAS
images were geo-referenced and geo-rectified using 12 white
colored ground control points (GCPs) that were uniformly
distributed over the entire 1.5 ha field area. These GCPs were
surveyed using a SXBlue III-L differential Global Navigation
Satellite System (GNSS) unit (Geneq Inc., Montreal, QC,
Canada) and Precis BX305 Real Time Kinematics GNSS
unit (Tersus GNSS Inc., Shanghai, China) in 2016 and
2017, respectively. To preserve the image pixel intensity,
the Canon S100 camera was set to capture raw images,
while the MicaSense RedEdge camera was set to capture
uncompressed TIFF images.

Digital Elevation Model Generation
Raw images captured by Canon S100 camera were imported
to Canon Digital Photo Professional Software (Canon,
United States) for lens distortion correction and converted
to 16-bit TIFF images. Lens distortion corrections were not
required for images captured by MicaSense RedEdge camera3.
After preprocessing, images of both cameras were processed
in Agisoft PhotoScan Pro (Version 1.3.1, Agisoft LLC, Russia)
following the internally established protocols. In the first
step of image alignment, the settings were: key-point limit
15000 (MicaSense) and 80000 (Canon) points, reference
pre-selection, accuracy high, tie-point limit 0, and adaptive
camera model. A sparse point cloud of the entire field area
was stitched through the process of image alignment. In
the subsequent step, the GCP coordinates were assigned to
the individual images where white-colored, square-shaped
GCPs were visible on the ground. Typically, at least three
images per GCP are required to accurately geo-rectify and
geo-reference the orthomosaics. The GCP assignment step
was followed by the camera optimization step that adjusted
the estimated point coordinates and camera parameters
in the model. Based on the optimized camera positions, a
dense point cloud model of the entire field was generated by
setting the parameters to high quality and moderate depth.
Finally, the DEM was built from the dense point cloud model.
The detailed processing reports are available on the project
data repository (Singh et al., 2018). Each pixel in this DEM
had three attributes namely latitude, longitude and height.
These three attributes corresponded to geo-position and
height of DEM points, and were used to calculate plot-level
height/lodging information. A total of four DEM with two
DEM each season corresponding to pre- and post-lodging,
respectively, were generated.

3https://github.com/micasense/imageprocessing
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Lodging Assessment
In the present study, we describe two crop lodging assessment
algorithms based on image-derived DEM. Both approaches used
a differential DEM model that was generated by subtracting
the post-lodging DEM from pre-lodging DEM each year
(Figures 1, 2). In the first method, a simple arithmetic mean
(DLmean; Digital Lodging mean) of the differential digital
elevation pixels for each plot was calculated. In the second
method, a two-component normal mixture distribution with
parameters µ2 and λ2 was estimated through an iterative
Expectation Maximization algorithm in R package mixtools
(Benaglia et al., 2009) by constraining the mean parameter µ1
to zero. The parameters µ2 and λ2 correspond to the mean
and proportion of the lodged DEM pixels, respectively, and
were combined to create a mixture lodging index of the digital
lodging (henceforth, Digital Lodging Mixture, DLmix; µ2 × λ2).
Additionally, visual assessment of lodging was carried out post-
lodging events in both seasons. Visual scores included the lodging
intensity (LOI; percent plot area lodged; 0–100%), severity (LOS;
angle of plant lodging; 0–10), and a combined lodging index
(LI; LOI × LOS). Additional agronomic and phenological traits
were collected at different growth stages during the season. The
final grain yield was measured on per plot basis. A detailed
trait description as well as the ontology information is provided
(Supplementary Table S1).

Statistical Data Analysis
The phenotypic data on lodging included: (i) three visual
scores of lodging namely intensity (LOI), severity (LOS) and
lodging index (LI) per plot and additional supporting agronomic
measurements per plot; (ii) two digital lodging scores obtained by
taking overall summary mean per plot (DLmean) or combined
lodging index of normal mixture parameters (DLmix). The
variance components for broad-sense line mean heritability or
repeatability for each trait and trial were calculated using lme4
package (Bates et al., 2014) in R with the following model:

yikl = µ+ Gi +Mk(l) + eikl (1)

where yikl is the phenotypic response variable, µ is the fixed
overall mean, Gi is the random genotype effect, Mk(l) is the
random effect of sub-blocks nested within a replicate, and eikl
is the residual effect. The variance components derived from
the model were used to calculate broad-sense heritability on
entry-mean basis for each trait:

H2
=

σ 2
G

σ 2
G + σ

2
e /r

(2)

where σ 2
G is the genotypic variance, σ 2

e is the residual variance,
and r is the number of replicates. Genotypic best linear unbiased
estimates (BLUEs) were calculated as follows:

yijkl = µ + Gi + Zj + Rk(j) +Mkl(j) + eijkl (3)

where yijkl is the phenotypic response variable, µ is the fixed
overall mean, Gi is the random genotype effect, Zj is the random
trial effect, Rk(j) is the random effect of replicate nested within a

trial, Mkl(j) is the random effect of sub-blocks within replications
nested within a trial, and eijkl is the residual effect. The marker-
based genetic correlations between each pair of traits were
calculated with sommer (Covarrubias-Pazaran, 2016) package in
R as follows:

rg(x, y) =
covg(x, y)√

varg(x)∗varg(y)
(4)

where covg(x,y) is the covariance of the trait pairs x and y;
varg(x) and varg(y) is the variance of traits. The variance and
covariance parameters of a pair of traits were estimated by fitting
a multivariate model on two traits at a time.

