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SURVEY ON COMULTIPLICATION MODULES

Habibollah Ansari-Toroghy and Faranak Farshadifar

Abstract. The concept of comultiplication (as a dual notion of multiplication) modules was

introduced and studied by H. Ansari-Toroghy and F. Farshadifar in 2007. This notion has obtained

a great attention by many authors and now there is a considerable amount of research concerning

this class of modules. The main purpose of this paper is to collect these results and provide a useful

source for those who are interested in research in this field.

1 Introduction

Throughout this paper, R will denote a commutative ring with identity and “⊂”
will denote the strict inclusion. Further, Z and N will denote the ring of integers
and the set positive integers, respectively. We use N ≤ M to indicate that N is a
submodule of a module M . For any unexplained notions or terminology please see
[8], [52], [55], [61], [62], or [67].

Multiplication rings are introduced by W. Krull in 1925 as a generalization of
Dedekind domains [49]. In 1981, Barnard [29] has given the concept of multiplication
modules. AnR-moduleM is said to be amultiplication module if for every submodule
N ofM there exists an ideal I of R such that N = IM [29]. There is a large body of
research concerning multiplication modules. H. Ansari-Toroghy and F. Farshadifer
introduced the notion comultiplication module as a dual notion of multiplication
module in [10] and investigated some main properties of this class of modules [11-27].
We mention that dual of not every result related to multiplication R-module is true.
For example, it is well-known that every cyclic R-module is a multiplication module.
Although the dual of this result was true in some special cases (see Theorems 83, 84,
and 85), however, it was not known whether this is true in general. In fact this was
a question posed in [10]. Later a counter example showed that this is not true in
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62 H. Ansari-Toroghy and F. Farshadifar

general. In other words, not every cocylic R-module is a comultiplication R-module
in general (see Example 86). Further we know that every multiplication R-module
over an Artinian ring is cyclic. But dual of this result is not true in general. That
is, not every comultiplication R-module over an Artinian ring is cocyclic [17, 3.5].
There is plenty of useful information which has been investigated by many authors
[1, 6, 7, 28, 30, 37, 48, 56, 58, 59, 60, 65, 66]. The main purpose of this paper is
to collect these results and provide a useful source for those who are interested in
research in this field.

2 Comultiplication modules

Definition 1. [10, 3.1] An R-module M is said to be a comultiplication module if
for every submodule N of M there exists an ideal I of R such that N = (0 :M I).

The following example shows that not every comultiplication R-module is a
multiplication R-module.

Example 2. [10, 3.2] Let p be a prime number and consider the Z-moduleM = Zp∞.
Choose N = ⟨1/pi + Z⟩ and Set I = Zpi, i ≥ 0. It is clear that N = (0 :M
I). Therefore, Zp∞ as a Z-module is a comultiplication module. But Zp∞ is not a
multiplication Z-module.

The following example shows that not every multiplicationR-module is a comulti-
plication R-module.

Example 3. [10, 3.9] For a submodule 2Z of the Z-module Z we have

(0 :Z AnnZ(2Z)) = Z.

Therefore, Z is not a comultiplication module. But Z is a multiplication Z-
module.

Lemma 4. [6, 1.2] Let M be an R-module such that AM = 0 for some ideal A of R.
Then the R-module M is a comultiplication module if and only if the (R/A)-module
M is a comultiplication module.

Recall that anR-moduleM is a self-cogenerator, provided that for each submodule
N ofM , the factor moduleM/N embeds in the direct productMΛ of copies ofM , for
some index set Λ. We shall call an R-module M strongly self-cogenerated provided
for each submodule N ofM there exists a family ϕλ(λ ∈ Λ) of trivial endomorphisms
of M , for some index set Λ, such that N = ∩λ∈Λkerϕλ [6].

Let M be an R-module. A proper submodule N of M is said to be completely
irreducible if N =

⋂
λ∈ΛNλ, where {Nλ}λ∈Λ is a family of submodules ofM , implies

that N = Nλ for some λ ∈ Λ. It is easy to see that every submodule of M is an
intersection of completely irreducible submodules of M [44].
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Survey on comultiplication modules 63

Recall that SocR(M) denotes the sum of all minimal submodules of M [8].
Comultiplication modules can be characterized in various ways as we demonstrate

in the following theorem.

Theorem 5. [6, 1.5], [10, 3.7, 3.10] , and [13, 3.10]. Let M be an R-module. Then
the following statements are equivalent.

(a) M is a comultiplication module.

(b) For each completely irreducible submodule L of M there exists an ideal I of R
such that L = (0 :M I).

(c) Given submodules N , K of M , AnnR(N) = AnnR(K) implies that N = K.

(d) N = (0 :M AnnR(N)) for every submodule N of M .

(e) SocR((0 :M AnnR(N))/N) = 0 for every submodule N of M .

(f) Given submodules N , K of M , AnnR(N) ⊆ AnnR(K) implies that K ⊆ N .

(g) Given any submodule N of M and m ∈ M , AnnR(N) ⊆ AnnR(Rm) implies
that m ∈ N .

(h) Given any submodule N of M and m ∈ M , AnnR(N) ⊆ AnnR(Rm) implies
that (N :R m) is not a maximal ideal of R.

(i) (K :R N) = (AnnR(N) :R AnnR(L)) for all submodules K and N of M .

(j) M is strongly self-cogenerated.

(k) For every submodule N of M and each ideal I of R with N ⊂ (0 :M I), there
exists an ideal J of R such that I ⊂ J and N = (0 :M J).

(l) For every submodule N of M and each ideal I of R with N ⊂ (0 :M I), there
exists an ideal J of R such that I ⊂ J and N ⊆ (0 :M J).

Proposition 6. [10, 3.17] and [13, 3.7] Let M be a comultiplication R-module.
Then the following assertions hold.

(a) Every submodule of M is a comultiplication module.

(b) If R is a von Neumann regular ring, then every homomorphic image of M is
a comultiplication R-module.

Let N be a non-zero submodule of an R-module M . Then N is said to be large
or essential if for every non-zero submodule L of M , N ∩ L ̸= 0 [8].

Recall that an R-module M is said to be cocyclic if M has a simple essential
socle.
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64 H. Ansari-Toroghy and F. Farshadifar

Theorem 7. [13, 3.1, 3.2] Let M be a comultiplication R-module. Then we have
the following.

(a) If P is a maximal ideal of R and (0 :M P ) ̸= 0, then (0 :M P ) is simple.

(b) If B is an ideal of R such that (0 :M B) = 0, then BM =M .

(c) If B is an ideal of R such that (0 :M B) = 0, then, for every element m ∈M ,
there exists an element b of B such that m = bm.

(d) If M is a finitely generated R-module and B is an ideal of R such that (0 :M
B) = 0, then there exists b ∈ B such that 1!‘− b ∈ AnnR(M).

(e) Every non-zero submodule of M contains a minimal submodule of M .

(f) Let K be a submodule of M . Then K is a minimal submodule of M if and
only if there exists a maximal ideal P of R such that K = (0 :M P ) ̸= 0.

(g) If R has a unique maximal ideal, then M is a cocyclic R-module.

Corollary 8. [13, 3.3] (A dual Nakayama lemma for comultiplication modules.)
Let M be a comultiplication R-module and I be an ideal of R such that I ⊆ Jac(R),
where Jac(R) denotes the Jacobson radical of R. If (0 :M I) = 0, then M = 0.

Definition 9. [12, 3.1] R is said to be a comultiplication ring if, as an R-module,
R is a comultiplication R-module.

Example 10. [12, 3.2] Every self-injective Noetherian ring is a comultiplication
ring. In particular, every semi-simple ring is a comultiplication ring.

Example 11. [13, 3.8] Let n be a fixed number.

(a) Zn is a comultiplication Z-module.

(b) Zn is a comultiplication Zn-module. Furthermore, if G is a finite group, then
the group ring Zn(G) is a comultiplication Zn(G)-module.

Proposition 12. [12, 3.3] Let M be a comultiplication R-module.