Genotyping
All 1,185 lines from both seasons were profiled using the
genotyping-by-sequencing protocol of Poland et al. (2012) and
sequenced on an Illumina Hi Seq2000 or HISeq2500. Single
nucleotide polymorphism (SNP) markers were called with
TASSEL v5 pipeline (Glaubitz et al., 2014) and aligned to the
reference Chinese Spring Wheat Assembly v1.0 (International
Wheat Genome Sequencing Consortium [IWGSC], 2014).
Genotyping calls were extracted and filtered so that the percent
missing data per marker was less than 40% and percent
heterozygosity was less than 10%. Lines with more than 50%
missing data were removed. After filtering, a total of 10,878
SNP markers were retained and missing data were imputed with
Beagle v4.1 (Browning and Browning, 2016). Another filtration
step was applied on imputed SNPs to remove heterozygous calls.
In addition, we built a bioinformatics pipeline to predict the
presence or absence of the 2NS segment based on genotyping-by-
sequencing. Briefly, wheat and alien specific tags were identified
using a training set of cultivars or lines that are known to
be 2NS positive and negative. The presence or absence of the
2NS segment was predicted based on relative counts of wheat
or alien specific tags. A custom R function that takes input
of alien or wheat specific tags and tags by taxa file through
TASSEL pipeline was used to predict the presence or absence
of the 2NS segments. The method was validated using a wet
lab method (Ventriup-LN2) and proved to be highly accurate
(>99%) (Liangliang Gao, unpublished). The method predicted
1,010 from 1,185 lines that were either positive or negative for
alien 2NS segments.

Genome-Wide Association Study (GWAS)
A GWAS and genomic prediction analyses were performed on
10,166 SNPs scored on 590 and 595 lines from cropping seasons
2016 and 2017, respectively. A combined GWAS analysis on
1,035 genotypes from both years was also performed with year as
a fixed effect. A two-step adjusted means model with genotypes
and year as fixed terms was used to generate BLUEs for the 1,035
lines for all lodging measurements as following:

yij = µ+ Gi + Ej + eij (5)

where yij is the phenotypic value, µ is the fixed effect for overall
mean, Gi is the fixed genotype effect, Ej is the environment
fixed effect, and eij is the residual error. The resulting adjusted
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FIGURE 1 | Workflow of digital and visual phenotypic analysis approaches used to assess crop lodging in wheat.

means were used as response variable in the combined association
analysis. A linear mixed model of GWAS was implemented (Yu
et al., 2006; Kang et al., 2008):

y = Xβ + Zu+ Sτ + e (6)

where y is a n × 1 vector of adjusted means (BLUEs) of
phenotypes, β is a f × 1 vector of fixed effect terms (intercept
and principal component-based population structure covariates),
u is a n × 1 vector of polygenic background effects, and τ is the
additive marker allele effect. The respective design matrices: X is
a n × f matrix where f is the number of fixed covariates and n is
the number of individuals; Z is a n× n matrix relating y to u; S is
a n× 1 vector of marker scores. The equation 6 was implemented
in rrBLUP package in R (Endelman, 2011), where each marker is
independently tested to estimate the effect τ (a scalar), by treating
the term S as a column vector of marker score covariates which
can take values of−1, 0, or 1. For each trait, a genome-wide false
discovery rate threshold was calculated based on the QVALUE
function in R (Storey and Tibshirani, 2003).

Genomic Prediction and Cross-Validation
To test for a highly polygenic genetic architecture of lodging
in wheat, we generated k-fold based genomic predictions. To
reduce the prediction bias resulting from training and testing
sets similarities, 11-fold training-testing composition was chosen
based on total number of trials in the experiment. Each fold left
a single trial out of the training set for testing the prediction.

Breeding lines were grouped into trials by pedigree, therefore,
this approach for cross-validation by trial prevents any full-sib
progeny from being in the training and prediction set. Two linear
parametric methods of genomic predictions, ridge regression
BLUP [RR-BLUP (Endelman, 2011)] and Bayes Cπ (Perez and
de los Campos, 2014), and a non-linear method, Reproducing
Kernel Hilbert Space [RKHS (Gianola et al., 2006)], were used to
calculate genomic estimated breeding values for each trait. While
RR-BLUP assumes an infinite number of loci with infinitesimally
small effects, the Bayes Cπ is a variable selection method that
allows for a proportion of marker effects to be set to zero,
assuming a common non-zero variance for rest of the marker
effects (Legarra et al., 2008; Habier et al., 2013). RKHS is a
kernel-based regression method. The default hyper-parameter
values as described in detail in Perez and de los Campos (2014)
and http://genomics.cimmyt.org/BGLR-extdoc.pdf (see Table 1
for default prior densities implemented) were used for Bayes Cπ

and RKHS methods.
Two different empirical cross-validation schemes were tested

for prediction models: (1) predictions across environments
on same genetic material (16LDH-16FAS, 17LDH-17FAS); (2)
predictions across years on independent set of lines (16LDH-
17LDH, 17LDH-16LDH, 16LDH-17FAS, 17LDH-16FAS). In the
case of LDH-FAS training-testing combinations, each of the five
lodging measures (LOI, LOS, LI, DLmean, and DLmix) was used
in the training set at LDH to predict the LOI at FAS. The genomic
prediction models were implemented in R packages BGLR and
rrBLUP (Endelman, 2011; Perez and de los Campos, 2014). We
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used 10,000 iterations, 3,000 burn-ins and thinning parameter of
3 for Bayes Cπ and RKHS models in BGLR.

Data Availability
All data associated with the experiments including raw
images, orthomosaics, polygons, etc. can be accessed at
the public repository4. Analysis scripts are available at
github.com/singhdj2/digital-lodging.

RESULTS AND DISCUSSION

High Throughput Phenotyping of Wheat
Breeding Trials
To assess yield potential and agronomic performance of elite
breeding lines as part of the International Wheat and Maize
Research Center’s (CIMMYT) breeding efforts, wheat trials were
established at Ludhiana (LDH) in NW India and Faisalabad (FAS)
in central Pakistan in 2016 and 2017 (Table 1). Throughout
the growing season, autonomous phenotyping operations were
conducted at LDH with a GPS-guided UAS equipped with
modified-RGB and multi-spectral digital cameras. Mid-day flight
missions covered an area of 1.5 ha containing the entire trial
of over 1,320 plots in ∼25 min and obtained a ground spatial
resolution of 1.5–3.5 cm per pixel. Following the natural lodging
events during grain filling stage in both years, lodging incidence
and severity was visually scored as a ‘ground-truth’ for subsequent
validation of the image-derived lodging values (Figure 1 and
Table 2). The breeding lines in the trials showed considerable
phenotypic variation with 0 to 100% lodging severity and
incidence, and moderate broad-sense heritability (H2) of 0.50 to
0.66 for the lodging incidence (Figure 3).