(a) If {Mλ}λ∈Λ is a collection of submodules of M , then

(0 :M
⋂
λ∈Λ

AnnR(Mλ)) =
∑
λ∈Λ

(0 :M AnnR(Mλ)).

(b) If R is a comultiplication ring, then for each collection {Iλ}λ∈Λ of ideals of R,
(0 :M ∩Λ∈ΛIλ) =

∑
λ∈Λ(0 :M Iλ).
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Survey on comultiplication modules 65

Theorem 13. [12, 3.5] Let R be a Noetherian ring and let M be an injective R-
module. Then M is a comultiplication R-module if M is a multiplication R-module.
Furthermore, if R is a comultiplication ring the converse is true.

For an R-module M , CoassR(M) denotes the set of all prime ideals P of R such
that there exists a cocyclic homomorphic image L of M with AnnR(L) = P [69].

Theorem 14. [15, 2.2] Let M be a comultiplication R-module. Then we have the
following.

(a) AssR(M) ⊆Max(R).

(b) If AnnR(M) is a prime ideal of R, then CoassR(M) = {AnnR(M)}.

(c) If R is a Noetherian ring and M is a faithful R-module, then CoassR(M) =
AssR(R).

Proposition 15. [17, 3.3] Let R be an integral domain. Then we have the following.

(a) Every comultiplication R-module is cyclic or torsion.

(b) If M is a faithful finitely generated comultiplication R-module, then M is
cyclic.

(c) If there exists a faithful multiplication and comultiplication R-module, then R
is a field.

Theorem 16. [6, 1.8] Let M be a self-cogenerated R-module such that, for each
finitely generated submodule N of M , every homomorphism ϕ : N → M is trivial.
Then K = (0 :M AnnR(K)) for every finitely generated submodule K of M .

Recall that an R-module M is called nonsingular, provided that Am ̸= 0 for
every essential ideal A of R and every non-zero element m of M .

Theorem 17. [6, 1.7] Every nonsingular comultiplication R-module is semisimple
and projective.

Proposition 18. [7, 3.2, 3.3, 3.5, 3.7, 3.8, 3.9] Let M be a comultiplication R-
module. Then we have the following.

(a) If K and L are submodules of M , then (0 :M (K :R L)) = AnnR(K)L.

(b) BM = AnnR((0 :M B))M for every ideal B of R.

(c) AnnR(L)K = AnnR(L ∩K)K for all submodules K and L of M .

(d) If K and L are submodules of M , then K ∩ L = (0 :K AnnR(L)).
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(e) If K and L are submodules of M such that, for all ideals A and B of R,
AK ⊆ BK implies that A ⊆ B + AnnR(K), then AnnR(L) + AnnR(K) =
AnnR(L ∩K).

(f) If L is any submodule and m is any element ofM , then AnnR(L)+AnnR(m) =
AnnR(Rm ∩ L).

Theorem 19. [7, 3.10] An R-module M is a comultiplication module if and only if

(a) AnnR(L) +AnnR(M) = AnnR(Rm ∩ L), and

(b) Rm is a comultiplication module, for each m ∈M and submodule L of M .

Let L be a submodule of an R-module M . Then a homomorphism ϕ : L → M
will be called trivial if there exists an r ∈ R such that ϕ(x) = rx (x ∈ L).

Corollary 20. [7, 3.11] Let L be any finitely generated submodule of a comultiplication
R-module M . Then every homomorphism ϕ : L→M is trivial.

Corollary 21. [7, 3.12] Every Noetherian comultiplication module over a commutative
ring is an Artinian quasi-injective module.

Recall that if A, Á and B are submodules of M such that Á ⊆ B, M = A + Á
and Á is minimal with respect to this property, then Á is said to be a supplement
of A in B (this is the dual notion of a complement of a submodule). In [42], M is
said to be amply supplemented when for each pair of submodules A,B of M with
M = A+B, A has a supplement in B.

Theorem 22. [7, 5.1] Let M be a comultiplication R-module such that M = (0 :M
C) + (0 :M D) for all ideals C and D of R with C ∩ D = AnnR(M). Then M is
amply supplemented.

Let M be any R-module. It is well known that the collection of submodules
of M forms a modular lattice L(RM) with least element the zero submodule and
greatest element M . Given two submodules N and L of M , the least upper bound
of N and L in L(RM) is N + L and the greatest lower bound in L(RM) is N ∩ L.
Now let LM (RR) denote the collection of ideals in R of the form AnnR(K) for some
submodule K of M . Note that LM (RR) is a subset of L(RR) but it need not be a
sublattice even if M is a comultiplication module.

Theorem 23. [7, 5.2] Let M be a comultiplication R-module. Then LM (RR) is
a sublattice of L(RR) if and only if AnnR(N ∩ L) = AnnR(N) + AnnR(L) for all
submodules N and L of M . Moreover, in this case, the mapping ϕ : L(RM) →
LM (RR), defined by ϕ(K) = AnnR(K) for every submodule K of M , is an antiiso-
morphism from the lattice L(RM) to the lattice LM (RR).
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Theorem 24. [13, 3.4] Let M be a faithful comultiplication R-module. Then
consider the following statements.

(a) M is finitely generated.

(b) (0 :M I) ̸= 0 for every proper ideal I of R.

(c) (0 :M P ) ̸= 0 for every maximal ideal P of R.

(d) M is finitely cogenerated.

Then (a) ⇒ (b), (b) ⇒ (c) and (c) ⇒ (d).

Proposition 25. [13, 3.5] Let M be a comultiplication R-module. Then we have
the following.

(a) Let {Mλ}λ∈Λ be a collection of submodules ofM such that ∩λ∈ΛMλ = 0 and let
A =

∑
λ∈ΛAnnR(Mλ). Then R = AnnR(X) + A for every finitely generated

submodule X of M .

(b) Every finitely generated submodule of M is finitely cogenerated.

Lemma 26. [10, 3.14] and [13, 3.5] Let M be a comultiplication R-module such
that there exists a family of submodules Lλ (λ ∈ Λ) such that ∩λ∈ΛLλ = 0. Then
we have the following.

(a) N = ∩λ∈Λ(N + Lλ) for every submodule N of M .

(b) For each finitely generated submodule K of M there exists a finite subset ∆ of
Λ such that R =

∑
δ∈∆AnnR(Lδ)+AnnR(K) and, hence, K ∩ (∩δ∈∆Lδ) = 0.

Let Lλ (λ ∈ Λ) be the collection of all completely irreducible submodules of M .
Then we define

ξ(M) =
∑
λ∈Λ

AnnR(Lλ).

Note that ξ(M) is an ideal of R. By a minimal completely irreducible submodule
of M we mean a completely irreducible submodule L of M such that there does not
exist a completely irreducible submodule K of M with K ⊂ L.

Proposition 27. [7, 1.12] and [13, 3.12] Let M be an R-module. Then we have
the following.

(a) If M is a comultiplication module, then R = ξ(M)+AnnR(m) for all m ∈M .

(b) If R = ξ(M) + AnnR(m) for all m ∈ M , then L = (0 :M AnnR(L)) for every
minimal completely irreducible submodule L of M .
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(c) If M is a comultiplication module and P is a maximal ideal of R with ξ(M) ⊆
P , then MP = 0.

Theorem 28. [7, 1.13] Let M be a comultiplication R-module. Then there exist
minimal completely irreducible submodules Lλ (λ ∈ Λ) of M such that the following
hold.

(a)
⋂

λ∈Λ Lλ = 0.

(b)
⋂

λ∈Λ\{δ} Lλ ̸= 0 for all δ ∈ Λ.

(c) For each completely irreducible submodule L of M there exists an λ ∈ Λ such
that Lλ ⊆ L.

(d) ξ(M) =
∑

λ∈ΛAnnR(Lλ).

Elements mλ (λ ∈ Λ) of an R-module M are called independent provided the
sum

∑
λ∈ΛRmλ is direct.