Extraction of Image-Derived Digital
Lodging
To quantitatively assess the amount of lodging from UAS
collected images across 1,320 field plots in each of the 2 years,
we built digital elevation models (DEM) for the crop before and
after the lodging events. A differential DEM was generated by

4https://doi.org/10.6084/m9.figshare.6151127

TABLE 2 | Approaches to assess lodging using digital images derived from UAS
and ground-based assessment.

Data Trait Description

Ground-truth Lodging incidence (LOI;
0–100%)

Visual scores of lodging

Lodging severity (LOS;
0–10)

Lodging index (LI;
LOI × LOS)

Image-based digital
lodging

Differential mean
(DLmean)

Plot summary mean

Digital lodging mixture
(DLmix)

Normal mixture-based
lodging index

subtracting the post- from pre-lodging DEM giving the overall
elevation change between the two time-points (Figure 2). We
observed large elevation changes that were commensurate with
severely lodged plots. To derive a quantitative measurement of
lodging, we first calculated a simple arithmetic mean (henceforth,
Digital Lodging mean: DLmean) of all differential DEM height
points falling under the area of each plot polygon. This measure
of lodging was phenotypically and genetically well-correlated
to the visual scores of incidence, severity, and lodging index
(rpheno = 0.77–0.93; rgeno = 0.93–0.96; P < 0.001; Figure 3 and
Supplementary Table S2).

Following on the simple mean difference we applied a
more informed normal mixture model of the differential
DEM pixel distributions. A combined mixture lodging index
(DLmix) of digital lodging was derived from the mixture
model parameters and compared with the visual scores. The
ground-truth validation of the mixture model again showed
high phenotypic and genetic correlations to the visual scores
(rpheno = 0.76–0.91; rgeno = 0.93–0.97; P < 0.001; Figure 3 and
Supplementary Table S2).

As an additional measure of accuracy of the visual scores
and digital image-based estimations of lodging, we calculated
the broad-sense heritability (H2), or repeatability, on an entry-
mean basis for each of eleven trials in both years (Figure 3).
The repeatability of visual scores, DLmean, and DLmix was in
the range of 0.5–0.7, consistent with previous studies on wheat
and sorghum that reported similar heritability for lodging (Liu
et al., 2015; Piñera-Chavez et al., 2016; Yu et al., 2016). Digital
lodging outperformed visual scores in terms of heritability for 8
out of 11 trials in year 2017 (data not shown). Digital and visual
measures of lodging were genetically highly correlated in both
years (rgeno > 0.93; Supplementary Table S2), suggesting they
are capturing the same variance and supporting the effectiveness
of image-based lodging assessment for HTP within large wheat
breeding and genetic studies.

Genome-Wide Association Analysis of
Lodging
To assess the genetic architecture of lodging using the validated
digital image-based estimations, we conducted a genome-wide
association analysis on 1,185 (590 in 2016 and 595 in 2017)
elite wheat breeding lines. Genome profiling was performed with
genotyping-by-sequencing and markers were fitted in a linear
mixed model with terms to account for population structure and
cryptic relationships (Equation 4). Despite having a relatively
large population size (n = 590), and moderate to high heritability,
no significant SNPs were identified for any lodging measure
in 2016 (Supplementary Figure S1). For 2017 field trial, an
association peak on chromosome 2A was observed for visual and
digital scores of lodging (Supplementary Figure S2). To leverage
the power of large population size, association analysis on
combined data from 2 years was performed. The association test
showed a highly significant and consistent peak at chromosome
2A (Figure 4 and Supplementary Figure S3). The markers on
2A coincided with a region corresponding to the 2NS Aegilops
ventricosa–Triticum aestivum translocation (Doussinault et al.,
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FIGURE 2 | Processing of pre- and post-lodging digital elevation models (DEM) to obtain differential DEM of lodging. Post-lodging DEM is subtracted from
pre-lodging DEM to generate a differential DEM of lodging. Panels are (A) pre-lodging, (B) post-lodging, and (C) differential DEM. Elevation differences are color
coded with red corresponding to low elevation in (A,B) or high differences in (C), blue is areas of high elevation (A,B) or low differences (C).

FIGURE 3 | Relationship of visual and digital lodging scores. Pairwise
correlation matrix of visual and digital measures of lodging in (A) year 2016,
(B) year 2017. Diagonal panels show the trait distributions and broad-sense
entry mean heritability; upper triangle is the Pearson’s correlation coefficient
values with significance levels as superscript (∗∗∗P < 0.001); lower triangle is
the scatter plot. LOI, lodging incidence; LOS, lodging severity; LI, lodging
index; DLmean, digital lodging mean; DLmix, digital lodging mixture.

1983; Gao et al., 2018). We investigated lines positive for 2NS
translocation, which showed reduction in lodging incidence for
both visual and digital lodging measures (Figure 5; P = 0.049–
0.002, n = 1010; t-test). A survey for the 2NS fragment in

our material suggested that more than 75% lines carry this
translocation fragment, which is known to harbor multiple
disease resistance genes in wheat (Jahier et al., 2001; Helguera
et al., 2003; Williamson et al., 2013; Cruz et al., 2016). However,
reports on its impact on lodging are lacking. Interestingly, the
significant markers from association analysis only explained up
to 2% of genetic variation for lodging and the majority of the
markers were below the significance threshold. Overall, these
results point toward a complex genetic architecture for lodging in
wheat and ‘hidden heritability’ like the classic example of human
height (Gudbjartsson et al., 2008).

Genome-Wide Predictions and
Cross-Validations
To address the postulate of hidden heritability due to a highly
polygenic genetic architecture of numerous small-effect QTL,
we generated genome-wide predictions for digital and visual
measures of lodging. Three different genomic prediction models
(BayesCπ, RKHS, and RR-BLUP) were compared to account for
complex genetic architecture of lodging in wheat. As all three
models yielded comparable results (Supplementary Table S3),
only RR-BLUP based predictions are discussed. To assess the
proportion of genetic variance captured using the whole-genome
models, we calculated k-fold cross validation prediction accuracy
within each year. Cross-validations within the environment
were able to explain up to 28% of the heritable genetic effects
(i.e., squared predictive ability) (Table 3). Finding that the
whole genome models accounted for more than one-fourth of
the heritable genetic effects for lodging, we further validated
this observation by comparing the phenotypic and genetic
correlation to the prediction accuracy for lodging measured
in a second environment location of Faisalabad, Pakistan
(FAS) (Supplementary Table S4). In majority of the cases the
genomic prediction accuracies were equal or higher than the
phenotypic correlation. In 2017 the whole-genome prediction
model had a predictive correlation of 0.45, accounting for 20%
of the heritable genetic effects for DLmix. Commensurate with
application of genomic prediction in a breeding program with
confounding environmental effects, the prediction accuracies
across environments were lower but still captured heritable
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FIGURE 4 | Manhattan plot of genome-wide associations. Manhattan plots of visual and digital lodging scores from combined analysis of genotypes from 2016 and
2017 (no. of genotypes = 1,035). The dashed lines on y-axis correspond to the genome-wide false discovery rate (FDR = 0.05) threshold. LOI, lodging incidence;
LOS, lodging severity; LI, lodging index; DLmean, digital lodging mean; DLmix, digital lodging mixture.

variance with predictions in the range of 0.19–0.55 (Table 4).
In contrast to the lack of power to find individual genetic
associations, we were able to capture a substantial portion
of the heritable genetic effects using whole-genome models
that account for many small effect QTL and support the
hypothesis of a polygenic genetic architecture for lodging in
elite wheat germplasm (Kooke et al., 2016). Furthermore, we
support the observation that much larger populations must be
evaluated to uncover the genetic basis and identify causative
variants for lodging.

Relationship of Lodging to Phenology
and Agronomic Traits
Finally, to investigate the relationship of different measures
of lodging with plant developmental and agronomic traits, we
calculated pairwise correlations of lodging with different traits
within each environment. Consistent with previous reports in
wheat (Keller et al., 1999; Berry and Berry, 2015), we found

that taller plants (r = 0.12, P < 0.01) with early heading
(r = −0.15, P < 0.001) tend to have more lodging while
thousand grain weight was negatively associated with lodging
(Supplementary Figure S4). A positive relationship of lodging
and plant biomass traits such as ground coverage, plant stand,
and spike length also highlights the vulnerability of high yielding,
high biomass cultivars to the crop lodging. Inconsistent trends,
however, in the relationship between grain yield and lodging
were observed with a negative correlation in 2016 and a
positive correlation in 2017. This suggests that on occasion
higher grain weight on the maturing spike can weigh the
plants down and increase lodging, while in other conditions the
lodging can occur at a stage that will prevent completion of
grain filling leading to yield loss. Under preferred mechanical
harvesting operations in farmers’ fields, either of these situations
will lead to economic loss of harvestable yield and decreased
quality. These trends suggest the need for developing cultivars
with better stem strength characteristics to mitigate lodging
associated losses.
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FIGURE 5 | Effect of 2NS translocation on lodging. The notched boxplot of
phenotypic values of lodging measures for 2NS positive (2NS+) and negative
(2NS–) genotypes. The asterisks show the significant p-value for each trait
(t-test; n = 1010; ∗P < 0.05, ∗∗P < 0.01). LOI, lodging incidence; LOS,
lodging severity; LI, lodging index; DLmean, digital lodging mean; DLmix,
digital lodging mixture.

Implementation of the Proposed
Methodology in Field Experiments
The present study implemented an efficient and scalable
approach to measure complex phenological trait of lodging
in the field experiments. Data collection component of
this phenotyping approach includes UAS setup (i.e., mission
generation and upload, calibration info collection) and aerial
image acquisition. The flight time depends on the field scale,
UAS flying elevation, moving velocity, and the overlapping rate

between the successive aerial images. Data processing component
includes DEM generation by photogrammetry and plot-level data
extraction, and the processing time depend on the data volume
and the computer hardware settings. For the implementation
standpoint, this work can be replicated with an initial investment
of USD 12000, which will cover the cost of sensor hardware
(USD 2000), UAS platform (USD 5000), a high-precision GNSS
(USD 2000), and the computer software and hardware (USD
3000). A practical implementation of our lodging assessment
approach in the field would require a careful monitoring
of weather and crop growth conditions. Furthermore, as the
operational costs and scale of breeding programs grow in future,
the cost-effective and high-throughput tools that can provide
multiple layers of data at a fraction of cost would be highly
desired. Therefore, a full benefit of our proposed methodology
can be realized by integrating it with the routine application of
UAS-based trait measurements in research programs. As such,
this lodging assessment approach can provide an additional
data layer on top of the routine phenotypic measurements (e.g.,
spectral, morphological, physiological) without incurring any
extra cost and time effort to the researchers.

CONCLUSION

Unmanned aerial systems-enabled phenotyping allowed us to
quantify lodging on 2,640 wheat plots. Using validated digital
lodging measurements along with association and genomic
prediction analyses, we provide evidence in support of a
polygenic genetic architecture of lodging in wheat. Our findings
have diverse applications in plant breeding and genetics. First,

TABLE 3 | 11-fold cross-validation predictive ability (rpv ), broad-sense heritability (H2), and prediction accuracy (rpa) of visual and digital lodging measures in years 2016
and 2017 at LDH.