Proposition 29. [6, 2.4] Let M be a comultiplication R-module. Let n be a positive
integer and let mi (1 ≤ i ≤ n) be independent elements of M . Then the submodule
Rm1 ⊕ ...⊕Rmn is cyclic.

A proper submodule N of an R-module M is said to be prime if, for any r ∈ R
and any m ∈M with rm ∈ N , we have m ∈ N or r ∈ (N :R M) [35].

Theorem 30. [7, 1.6] and [15, 2.3] Let M be a comultiplication R-module. Then
we have the following.

(a) If the radical of M is zero, then M is a semisimple R-module.

(b) If AnnR(M) is a prime ideal of R and the intersection of all prime submodules
of M is zero, then M is a semisimple R-module.

Let N be a submodule of an R-module M . Then N is said to be small if for
every proper submodule L of M , L+N =M implies that L =M [8].

An R-moduleM is said to be uniform if each of its non-zero submodules is large
[8].

Theorem 31. [12, 3.13, 3.12] and [18, 2.7] Let M be a faithful finitely generated
comultiplication R-module. Then we have the following.

(a) A submodule N of M is essential if and only if there exists a small ideal I of
R such that N = (0 :M I).

(b) M is uniform if and only if every proper ideal of R is small.

(c) If N is a direct summand of M , then AnnR(N) is a direct summand of R.
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Theorem 32. [12, 3.14](Dual of Nakayama’s lemma) For an ideal I of R, the
following are equivalent.

(a) I ⊆ Jac(R);

(b) For every finitely cogenerated R-module M , if (0 :M I) = 0, then M = 0;

(c) For every finitely cogenerated R-module M , (0 :M I) is large in M .

Remark 33. [18, 2.4] It is well known that if M is a finitely generated multiplication
R-module and I, J are ideals of R such that IM ⊆ JM , then I ⊆ J + AnnR(M).
But the dual of this fact is not true in general. For example, let p be a prime
number. Then the Z-module Zp∞ is a faithful Artinian comultiplication Z-module
such that (0 :Zp∞ qZ) = (0 :Zp∞ Z) for each prime number q ̸= p, while qZ ̸= Z.
Next proposition shows that this is true for comultiplication modules under some
restrictive conditions.

Proposition 34. [18, 2.5] Let M be a comultiplication R-module and (0 :M I) ⊆
(0 :M J) for some ideals I and J of R. Then we have the following.

(a) J ⊆ I if there exists a finitely generated multiplication submodule N of M such
that AnnR(N) ⊆ I.

(b) J ⊆ I if I ∈ SuppR(M).

Definition 35. [56, 5.1] An R-module M is said to be a p-comultiplication module
if, for each non-trivial submodule N of M , there is a prime ideal P of R, containing
AnnR(M), such that N = (0 :M P ).

Lemma 36. [56, 5.2] Suppose that R = R0 ×R1 and M is an R–module. Then M
is p-comultiplication if and only if either (1) for some i = 0, 1, RiM = 0 and M is a
p-co-m Ri-module or (2) M = M0 ⊕M1 where Mi is a simple Ri-module such that
R1−iMi = 0.

Theorem 37. [56, 5.5] Assume that M is a p-comultiplication module. In either
of the following cases, M is cyclic.

(a) M has a maximal submodule.

(b) AnnR(M) is not a prime ideal of R.

(c) R/AnnR(M) is an integral domain with finitely many height one primes such
that every non-zero prime ideal of R/AnnR(M) contains a height one prime
ideal; in particular, if R/AnnR(M) is a valuation domain.

(d) R/AnnR(M) is a Noetherian domain with Krull dimension ≤ 1, for example,
a Dedekind domain.
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Corollary 38. [56, 5.6] A multiplication or finitely generated R-module M is a p-
comultiplication module if and only if it is cyclic and R/AnnR(M) is a p-comultiplication
module.

Theorem 39. [56, 5.8] A ring R is a p-comultiplication module over itself if and
only if either R is a field or R = F1 × F2, where Fi’s are fields or R is an SPIR
with unique prime ideal Rp and p2 = 0.

Corollary 40. [56, 5.9] A ring R is a p-comultiplication module over itself if and
only if every nontrivial ideal of R is prime.

Corollary 41. [56, 5.10] A cyclic R-module M is p-comultiplication if and only
if either AnnR(M) is a maximal ideal or an intersection of two maximal ideals or
AnnR(M) = m2 for some maximal ideal M of R with dimR/mm/m

2 = 1

We now consider how comultiplication modules behave under localization. Let
M be an R-module. For any prime ideal P of R we set

IP = {r ∈ R : rc = 0 for some c ∈ R \ P}, and

TP = {m ∈M : cm = 0 for some c ∈ R \ P}.

Note that IP is an ideal of R, TP is a submodule of M and IPM ⊆ TP . We shall
call the prime ideal P good for M if there exists d ∈ R \ P such that dTP = 0. For
example, P is good for M , provided that TP is finitely generated [6].

Theorem 42. [6, 2.5] Let M be an R-module such that every maximal ideal of
R is good for M . Then M is a comultiplication R-module if and only if MP is a
comultiplication RP -module for every maximal ideal P of R.

Corollary 43. [6, 2.6] Let R be a Noetherian ring and let M be a comultiplication
R-module. Then the RP -module MP is a comultiplication module for every prime
ideal P of R.

Let M be an R-module. Clearly

(0 :M
∑
λ∈Λ

Aλ) =
⋂
λ∈Λ

(0 :M Aλ),

for any collection of ideals Aλ (λ ∈ Λ) of R. Moreover, if A and B are ideals of R,
then (0 :M A)+ (0 :M B) ⊆ (0 :M A∩B). Note that if A and B are ideals of R such
that R = A+B, then

(0 :M A ∩B) = (0 :M A ∩B)B + (0 :M A ∩B)A ⊆ (0 :M A) + (0 :M B),

and hence, (0 :M A ∩B) = (0 :M A) + (0 :M B). Moreover, if U is a simple module
and A and B are any ideals of R such that (A∩B)U = 0, then ABU = 0 and hence,

******************************************************************************
Surveys in Mathematics and its Applications 14 (2019), 61 – 108

http://www.utgjiu.ro/math/sma

http://www.utgjiu.ro/math/sma/v14/v14.html
http://www.utgjiu.ro/math/sma


Survey on comultiplication modules 71

AU = 0 or BU = 0, so that (0 :U A ∩ B) = (0 :U A) + (0 :U B). This can easily
be extended to semisimple modules, so that (0 :X A ∩ B) = (0 :X A) + (0 :X B)
for every semisimple R-module X and arbitrary ideals A and B of R. However, in
general, (0 :M A) + (0 :M B) ̸= (0 :M A ∩B), as the following example shows [6].

Example 44. [6, 2.7] Let K be any field, Ki = K (i ∈ N), and let T denote the
direct product

∏
i∈NKi. Then T is a commutative ring. Let R denote the subring of

T consisting of all elements (k1, k2, k3, ...), where ki ∈ Ki (i ∈ N), such that there
exists a positive integer n with kn = kn+1 = kn+2 = ... . Then R is a commutative
von Neumann regular ring with socle S = ⊕i∈NKi such that (0 :R A ∩ B) ̸= (0 :R
A) + (0 :R B) for some ideals A and B of R.

A family {Nλ}λ∈Λ of submodules of an R-module M is said to be an inverse
family of submodules of M if the intersection of any two of its submodules again
contains a module in {Nλ}λ∈Λ. Also M , satisfies the property AB5∗ if for every
submodule K of M and every inverse family {Nλ}λ∈Λ of submodules of M , K +
∩λ∈ΛNλ = ∩λ∈Λ(K +Nλ) [67].

Theorem 45. [6, 2.9] Let M be a comultiplication R-module such that (0 :M A ∩
B) = (0 :M A)+(0 :M B) for all ideals A and B of R. Then M is an AB5∗ module.