2016 2017

rpv H2 rpa rpv H2 rpa

LOI 0.30 0.59 0.39 0.41 0.67 0.50

LOS 0.31 0.50 0.44 0.41 0.63 0.52

LI 0.32 0.55 0.43 0.40 0.63 0.50

DLmean 0.35 0.56 0.47 0.40 0.71 0.47

DLmix 0.31 0.52 0.43 0.42 0.63 0.53

rpv, correlation between genomic estimated breeding values and phenotypic values; rpa, predictive ability scaled to the squared root of heritability. LOI, lodging incidence;
LOS, lodging severity; LI, lodging index; DLmean, digital lodging mean; DLmix, digital lodging mixture.

TABLE 4 | Prediction accuracies of lodging measures generated from different training-testing combinations on untested genotypes at LDH and FAS locations, e.g.,
16LDH-17FAS is 16LDH training set predicting 17FAS.

16LDH-17LDH 17LDH-16LDH 16LDH-17FAS 17LDH-16FAS Average

LOI 0.37 0.45 0.28 0.27 0.34

LOS 0.42 0.54 0.32 0.23 0.38

LI 0.39 0.49 0.27 0.21 0.34

DLmean 0.37 0.51 0.30 0.20 0.35

DLmix 0.38 0.55 0.29 0.19 0.35

LOI, lodging incidence; LOS, lodging severity; LI, lodging index; DLmean, digital lodging mean; DLmix, digital lodging mixture.
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our highly reproducible UAS based digital lodging methods
can be easily scaled and also applied to different crops
to rapidly quantify plant height, lodging, and should be
extensible to traits like growth rate on large populations.
Second, for a complex and quantitatively controlled trait like
lodging, whole-genome predictions can account for heritable
variation not captured by regular GWAS. Undoubtedly,
accurate phenotypic assessment is a critical prerequisite for
breeding for lodging resilience, and as shown here, UAS-
enabled large-scale quantitative assessment of lodging can be
a powerful approach to identify genetic variants for lodging.
This comprehensive evaluation of lodging assessment methods
lays the foundation for improving our understanding of
functional underpinnings of lodging in wheat and other
crops. Overall this highlights the future of modern breeding
where, in conjunction with powerful genomics and informatics
tools, UAS-enabled phenotyping can accelerate the genetic
gains in plant breeding to meet the global demand for food,
fiber, and fuel.

AUTHOR CONTRIBUTIONS

JP and DS conceived and designed the study and wrote
the manuscript. DS collected and analyzed UAS and
ground-truth data in India. DS and XW performed image
analysis. LG contributed alien-fragment data. UK supervised
field experiments and collected data in India. MN and
MI supervised field experiments and collected ground-
truth data in Pakistan. RS provided experimental lines.
JP directed the overall project. All authors edited and
reviewed the manuscript.

FUNDING

This work was supported by the National Science Foundation
(NSF) Plant Genome Research Program (PGRP) (Grant No.
IOS-1238187), the Kansas Wheat Commission and Kansas
Wheat Alliance, the US Agency for International Development
(USAID) Feed the Future Innovation Lab for Applied Wheat
Genomics (Cooperative Agreement No. AID-OAA-A-13-00051),
USAID Agricultural Innovation Program for Pakistan (PIO
Grant No. AID-BFS-G-11-00002), and by the NIFA International
Wheat Yield Partnership (Grant No. 2017-67007-25933/project
accession no. 1011391) from the USDA National Institute of Food
and Agriculture.

ACKNOWLEDGMENTS

We thank the support staff at Borlaug Institute for South
Asia in India including Yogesh Gautam, Manish Kumar,
Avadhesh Kumar; CIMMYT Pakistan Majid Nadeem and Dr.
Makhdoom Hussain; and CIMMYT Mexico Dr. Suchismita
Mondal. We appreciate the assistance of colleagues at Kansas
State University including Shuangye Wu, Mark Lucas, Richard
Brown, Haley Ahlers, Jared Crain, and Byron Evers; Scott
Chapman, CSIRO, Australia.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fpls.2019.00394/
full#supplementary-material

REFERENCES
Andrade-Sanchez, P., Gore, M. A., Heun, J. T., Thorp, K. R., Carmo-Silva, A. E.,

French, A. N., et al. (2014). Development and evaluation of a field-based high-
throughput phenotyping platform. Funct. Plant Biol. 41, 68–79. doi: 10.1071/
fp13126

Bates, D., Maechler, M., Bolker, B., and Walker, S. (2014). lme4: linear mixed-effects
models using Eigen and S4. R Package Version 1, 1–23.

Benaglia, T., Chauveau, D., Hunter, D. R., and Young, D. S. (2009). mixtools:
an R package for analyzing finite mixture models. J. Stat. Softw. 32, 1–29.
doi: 10.18637/jss.v032.i06

Bendig, J., Bolten, A., Bennertz, S., Broscheit, J., Eichfuss, S., and Bareth, G.
(2014). Estimating biomass of barley using crop surface models (CSMs) Derived
from UAV-Based RGB Imaging. Remote Sens. 6, 10395–10412. doi: 10.3390/
rs61110395

Berry, P. M., and Berry, S. T. (2015). Understanding the genetic control of lodging-
associated plant characters in winter wheat (Triticum aestivum L.). Euphytica
205, 671–689. doi: 10.1007/s10681-015-1387-2

Berry, P. M., Spink, J., Sterling, M., and Pickett, A. A. (2003). Methods for rapidly
measuring the lodging resistance of wheat cultivars. J. Agrono. Crop Sci. 189,
390–401. doi: 10.1046/j.0931-2250.2003.00062.x

Berry, P. M., Sylvester-Bradley, R., and Berry, S. (2007). Ideotype design for
lodging-resistant wheat. Euphytica 154, 165–179. doi: 10.1007/s10681-006-
9284-3

Browning, B. L., and Browning, S. R. (2016). Genotype imputation with millions
of reference samples. Am. J. Hum. Genet. 98, 116–126. doi: 10.1016/j.ajhg.2015.
11.020