Theorem 46. [6, 3.1] Let Pλ (λ ∈ Λ) be any non-empty collection of distinct
maximal ideals of R, let k(λ) (λ ∈ Λ) be any collection of positive integers and

let Mλ be any non-zero R-module such that P
k(λ)
λ Mλ = 0 for all λ ∈ Λ. Then

the R-module M = ⊕λ∈ΛMλ is a comultiplication module if and only if Mλ is a

comultiplication module and ∩δ∈Λ\{λ}P
k(δ)
δ ̸⊆ Pλ for all λ ∈ Λ.

Corollary 47. [6, 3.2] Let an R-module M = ⊕λ∈ΛUλ be a direct sum of simple
submodules Uλ (λ ∈ Λ), for some index set Λ. Then M is a comultiplication module
if and only if ∩δ∈Λ\{λ}AnnR(Uδ) ̸⊆ AnnR(Uλ) for all λ ∈ Λ.

Corollary 48. [6, 3.3] Let R be a semiprime ring with socle S. Then the R-module
S is a comultiplication module.

Example 49. [6, 3.4] Let R and S be as in Example 44. Then S is a comultiplication
R-module such that AnnR(N ∩ L) ̸= AnnR(N) +AnnR(L) for some submodules N
and L of S.

We now give an example to show that in Theorem 42 some condition is required
on the maximal ideals of R. If p is any prime in the ring Z of integers, then Z(p)

will denote the localization of Z at the maximal ideal Zp and M(p) the localization
of any Z-module M at Zp.

Example 50. [6, 3.5] Let I denote an infinite set of primes in Z and let M denote
the Z-module ⊕p∈I(Z/Zp). Then M(p) is a simple (and hence comultiplication) Z(p)-
module for every p ∈ I but the Z-module M is not a comultiplication module.
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Here we give a simple example to show that, in general, the condition that

∩δ∈Λ\{λ}P
k(δ)
δ ̸⊆ Pλ in Theorem 46 cannot be replaced by the simpler condition that

∩δ∈Λ\{λ}Pδ ̸⊆ Pλ.

Example 51. [6, 3.5] Let R denote the polynomial ring Z[x] in an indeterminate x,
let I be an infinite set of primes in Z and let Mp denote the maximal ideal Zp+Rx
of R for each p ∈ I. Let {n(p) : p ∈ I} be any unbounded collection of positive
integers. Let Q be any maximal ideal of R such that x ̸∈ Q. Then ∩p∈IMp ̸⊆ Q but

∩p∈IM
n(p)
p ⊆ Q.

Lemma 52. [6, 4.3] The following statements are equivalent for an R-module M .

(a) For each finitely generated submodule L of M , every homomorphism β : L →
M is trivial.

(b) Rm = (0 :M AnnR(Rm)) for all m ∈ M and AnnR(N ∩ K) = AnnR(N) +
AnnR(K) for all finitely generated submodules N and K of M .

Theorem 53. [6, 4.4] Let M be a Noetherian R-module such that

(a) Rm = (0 :M AnnR(Rm)) for all m ∈M , and

(b) AnnR(N ∩ K) = AnnR(N) + AnnR(K) for all submodules N and K of M .
Then M is quasi-injective.

Theorem 54. [6, 4.6] Let M be a quasi-injective R-module. Then the following
statements are equivalent.

(a) Rm = (0 :M AnnR(Rm)) for all m ∈M .

(b) L = (0 :M AnnR(L)) for every finitely generated submodule L of M .

Corollary 55. [6, 4.7] Let M be a Noetherian quasi-injective R-module. Then M
is a comultiplication module if and only if Rm = (0 :M AnnR(Rm)) for all m ∈M .

Corollary 56. [6, 4.8] Let M be a Noetherian R-module such that AnnR(N ∩
K) = AnnR(N) + AnnR(K) for all submodules N and K of M . Then M is a
comultiplication module if and only if Rm = (0 :M AnnR(Rm)) for all m ∈M .

Given a submodule N of an R-module M , we know that there exists at least
one complement K of N . However, K need not be unique. For example, if F is a
field, V a two-dimensional vector space over F and U a one-dimensional subspace
of V , then every one-dimensional subspace X of V other than U is a complement of
U . In particular, if F is an infinite field, then there are an infinite number of one-
dimensional subspaces of V , and hence there are an infinite number of complements
of U in V . We shall say that an R-module M has unique complements, provided
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Survey on comultiplication modules 73

that, for each submodule N of M , there exists a unique complement of N in M .
For example, simple modules have unique complements. More generally, uniform
modules have unique complements. If U is a uniform module, then 0 is the unique
complement of every non-zero submodule and U is the unique complement of 0.
Thus, U has unique complements. In below we show that comultiplication modules
over commutative rings have unique complements [7].

Theorem 57. [7, 2.1] The following statements are equivalent for a submodule N
of an R-module M .

(a) N has a unique complement in M .

(b) {m ∈M : mR ∩N = 0} is a submodule of M .

(c) Given elements x and y inM with xR∩N = yR∩N = 0, then (x+y)R∩N = 0.

(d) Given submodules K and L of M such that K ∩N = L ∩N = 0, then (K +
L) ∩N = 0.

(e) Given submodules Lλ (λ ∈ Λ) such that N ∩ Lλ = 0 (λ ∈ Λ), then N ∩
(
∑

λ∈Λ Lλ) = 0.

Moreover, in this case, {m ∈ M : mR ∩N = 0} is the unique complement of N in
M .

Corollary 58. [7, 2.2] An R-module M has unique complements if and only if for
every submodule N of M the set {m ∈M : mR ∩N = 0} is a submodule of M .

Corollary 59. [7, 2.3] Let M be an R-module with unique complements. Then
every submodule of M has unique complements.

Let A be any ideal of R, and let M be an R-module. Then we define TA(M) to
be the set of elements m in M such that (1 − a)m = 0 for some a ∈ A. Note that
TA(M) is a submodule of M [7].

Lemma 60. [7, 2.7] Let N be a submodule of a comultiplication R-module M , let
A = AnnR(N) and let m ∈M . Then

TA(M) ={m ∈M : Rm ∩N = 0}
={m ∈M : HomR(Rm,N) = 0}
={m ∈M : (0 :N AnnR(m)) = 0}
={m ∈M : Rz = AnnR(m)z, ∀z ∈ N}.

Theorem 61. [7, 2.8] Every comultiplication module has unique complements.
Moreover, if N is any submodule of a comultiplication R-module M , then the unique
complement of N in M is TA(M), where A is the ideal AnnR(N) of R.
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3 Endomorphism rings and Goldie dimension of
comultiplication modules

Let M be an R-module and let EndR(M) be the endomorphism ring of M . A
submodule K of M is called fully invariant if f(K) ⊆ K for every f ∈ EndR(M).

Theorem 62. [10, 3.17], [13, 3.19], [17, 3.3, 3.4], and [18, 2.1] Let M be a
comultiplication R-module. Then the following assertions hold.

(a) Every submodule of M is fully invariant.

(b) If N is a submodule of M , then for each monomorphism f :M →M , f(N) =
N .

(c) EndR(M) is a commutative ring.

(d) If R is an integral domain and M is a faithful R-module, then every non-zero
endomorphism of M is an epimorphism.

(e) For each endomorphism f of M , we have Im(f) = AnnR(Ker(f))M .

(f) If M is a semisimple module, then for each endomorphism f of M , we have
M = Ker(f)⊕ Im(f).

Lemma 63. [10, 2.3] Let M be an R-module and let EndR(M) be a domain. Then
AnnR(M) is a prime ideal of R.

AnR-moduleM is said to be couniform or hollow if each of its proper submodules
is small [8].

Theorem 64. [10, 3.24] Let M be a comultiplication R-module and let EndR(M)
be a domain. Then we have the following.

(a) Each non-zero endomorphism of M is an epimorphism.

(b) M is a couniform R-module.

An R-moduleM is said to be Hopfian (resp. generalized Hopfian (gH for short))
if every surjective endomorphism f ofM is an isomorphism (resp. has a small kernel)
[45].