Campbell, M. T., Knecht, A. C., Berger, B., Brien, C. J., Wang, D., and Walia, H.
(2015). Integrating image-based phenomics and association analysis to dissect
the genetic architecture of temporal salinity responses in rice. Plant Physiol. 168,
1476–1489. doi: 10.1104/pp.15.00450

Chapman, S., Merz, T., Chan, A., Jackway, P., Hrabar, S., Dreccer, M., et al. (2014).
Pheno-Copter: a low-altitude, autonomous remote-sensing robotic helicopter
for high-throughput field-based phenotyping. Agronomy 4, 279–301. doi: 10.
3390/agronomy4020279

Chen, D., Neumann, K., Friedel, S., Kilian, B., Chen, M., Altmann, T., et al. (2014).
Dissecting the phenotypic components of crop plant growth and drought
responses based on high-throughput image analysis. Plant Cell 26, 4636–4655.
doi: 10.1105/tpc.114.129601

Chu, T. X., Starek, M. J., Brewer, M. J., Murray, S. C., and Pruter, L. S. (2017).
Assessing lodging severity over an experimental maize (Zeamays L.) Field Using
UAS Images. Remote Sens. 9:923.

Covarrubias-Pazaran, G. (2016). Genome-assisted prediction of quantitative traits
using the R package sommer. PLoSOne 11:e0156744. doi: 10.1371/journal.pone.
0156744

Crain, J. L., Wei, Y., Barker, J., Thompson, S. M., Alderman, P. D., Reynolds, M.,
et al. (2016). Development and deployment of a portable field phenotyping
platform. Crop Sci. 56, 965–975. doi: 10.2135/cropsci2015.05.0290

Cruz, C. D., Peterson, G. L., Bockus, W. W., Kankanala, P., Dubcovsky, J., Jordan,
K. W., et al. (2016). The 2NS Translocation from Aegilops ventricosa Confers
Resistance to the Triticum Pathotype of Magnaporthe oryzae. Crop Sci. 56,
990–1000. doi: 10.2135/cropsci2015.07.0410

Doussinault, G., Delibes, A., Sanchezmonge, R., and Garciaolmedo, F. (1983).
Transfer of a dominant gene for resistance to eyespot disease from a

Frontiers in Plant Science | www.frontiersin.org 10 April 2019 | Volume 10 | Article 394

https://www.frontiersin.org/articles/10.3389/fpls.2019.00394/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpls.2019.00394/full#supplementary-material
https://doi.org/10.1071/fp13126
https://doi.org/10.1071/fp13126
https://doi.org/10.18637/jss.v032.i06
https://doi.org/10.3390/rs61110395
https://doi.org/10.3390/rs61110395
https://doi.org/10.1007/s10681-015-1387-2
https://doi.org/10.1046/j.0931-2250.2003.00062.x
https://doi.org/10.1007/s10681-006-9284-3
https://doi.org/10.1007/s10681-006-9284-3
https://doi.org/10.1016/j.ajhg.2015.11.020
https://doi.org/10.1016/j.ajhg.2015.11.020
https://doi.org/10.1104/pp.15.00450
https://doi.org/10.3390/agronomy4020279
https://doi.org/10.3390/agronomy4020279
https://doi.org/10.1105/tpc.114.129601
https://doi.org/10.1371/journal.pone.0156744
https://doi.org/10.1371/journal.pone.0156744
https://doi.org/10.2135/cropsci2015.05.0290
https://doi.org/10.2135/cropsci2015.07.0410
https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-10-00394 April 4, 2019 Time: 13:15 # 11

Singh et al. UAS Phenotyping of Wheat Lodging

wild grass to hexaploid wheat. Nature 303, 698–700. doi: 10.1038/303
698a0

Endelman, J. B. (2011). Ridge regression and other kernels for genomic
selection with R Package rrBLUP. Plant Genome 4, 250–255. doi: 10.3835/
plantgenome2011.08.0024

Furbank, R. T., and Tester, M. (2011). Phenomics–technologies to relieve the
phenotyping bottleneck. Trends Plant Sci. 16, 635–644. doi: 10.1016/j.tplants.
2011.09.005

Gao, L., Dorn, K., Rife, T. W., Wang, X., Lemes, C., Clinesmith, M., et al. (2018).
“Completion of the ‘Jagger’ Wheat Genome Leads to Identification of Aegilops
ventricosa 2NS Translocation and Its Impact in Wheat Breeding,” in Plant and
Animal Genome Conference XXVI, San Diego, CA.

Gianola, D., Fernando, R. L., and Stella, A. (2006). Genomic-assisted prediction
of genetic value with semiparametric procedures. Genetics 173, 1761–1776.
doi: 10.1534/genetics.105.049510

Glaubitz, J. C., Casstevens, T. N., Lu, F., Harriman, J., Elshire, R. J., Sun, Q.,
et al. (2014). TASSEL-GBS: a high capacity genotyping by sequencing analysis
pipeline. PLoS One 9:e90346. doi: 10.1371/journal.pone.0090346

Gudbjartsson, D. F., Walters, G. B., Thorleifsson, G., Stefansson, H., Halldorsson,
B. V., Zusmanovich, P., et al. (2008). Many sequence variants affecting diversity
of adult human height. Nat. Genet. 40, 609–615. doi: 10.1038/ng.122

Habier, D., Fernando, R. L., and Garrick, D. J. (2013). Genomic BLUP decoded:
a look into the black box of genomic prediction. Genetics 194, 597–607. doi:
10.1534/genetics.113.152207

Haghighattalab, A., Gonzalez Perez, L., Mondal, S., Singh, D., Schinstock, D.,
Rutkoski, J., et al. (2016). Application of unmanned aerial systems for high
throughput phenotyping of large wheat breeding nurseries. Plant Methods
12:35. doi: 10.1186/s13007-016-0134-6

Hai, L., Guo, H. H., Xiao, S. H., Jiang, G. L., Zhang, X. Y., Yan, C. S., et al.
(2005). Quantitative trait loci (QTL) of stem strength and related traits in a
doubled-haploid population of wheat (Triticum aestivum L.). Euphytica 141,
1–9. doi: 10.1007/s10681-005-4713-2