An R-module M is said to be co-Hopfian if every injective endomorphism f of
M is an isomorphism [46].

Lemma 65. [11, 3.1] and [11, 3.10]

(a) Every comultiplication R-module is co-Hopfian.

(b) Every comultiplication R-module is gH.
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Proposition 66. [11, 3.9] and [66, 2.3] Let M be a comultiplication R-module and
let N be a submodule of M such that M/N is a faithful R-module. Then we have
the following.

(a) M/N is a co-Hopfian R-module.

(b) M/N is gH.

We have shown that in the following examples every comultiplication (resp.
Artinian) R-module is not an Artinian (resp. comultiplication) R-module.

Example 67. [11, 3.2] Let p be a prime number and let R be the ring with underlying
group

R = EndZ(Z(p∞))⊕ Z(p∞),

and with multiplication

(n1, q1).(n2, q2) = (n1n2, n1q2 + n2q1).

Osofsky has shown that R is a non-Artinian injective cogenerator [40, Exa. 24.34.1],
and therefore, since R is a commutative ring, by [40, Prop. 23.13], R is a comultiplication
R-module.

Example 68. [11, 3.3] Let F be a field and let M = ⊕n
i=1Fi, where Fi = F for

i = 1, 2, ..., n. Clearly M is Artinian non-comultiplication F -module.

Let M be an R-module. Set

ΘR(M) = {f :M →M : f(rm) = rf(m), ∀r ∈ R,∀m ∈M}.

Then M is said to be semi-endomorphal if ΘR(M) is a ring [47].

Theorem 69. [17, 3.7] and [15, 2.3] Let M be a comultiplication R-module. Then
we have the following.

(a) M is semi-endomorphal.

(b) If EndR(M) is a division ring, then M is a simple R-module. That is,
comultiplication R-module satisfies the converse of Schur’s Lemma.

An R-module M is said to satisfy Fitting’s Lemma if for each f ∈ EndR(M)
there exists an integer n ≥ 1 such that M = Ker(fn)

⨁
Im(fn) [33].

Theorem 70. [11, 3.4] Let M be a comultiplication R-module satisfying ascending
chain condition on submodules N such that M/N is a comultiplication R-module.
Then M satisfies Fitting’s Lemma.
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Corollary 71. [11, 3.5] LetM be an indecomposable comultiplication module satisfying
ascending chain condition on submodules N such that M/N is a comultiplication R-
module. Let f ∈ EndR(M). Then the following are equivalent.

(a) f is a monomorphism.

(b) f is an epimorphism.

(c) f is an automorphism.

(d) f is not nilpotent.

Remark 72. [11, 3.7] In the Corollary 71, the condition ”M satisfying ascending
chain condition on submodules N such that M/N is a comultiplication R-module”
can not be omitted. For example, let p be a prime number. Then M = Zp∞

is an indecomposible comultiplication Z-module but not satisfying ascending chain
condition on submodules N such that M/N is a comultiplication Z-module. Define
f : Zp∞ → Zp∞ by x → px. Clearly f is an epimorphism with Kerf = Z(1/p+ Z).
Hence, f is not a monomorphism.

Theorem 73. [13, 3.19] LetM be a comultiplication R-module. IfM is an indecom-
posable R-module satisfying the ascending chain condition on submodules N such
that M/N is a comultiplication R-module, then EndR(M) is a local ring.

Lemma 74. [7, 4.1] Let R be a local ring. Then every non-zero comultiplication
R-module M is uniform.

Following [34, page 8], a non-empty family of submodules Nλ (λ ∈ Λ) of an R-
module M is called coindependent, provided that, for each non-empty finite subset
∆ of Λ and element λ ∈ Λ \∆,

Nλ + ∩δ∈∆Nδ =M.

We shall say that module M has finite dual Goldie dimension, provided that, M
does not contain an infinite coindependent family of proper submodules. In this
case, there exists a unique positive integer k, called the dual Goldie dimension of
M , denoted here by dGdimM , such that k is the supremum of the cardinalities of
coindependent families of non-zero submodules [34, 5.2].

Theorem 75. [7, 4.2] LetM be a comultiplication R-module such that the submodules
Rmi (1 ≤ i ≤ n) are independent for some positive integer n and non-zero elements
mi ∈ M (1 ≤ i ≤ n). Then AnnR(mi) (1 ≤ i ≤ n) is a coindependent family of
proper ideals of R.
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A ring R is called semilocal if it contains only a finite number of maximal ideals,
say Pi (1 ≤ i ≤ n). In this case, if k is a positive integer and Ai (1 ≤ i ≤ k) any
coindependent collection of proper ideals of R, then R = Ai+Aj for all 1 ≤ i < j ≤ k.
Thus, for each 1 ≤ i ≤ n, there exists a unique integer j with 1 ≤ j ≤ k and Aj ⊆ Pi.
Thus, k ≤ n. It follows that the R-module R has finite dual Goldie dimension. On
the other hand, if R is any ring and Qi (1 ≤ i ≤ t) any collection of distinct maximal
ideals of R, for some positive integer t, then clearly Qi (1 ≤ i ≤ t) are coindependent
submodules of the R-module R. Thus, a ring R is semilocal if and only if the R-
module R has finite dual Goldie dimension and, in this case, dGdimR is precisely
the number of distinct maximal ideals of R [7].

It is proved in Theorem 24 that every finitely generated comultiplication module
is finitely cogenerated and hence, has finite Goldie dimension. On the other hand,
Theorem 24 also shows that every comultiplication module has essential socle, so
that if it has finite Goldie dimension, then it is finitely cogenerated. Moreover, in [6,
Corollary 2.2], it is proved that, ifM is a non-zero finitely generated comultiplication
module over a ringR, then the ringR/AnnR(M) is semilocal. Now note the following
corollary of Theorem 75.

Corollary 76. [7, 4.3] Let R be a semilocal ring and let M be a comultiplication
R-module. Then M has finite Goldie dimension. Moreover, GdimM ≤ dGdimR.

Corollary 77. [7, 4.4] Let M be a non-zero finitely generated comultiplication R-
module. Then M has finite Goldie dimension if and only if the ring R/AnnR(M) is
semilocal.

If M is a Noetherian comultiplication module, then M is Artinian and hence,
M has finite hollow dimension [34, 5.2]. We next investigate when comultiplication
modules have finite hollow dimension. In particular, we would like to know whether
Corollary 76 has an analogue for hollow dimension. Recall that an ideal A of a ring
R is called (meet) irreducible, provided that A is a proper ideal of R and A ̸= B ∩C
for any ideals B and C, both properly containing A. Clearly, A is an irreducible
ideal of R if and only if the R-module R/A is uniform [7].

Lemma 78. [7, 4.5] Let M a comultiplication R-module such that AnnR(M) is an
irreducible ideal of R. Then M is a hollow module.

Proposition 79. [7, 4.6] LetM be a comultiplication R-module such that R/AnnR(M)
has finite Goldie dimension and AnnR(K ∩ L) = AnnR(K) + AnnR(L) for all
submodules K and L of M . Then M has finite hollow dimension and, moreover,
dGdimM ≤ Gdim(R/(0 : RM)).

4 P -cotorsion, P -cocyclic, and comultiplication modules

Every multiplication module over an Artinian ring is cyclic [39]. In below, it is
shown that the dual of this fact is not true in general.
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Theorem 80. [17, 3.5] Let R be an Artinian non-local ring and M be a faithful
comultiplication R-module. Then M is not a cocyclic R-module.

Example 81. [17, 3.6] Z6 is an Artinian non-local ring and Z6 (as a Z6-module)
is a faithful comultiplication module. But Z6 is not a cocyclic Z6-module.

An R-module M is said to be coprimal if M ̸= 0 and ZdR(M) is an ideal of R,
where ZdR(M) is the set of all zero divisors of M [36].

Theorem 82. [15, 2.3] Let M be a comultiplication R-module. Then we have the
following.

(a) If M is a finitely generated R-module, then M is cocyclic or R/AnnR(M) is
a decomposable ring.