Helguera, M., Khan, I. A., Kolmer, J., Lijavetzky, D., Zhong-qi, L., and Dubcovsky, J.
(2003). PCR assays for the Lr37-Yr17-Sr38 cluster of rust resistance genes
and their use to develop isogenic hard red spring wheat lines. Crop Sci. 43,
1839–1847. doi: 10.2135/cropsci2003.1839

Honsdorf, N., March, T. J., Berger, B., Tester, M., and Pillen, K. (2014). High-
throughput phenotyping to detect drought tolerance QTL in wild barley
introgression lines. PLoS One 9:e97047. doi: 10.1371/journal.pone.0097047

International Wheat Genome Sequencing Consortium (IWGSC] (2014).
A chromosome-based draft sequence of the hexaploid bread wheat (Triticum
aestivum) genome. Science 345, 1251788. doi: 10.1126/science.1251788

Jahier, J., Abelard, P., Tanguy, A. M., Dedryver, F., Rivoal, R., Khatkar, S., et al.
(2001). The Aegilops ventricosa segment on chromosome 2AS of the wheat
cultivar ‘VPM1’ carries the cereal cyst nematode resistance gene Cre5. Plant
Breed. 120, 125–128. doi: 10.1046/j.1439-0523.2001.00585.x

Kang, H. M., Zaitlen, N. A., Wade, C. M., Kirby, A., Heckerman, D., Daly,
M. J., et al. (2008). Efficient control of population structure in model
organism association mapping. Genetics 178, 1709–1723. doi: 10.1534/genetics.
107.080101

Keller, M., Karutz, C., Schmid, J. E., Stamp, P., Winzeler, M., Keller, B., et al. (1999).
Quantitative trait loci for lodging resistance in a segregating wheat x spelt
population. Theor. Appl. Genet. 98, 1171–1182. doi: 10.1007/s001220051182

Kooke, R., Kruijer, W., Bours, R., Becker, F., Kuhn, A., van de Geest, H., et al.
(2016). Genome-wide association mapping and genomic prediction elucidate
the genetic architecture of morphological traits in Arabidopsis. Plant Physiol.
170, 2187–2203. doi: 10.1104/pp.15.00997

Legarra, A., Robert-Granie, C., Manfredi, E., and Elsen, J. M. (2008). Performance
of genomic selection in mice. Genetics 180, 611–618. doi: 10.1534/genetics.108.
088575

Liu, W. X., Leiser, W. L., Maurer, H. P., Li, J. H., Weissmann, S., Hahn, V., et al.
(2015). Evaluation of genomic approaches for marker-based improvement of
lodging tolerance in triticale. Plant Breed. 134, 416–422. doi: 10.1111/pbr.12284

McCormick, R. F., Truong, S. K., and Mullet, J. E. (2016). 3D sorghum
reconstructions from depth images identify QTL regulating shoot architecture.
Plant Physiol. 172, 823–834. doi: 10.1104/pp.16.00948

Miller, C. N., Harper, A. L., Trick, M., Werner, P., Waldron, K., and Bancroft, I.
(2016). Elucidation of the genetic basis of variation for stem strength

characteristics in bread wheat by Associative Transcriptomics. BMC Genomics
17:500. doi: 10.1186/s12864-016-2775-2

Perez, P., and de los Campos, G. (2014). Genome-wide regression and prediction
with the BGLR statistical package. Genetics 198, 483–495. doi: 10.1534/genetics.
114.164442

Piñera-Chavez, F. J., Berry, P. M., Foulkes, M. J., Molero, G., and Reynolds, M. P.
(2016). Avoiding lodging in irrigated spring wheat. II. Genetic variation of stem
and root structural properties. Field Crops Res. 196, 64–74. doi: 10.1016/j.fcr.
2016.06.007

Pinthus, M. J. (1974). Lodging in wheat, barley, and oats: the phenomenon, its
causes, and preventive measures. Adv. Agron. 25, 209–263. doi: 10.1016/S0065-
2113(08)60782-8

Poland, J. (2015). Breeding-assisted genomics. Curr. Opin. Plant Biol. 24, 119–124.
doi: 10.1016/j.pbi.2015.02.009

Poland, J. A., Brown, P. J., Sorrells, M. E., and Jannink, J. L. (2012). Development
of high-density genetic maps for barley and wheat using a novel two-enzyme
genotyping-by-sequencing approach. PLoS One 7:e32253. doi: 10.1371/journal.
pone.0032253

Rajaram, S., Van Ginkel, M., and Fischer, R. A. (1995). “CIMMYT’s wheat breeding
mega-environments ME,” in Proceedings of the 8th InternationalWheat Genetics
Symposium, Beijing, 1–10.

Sankaran, S., Khot, L. R., and Carter, A. H. (2015). Field-based crop phenotyping:
Multispectral aerial imaging for evaluation of winter wheat emergence and
spring stand. Comput. Electron. Agric. 118, 372–379. doi: 10.1016/j.compag.
2015.09.001

Shi, Y., Thomasson, J. A., Murray, S. C., Pugh, N. A., Rooney, W. L., Shafian, S.,
et al. (2016). Unmanned aerial vehicles for high-throughput phenotyping and
agronomic research. PLoS One 11:e0159781. doi: 10.1371/journal.pone.0159781

Singh, D., Wang, X., Kumar, U., Gao, L., Noor, M., Imtiaz, M., et al. (2018). Full
dataset for high-throughput phenotyping-enabled genetic dissection of crop
lodging in wheat. Figshare doi: 10.6084/m9.figshare.6151127

Storey, J. D., and Tibshirani, R. (2003). Statistical significance for genomewide
studies. Proc. Natl. Acad. Sci. U.S.A. 100, 9440–9445. doi: 10.1073/pnas.
1530509100

Verma, V., Worland, A. J., Sayers, E. J., Fish, L., Caligari, P. D. S., and Snape,
J. W. (2005). Identification and characterization of quantitative trait loci related
to lodging resistance and associated traits in bread wheat. Plant Breed. 124,
234–241. doi: 10.1111/j.1439-0523.2005.01070.x

Wang, X., Singh, D., Marla, S., Morris, G., and Poland, J. (2018). Field-based high-
throughput phenotyping of plant height in sorghum using different sensing
technologies. Plant Methods 14:53. doi: 10.1186/s13007-018-0324-5

White, J. W., Andrade-Sanchez, P., Gore, M. A., Bronson, K. F., Coffelt, T. A.,
Conley, M. M., et al. (2012). Field-based phenomics for plant genetics research.
Field Crops Res. 133, 101–112. doi: 10.1016/j.fcr.2012.04.003

Williamson, V. M., Thomas, V., Ferris, H., and Dubcovsky, J. (2013). An aegilops
ventricosa translocation confers resistance against root-knot nematodes to
common wheat. Crop Sci. 53, 1412–1418. doi: 10.2135/cropsci2012.12.0681

Yang, M. D., Huang, K. S., Kuo, Y. H., Tsai, H. P., and Lin, L. M. (2017). Spatial and
spectral hybrid image classification for rice lodging assessment through UAV
imagery. Remote Sens. 9:583. doi: 10.3390/rs9060583

Yu, J. M., Pressoir, G., Briggs, W. H., Bi, I. V., Yamasaki, M., Doebley, J. F., et al.
(2006). A unified mixed-model method for association mapping that accounts
for multiple levels of relatedness. Nat. Genet. 38, 203–208. doi: 10.1038/ng1702

Yu, X., Li, X., Guo, T., Zhu, C., Wu, Y., Mitchell, S. E., et al. (2016). Genomic
prediction contributing to a promising global strategy to turbocharge gene
banks. Nat. Plants 2:16150. doi: 10.1038/nplants.2016.150

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2019 Singh, Wang, Kumar, Gao, Noor, Imtiaz, Singh and Poland.
This is an open-access article distributed under the terms of the Creative Commons
Attribution License (CC BY). The use, distribution or reproduction in other forums
is permitted, provided the original author(s) and the copyright owner(s) are credited
and that the original publication in this journal is cited, in accordance with accepted
academic practice. No use, distribution or reproduction is permitted which does not
comply with these terms.

Frontiers in Plant Science | www.frontiersin.org 11 April 2019 | Volume 10 | Article 394

https://doi.org/10.1038/303698a0
https://doi.org/10.1038/303698a0
https://doi.org/10.3835/plantgenome2011.08.0024
https://doi.org/10.3835/plantgenome2011.08.0024
https://doi.org/10.1016/j.tplants.2011.09.005
https://doi.org/10.1016/j.tplants.2011.09.005
https://doi.org/10.1534/genetics.105.049510
https://doi.org/10.1371/journal.pone.0090346
https://doi.org/10.1038/ng.122
https://doi.org/10.1534/genetics.113.152207
https://doi.org/10.1534/genetics.113.152207
https://doi.org/10.1186/s13007-016-0134-6
https://doi.org/10.1007/s10681-005-4713-2
https://doi.org/10.2135/cropsci2003.1839
https://doi.org/10.1371/journal.pone.0097047
https://doi.org/10.1126/science.1251788
https://doi.org/10.1046/j.1439-0523.2001.00585.x
https://doi.org/10.1534/genetics.107.080101
https://doi.org/10.1534/genetics.107.080101
https://doi.org/10.1007/s001220051182
https://doi.org/10.1104/pp.15.00997
https://doi.org/10.1534/genetics.108.088575
https://doi.org/10.1534/genetics.108.088575
https://doi.org/10.1111/pbr.12284
https://doi.org/10.1104/pp.16.00948
https://doi.org/10.1186/s12864-016-2775-2
https://doi.org/10.1534/genetics.114.164442
https://doi.org/10.1534/genetics.114.164442
https://doi.org/10.1016/j.fcr.2016.06.007
https://doi.org/10.1016/j.fcr.2016.06.007
https://doi.org/10.1016/S0065-2113(08)60782-8
https://doi.org/10.1016/S0065-2113(08)60782-8
https://doi.org/10.1016/j.pbi.2015.02.009
https://doi.org/10.1371/journal.pone.0032253
https://doi.org/10.1371/journal.pone.0032253
https://doi.org/10.1016/j.compag.2015.09.001
https://doi.org/10.1016/j.compag.2015.09.001
https://doi.org/10.1371/journal.pone.0159781
https://doi.org/10.6084/m9.figshare.6151127
https://doi.org/10.1073/pnas.1530509100
https://doi.org/10.1073/pnas.1530509100
https://doi.org/10.1111/j.1439-0523.2005.01070.x
https://doi.org/10.1186/s13007-018-0324-5
https://doi.org/10.1016/j.fcr.2012.04.003
https://doi.org/10.2135/cropsci2012.12.0681
https://doi.org/10.3390/rs9060583
https://doi.org/10.1038/ng1702
https://doi.org/10.1038/nplants.2016.150
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles

	High-Throughput Phenotyping Enabled Genetic Dissection of Crop Lodging in Wheat
	Introduction
	Materials And Methods
	Plant Material and Field Layout
	UAS and Sensor Specifications
	UAS-Based Image Acquisition
	Digital Elevation Model Generation
	Lodging Assessment
	Statistical Data Analysis
	Genotyping
	Genome-Wide Association Study (GWAS)
	Genomic Prediction and Cross-Validation
	Data Availability

	Results and Discussion
	High Throughput Phenotyping of Wheat Breeding Trials
	Extraction of Image-Derived Digital Lodging
	Genome-Wide Association Analysis of Lodging
	Genome-Wide Predictions and Cross-Validations
	Relationship of Lodging to Phenology and Agronomic Traits
	Implementation of the Proposed Methodology in Field Experiments

	Conclusion
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