(b) If M is a coprimal R-module, then M is cocyclic.

Theorem 83. [10, 3.17] Every cocyclic module over a complete Noetherian local
ring is a comultiplication module.

Theorem 84. [15, 2.5] Let R be a Noetherian ring and let M be a finitely generated
cocyclic R-module. Then M is a comultiplication R-module. In particular, every
cocyclic module over an Artinian ring is a comultiplication module.

Theorem 85. [66, 2.11] LetM be a cocyclic Z-module, thenM is a comultiplication
module.

In the following example we see that not every cocyclicR-module is a comultiplica-
tion R-module in general.

Example 86. [6, 3.7] Let S be any non-zero integral domain which is not a local
ring (e.g., S could be the ring Z). Let U be any simple S-module and let E be the
injective envelope of U . Let R = E⊕S be the trivial extension of E by S. Then the
R-module R is a cocyclic module which is not a comultiplication module.

Theorem 87. [6, 3.9] Let R be a Dedekind domain. Then a non-zero R-module
M is a comultiplication module if and only if M is cocyclic or there exist positive
integers n, k(1), ..., k(n) and distinct maximal ideals Pi (1 ≤ i ≤ n) of R such that

M ∼= (R/P
k(1)
1 ⊕ ...⊕R/P

k(1)
1 ).

Let M be an R-module and let P be a maximal ideal of R. Then the set

TP (M) = {m ∈M | (1− p)m = 0 for some p ∈ P}

is a submodule of M . M is said to be P -torsion module if TP (M) = M [63]. M is
said to be P -cyclic module if there exist x ∈M and q ∈ P such that (1− q)M ⊆ Rx
[39].
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In [39], El-Bast and Smith have given a characterization of multiplication modules
which is essentially a useful method for studying multiplication modules. They
showed that an R-module M is a multiplication module if and only if, for each
maximal ideal P of R, M is either P -torsion module or P -cyclic module. Dually,
in this regard, for a maximal ideal P of R, the notion of P -cotorsion (resp. P -
cocyclic) modules (see Definitions 90 and 88) were introduced and proved that if M
is a comultiplication R-module then, for any maximal ideal P of R, M is P -torsion
module or P -cocyclic module. Moreover, the converse holds if M is Noetherian (see
Theorem 93).

Definition 88. [15, 2.6] Let M be an R-module and let P be a maximal ideal of R.
We say that M is P -cocyclic module, provided that there exist p ∈ P and completely
irreducible submodule L of M such that (1− p)L = 0. This is, in fact, a dual notion
of P -cyclic modules.

Definition 89. [19, 2.7] Let P be a prime ideal of R and let N be a submodule of
an R-module M . The P -interior of N , relative to M , is defined as the set

IMP (N) = ∩{L | L is a completely irreducible submodule of M and

rN ⊆ L for some r ∈ R− P}.

Definition 90. [15, 2.7] Let M be an R-module and let P be a maximal ideal of R.
We say that M is P -cotorsion module if IMP (N) = 0. This can be regarded as a dual
notion of P -torsion modules.

Example 91. [15, 2.8]

(a) Let P be a maximal ideal of R. Then every cocyclic R-module is a P -cocyclic
R-module. In particular, for each prime number q of Z the Z-module Zp∞ is
a qZ-cocyclic Z-module.

(b) For each prime number p of Z, we have Z is a pZ-cotorsion Z-module.

(c) Let p be a prime number. Then the Z-module Zp ⊕ Zp is neither pZ-cocyclic
nor pZ-cotorsion.

Theorem 92. [15, 2.9]

(a) Let M be an Artinian P -cotorsion R-module for some maximal ideal P of R.
Then M is P -cocyclic.

(b) Let M be a non-zero comultiplication R-module. Then M is a P -cocyclic R-
module for some maximal ideal P of R.

(c) Let M be a Noetherian P -cocyclic R-module for each maximal ideal P of R.
Then M is an Artinian comultiplication R-module.
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Theorem 93. [15, 2.10] Let M be an R-module. If M is a comultiplication module,
then, for any maximal ideal P of R, M is a P -torsion module or P -cocyclic module.
Moreover, the converse holds if M is Noetherian.

Corollary 94. [15, 2.11] Let M be a finitely generated comultiplication R-module.
Then M is a P -cocyclic module for every maximal ideal P of R.

Proposition 95. [7, 1.9] LetM be an R-module such that every cocyclic homomorphic
image of M is a comultiplication module. Suppose further that, for every maximal
ideal P of R, the module M is a P -torsion module or a P -cocyclic module. Then
M is a comultiplication module.

Theorem 96. [15, 2.12] Let I be an ideal of R and let M be a comultiplication
R-module. Then M/(0 :M I) is a comultiplication R-module if I is a multiplication
ideal of R and M is a Noetherian R-module.

Corollary 97. [15, 2.13] Let R be a multiplication ring, m a maximal ideal of R
and let M be a Noetherian comultiplication R-module. Then, for each integer n, the
factor module (0 :M mn+1)/(0 :M mn) is simple.

Theorem 98. [15, 2.14] Let M be an R-module and let {Mλ}λ∈Λ be a collection of
submodules of M such that M/Mλ is a comultiplication R-module and ∩λ∈ΛMλ = 0.
If M is a comultiplication R-module, then, for each maximal ideal P of R, M is
either a P -torsion module or there exist a completely irreducible submodule L/Mλ

of M/Mλ for some λ ∈ Λ and p ∈ P , with (1 − p)L = 0. The converse holds if M
is a Noetherian R-module.

In [63], Smith proved that if N1 and N2 are submodules of an R-module M
such that N1, N2 and N1 + N2 are all multiplication modules, then N1 ∩ N2 is
a multiplication module. The following theorem is the dual of this fact under a
restrictive condition.

Theorem 99. [15, 2.15] Let M be a Noetherian R-module and let N1 and N2 be
two submodules of M such that M/N1,M/N2, and M/(N1∩N2) are comultiplication
R-modules. Then M/(N1 +N2) is a comultiplication R-module.

5 Strong comultiplication modules and copure
submodules

An R-module M satisfies the double annihilator conditions (DAC for short) if, for
each ideal I of R, we have I = AnnR(0 :M I) [41].

Definition 100. [14, 2.1] We say that an R-module M is a strong comultiplication
module if M is a comultiplication R-module and satisfies the DAC conditions.
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Example 101. [14, 2.2] Every cocyclic R-module over a complete Noetherian local
ring is a strong comultiplication R-module.

Example 102. (a) For each positive integer n, the Zn-module Zn is a strong
comultiplication module.

(b) Let R = Z2[x, y, z] be the polynomial ring over a field Z2 in indeterminates
x, y, z. Then R̄ = R/(x2, y2, z2) is a strong comultiplication R̄-module.

(c) The Z6-module Z2 is not a strong comultiplication module.

Example 103. [14, 2.3] Let p be a prime number and n be a positive integer. Then
Zp∞ and Zn are comultiplication Z-modules but they are not strong comultiplication
Z-modules.

It is possible, for a comultiplication R-module M , to have a submodule N for
which there exist two ideals I ̸= J with the property (0 :M I) = N = (0 :M J).
For example, if M = Z2∞ , then (0 :M 2Z) = (0 :M 6Z). It is easy to see that, for
each submodule N of an R-module M , there exists a unique ideal I of R such that
N = (0 :M I) if and only if M is strong comultiplication R-module [56].

Proposition 104. [14, 2.4] Let M be an R-module. Then we have the following.

(a) Let M be a faithful cogenerator for R and let S = EndR(M). If every f ∈ S
is trivial, then M is a strong comultiplication R-module.

(b) If R is a Noetherian ring and M is a strong comultiplication R-module, then
M is an injective R-module.

Theorem 105. [14, 2.5] Let M be a strong comultiplication R-module and let I be
an ideal of R. Let N be a submodule of M . Then we have the following.

(a) M/N is a comultiplication R-module if and only if AnnR(N)AnnR(K/N) =
AnnR(K) for each submodule K of M with N ⊆ K.

(b) If M/N is a comultiplication R-module, then AnnR(N) is a multiplication
ideal of R.

(c) If M/(0 :M I) is a comultiplication R-module, then I is a multiplication ideal
of R.

Example 106. [14, 2.6] Let A = K[x, y] be the polynomial ring over a field K
in two indeterminates x, y. Then Ā = A/(x2, y2) is a strong comultiplication Ā-
module. But Ā/Āx̄y is not a comultiplication Ā-module, by [40, 24.4]. Furthermore,
this example shows that not every homomorphic image of a strong comultiplication
module is a comultiplication module, in general.
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Theorem 107. [56, 4.4] Assume that M is a strong comultiplication R-module.
Then we have the following.

(a) M is finitely cogenerated and both M and R are amply supplemented R-
modules.

(b) R is semilocal.

Recall that a reduced ring is one with no nilpotents.

Corollary 108. [56, 4.5] IfM is a strong comultiplication module, having a maximal
submodule over a reduced ring R, then M ∼= R and R is semisimple.

Definition 109. [14, 2.7] We say that a submodule N of an R-module M is copure
if (N :M I) = N + (0 :M I) for each ideal I of R.

Example 110. [14, 2.8] Every submodule of Zk (k ∈ N) as a Z-module is copure.

Theorem 111. [14, 2.9] Let M be an R-module and let N and K be submodules of
M such that N ⊆ K ⊆M . Then we have the following.

(a) If K is a copure submodule of M and N is a copure submodule of K, then N
is a copure submodule of M .

(b) If N is a copure submodule of M , then N is a copure submodule of K.

(c) If K is a copure submodule of M , then K/N is a copure submodule of M/N .

(d) If N is a copure submodule of M and K/N is a copure submodule of M/N ,
then K is a copure submodule of M .

(e) If N is a copure submodule of M , then there is a bijection between the copure
submodules of M containing N and the copure submodules of M/N .

Theorem 112. [14, 2.10] For an exact sequence

0 −→ ψ
N −→ φ

L −→ K −→ 0

of R-modules and R-homomorphisms, the following assertions are equivalent.

(a) For every ideal I of R, the following sequence is exact.

0 −→ ψ
HomR(R/I,N)

φ−→ HomR(R/I, L) −→ HomR(R/I,K) −→ 0.

(b) ψ(N) is a copure submodule of L.

Proposition 113. [14, 2.11] Let M be an R-module. Then we have the following.
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(a) If M is a comultiplication module and N is a large and pure submodule of M ,
then N =M .

(b) If N and K are submodules of M such that N ∩ K and N + K are copure
submodules of M , then N is a copure submodule of M .

(c) If {Mλ}Λ is a family of submodules of M with copure submodules Nλ ⊆ Mλ,
then

∑
λ∈ΛNλ is a copure submodule of

∑
λ∈ΛMλ.

Theorem 114. [14, 2.12] Let R be a principal ideal domain and let M be an R-
module. Then we have the following.

(a) Every submodule of M is a pure submodule of M if and only if it is a copure
submodule of M .

(b) IfM is a prime module, then every copure submodule ofM is a prime submodule
of M .

Theorem 115. [14, 2.13] Let M be a strong comultiplication R-module. Then we
have the following.

(a) N is a copure submodule of M if and only if AnnR(N) is a pure ideal of R.

(b) An ideal I of R is pure if and only if (0 :M I) is a copure submodule of M .

(c) If N is a copure submodule ofM , then, for every non-empty collection {Iλ}λ∈Λ
of ideals of R, we have∑

λ∈Λ
(N :M Iλ) = (N :M ∩λ∈ΛIλ).

(d) If N is a copure submodule of M , then AnnR(N) is the intersection of all
ideals I of R such that N = (N :M I).

Proposition 116. [14, 2.13], [18, 2.7], and [56, 4.3] Let M be an R-module. Then
we have the following.

(a) If M is a comultiplication R-module and SocR(M) is a pure submodule of M ,
then M = SocR(M). In particular if R is a local ring, then M is simple.

(b) If M is a comultiplication R-module and N is a copure submodule of M such
that M/N is a finitely generated R-module, then N is a direct summand of M .

(c) A non-zero multiplication R-module M is strong comultiplication module if
and only if it is finitely generated faithful R-module and R is a comultiplication
ring.
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Proposition 117. [66, 2.4] Let M be a faithful comultiplication R-module with the
property (0 :M I) + (0 :M J) = (0 :M (I ∩ J)) for any two ideals I and J of R, and
N ≤M . Then N is a small submodule of M if and only if there exists a large ideal
I of R such that N = (0 :M I).

Theorem 118. [66, 2.5, 2.8, 2.10, 2.7] Let M be a strong comultiplication R-
module. Then we have the following.

(a) A submodule N of M is large if and only if there exists a small ideal I of R
such that N = (0 :M I).

(b) M is uniform if and only if R is hollow.

(c) M is a semisimple module if and only if R is a semisimple ring.

(d) SocR(M) = (0 :M Jac(R)).

6 Comultiplication modules over special rings and
Fitting ideals

The following example shows that it is possible that every localization of an R-
module M is a comultiplication module, without M being so.

Example 119. [56, 5.4] Let R = Z and M = ⊕p∈PZp, where P is the set of
positive prime integers. Clearly N = ⊕2̸=p∈PZp is a maximal (and hence prime)
submodule of M and N ̸= (0 :M AnnR(N)). Therefore, M is not a comultiplication
R-module. But for each maximal ideal of R such as m = Rp (p ∈ P ), Mm

∼= Zp

as Rm-module and hence is a simple and comultiplication Rm-module. Notice that
M0 = 0 is trivially a comultiplication Q-module.

Lemma 120. [37, 2.4] Every non-zero comultiplication module over a discrete
valuation domain R is indecomposable.

Theorem 121. [37, 2.5] Let R be a discrete valuation domain with a unique maximal
ideal P = Rp. Then the comultiplication modules over R are:

(a) R/Pn, n ≥ 1;

(b) E(R/P ), the injective hull of R/P .

Lemma 122. [56, 2.1] Suppose that M is an R-module and R = R1 × R2, where
R1 and R2 are non-trivial rings. Then M = M1 ⊕M2, where M1 is an R1-module
and M2 is an R2-module. Also, in this case, M is comultiplication module if and
only if both M1 and M2 are so.
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Theorem 123. [56, 2.2] IfM is a faithful comultiplication R-module with a maximal
submodule N and R is a reduced ring with a decomposition as a finite direct product
of indecomposable rings, then M ∼= R and R is semisimple.

Corollary 124. [56, 2.3] Assume that M is a comultiplication R-module having a
maximal submodule (for example, if M is finitely generated) and m = AnnR(M).
Then m is a prime ideal if and only if m is a maximal ideal and M ∼= R/m is a
simple module.

Corollary 125. [56, 2.4] If M is a finitely generated comultiplication R-module
with AnnR(M) a radical ideal, then M is cyclic and R/AnnR(M) is a semisimple
ring.

A chained ring is a ring in which every two ideals are comparable. For example,
localization of Z at any prime ideal or, more generally, every valuation domain is a
chained ring.

Lemma 126. [56, 2.5] If R is a chained ring and M is a comultiplication R-module
having a maximal submodule N , then M is cyclic.

A ring, in which every non-zero proper ideal is a product of prime ideals, is called
a Zerlegung Primideale ring (ZPI-ring).

A principal ideal rings with exactly one prime ideal is called a special principal
ideal ring (SPIR).

Corollary 127. [56, 2.6] Suppose that R is a ZPI-ring andM is a finitely generated
R-module, then M is comultiplication R-module if and only if M is cyclic and
R/AnnR(M) is a finite direct product of SPIRs.

In what follows, by a semi-non-torsion R-module M , we mean a module, which
is a non-torsion module over R/AnnR(M). The following remark states some other
conditions under which a comultiplication module must be cyclic.

Remark 128. [56, 2.7]

(a) If M is a semi-non-torsion comultiplication R-module, then M is cyclic.

(b) IfM is a finitely generated comultiplication R-module and AnnR(M) is irreduci-
ble, then M is cyclic.

(c) If R is a finitely cogenerated ring with irreducible zero ideal and M is a faithful
comultiplication R-module, then M is cyclic.

Proposition 129. [56, 2.10] The following are equivalent for the ring R.

(a) R is a comultiplication ring.
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(b) Every faithful multiplication R-module is a comultiplication R-module.

(c) There exists a finitely generated faithful comultiplication R-module.

Theorem 130. [56, 2.11] Suppose that R =
∏

a∈ARa, where Ra’s are non-trivial
rings. A faithful R-module M is a comultiplication module if and only if M =
⊕a∈AMa, where each Ma is a comultiplication Ra-module and RbMa = 0 for a ̸=
b ∈ A. In particular, R is a comultiplication ring if and only if |A| < ∞ and each
Ra is a comultiplication ring.

Corollary 131. [56, 2.12] Let R be a reduced Noetherian ring. Then R is comultipli-
cation if and only if it is a finite direct product of fields.

We know that if a Noetherian ring is a comultiplication ring, then it is Artinian.
Because an Artinian ring is a finite direct product of some Artinian local rings, to
know which Noetherian rings are comultiplication, it suffices to consider Artinian
local rings. Not all Artinian local rings are comultiplication rings, as the following
example shows [56].

Example 132. [56, 2.15] Set R0 = K[X;Y ], where K is a field and m =< X,Y >.
Let R = R0/m

2. Then clearly R is an Artinian local ring. But R is not a
comultiplication ring.

Example 133. [56, 2.17] Set R0 = Z3[X,Y ] and R = R0/I, where I =< XY,X2−
Y 2 >. Then R is an Artinian local comultiplication ring, but not an SPIR.

Example 134. [56, 2.18] Set R0 = Z3[X,Y ] and R = R0/I, where I =< XY,X2−
Y 2 >. Let x, y denote the images of X,Y in R, respectively and m =< x, y >. Then
the maximal ideal m of R, being a submodule of a comultiplication module, is itself
a finitely generated comultiplication module which is not cyclic.

For a set {x1, ..., xn} of generators of an R-moduleM , there is an exact sequence

0 −→ N −→
ϕ

Rn −→M −→ 0,

where Rn is a free R-module with the set {e1, ..., en} of basis, the R-homomorphism
ϕ is defined by ϕ(ej) = xj and N is the kernel of ϕ. Let N be generated by
uλ = a1λe1 + ...+ anλen, with λ in some index set Λ. Let Fitti(M) be the ideal of
R, generated by the minors of size n− i of the matrix⎛⎜⎝ . . . a1λ . . .

...
...

...
. . . anλ . . .

⎞⎟⎠ .

For i > n, Fitti(M) is defined to be R, and for i < 0, Fitti(M) is defined to be the
zero ideal. It is known that Fitti(M) is an invariant ideal, determined by M , that
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is, it is determined uniquely by M and it does not depend on the choice of the set of
generators of M [43]. The ideal Fitti(M) will be called the i-th Fitting ideal of the
moduleM . It follows, from the definition of Fitti(M), that Fitti(M) ⊆ Fitti+1(M).
Moreover, it is shown that Fitt0(M) ⊆ AnnR(M) and (AnnR(M))n ⊆ Fitt0(M)
(M is generated by n elements) [38]. The most important Fitting ideal of M is the
first of the Fittj(M) that is non-zero. We shall denote this Fitting ideal by I(M).

Theorem 135. [48, 1.3] Let M be a finitely generated comultiplication R-module.
If R is an integral domain, then I(M) = Fitt0(M) or M ∼= R.

Proposition 136. [48, 1.6] Let M be a finitely generated comultiplication module
over an integral domain R. If I(M) is a prime ideal of R, then M is a simple
R-module.

Proposition 137. [48, 1.7] Every finitely generated comultiplication module over a
valuation ring is cyclic.

Lemma 138. [48, 1.8] Let M be a finitely generated comultiplication R-module. If
R is a Dedekind domain, then M is cyclic.

Lemma 139. [48, 1.9] Let M be a finitely generated comultiplication R-module. If
M = ⟨x1, ..., xn⟩ and ∩n

i=1Rxi = 0, then Fittn−1(M) = R.

Proposition 140. [48, 1.11] Let M be a decomposable comultiplication R-module.
If M is generated by two elements, then Fitt0(M) = AnnR(M).

Theorem 141. [48, 1.12] Let M be a finitely generated R-module.

(a) If I(M) is a prime ideal of R, then AnnR(M) ⊆ I(M).

(b) If I(M) = Q1...Qn such that Qi are distinct maximal ideals of R, then we have
AnnR(M) ⊆ I(M).

(c) If AnnR(M) = Qn for some maximal ideal Q of R and positive integer n, then
I(M) = R or I(M) is a Q-primary ideal of R.

Proposition 142. [48, 1.13] Let M be a comultiplication R-module. If M is a
decomposable module and M = ⟨x1, ..., xn⟩, then (AnnR(M))n−1 ⊆ Fitt0(M).

Theorem 143. [48, 1.14] Let M be a finitely generated comultiplication R-module.
If AnnR(M) = Q1, ..., Qn, where Qi, 1 ≤ i ≤ n, are distinct maximal ideals of R,
then M ∼= R/Q1 ⊕ ...⊕R/Qn.

Proposition 144. [48, 1.15] Let M be a finitely generated comultiplication R-
module. If R is a von Neumann regular ring, then I(M) = Q1...Qn, where Qi

are maximal ideals of R, 1 ≤ i ≤ n.
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Theorem 145. [48, 1.16] Let M be a finitely generated comultiplication R-module.
If Fitt0(M) = Q1...Qn, where Qi, 1 ≤ i ≤ n, are distinct maximal ideals of R, then
M is a semisimple module.

Lemma 146. [48, 1.17] LetM be a finitely generated R-module. If AnnR(M) = ⟨e⟩,
where e is a non-zero idempotent element of R, then I(M) = AnnR(M).

Theorem 147. [48, 1.18] Let M be a finitely generated comultiplication R-module.
If there is a submodule N of M such that AnnR(N) = ⟨e⟩, where e is an idempotent
element of R, then N is a direct summand of M and I(M) ⊆ ⟨e⟩.

Corollary 148. [48, 1.19] Let M be a finitely generated strong comultiplication R-
module. If e is an idempotent element of R, then e ∈ AnnR(M) or 1−e ∈ AnnR(M).

Proposition 149. [48, 1.20] Let M be a finitely generated module over a Prüfer
domain R and Q be a maximal ideal of R. Then AnnR(M) = Qn for some positive
integer n if and only if Fitt0(M) = Qk for some k ∈ N .

Theorem 150. [48, 1.21] Let M be a finitely generated comultiplication R-module
over a Prüfer domain R. If Fitt0(M) = Qn, where Q is a maximal ideal of R and
n is a positive integer, then M is cyclic.

Theorem 151. [48, 1.22] Let M be a finitely generated comultiplication R-module.
Then R/Fitt0(M) is a semilocal ring.

Corollary 152. [48, 1.23] Let M be a finitely generated comultiplication R-module.
If R is not a semilocal ring, then I(M) = Fitt0(M).

Let G be an abelian group with identity e. The ring R, graded by the group
G, will be denoted by R = ⊕g∈GRg, where Rg is an additive subgroup of R and
Rg.Rh ⊆ Rgh for every g, h in G. If the inclusion is an equality, then the ring is
called strongly graded. If an element of R belongs to ∪g∈GRg = h(R), then it is
called homogeneous and any xg ∈ Rg is said to have degree g. Now, let R be a
graded ring. Then an R-module M is said to be a graded module if M = ⊕g∈GMg

for a family of subgroups {Mg}g∈G of M such that Rg.Mh ⊆ Mhg for every g, h in
G. Analogously is defined strongly graded module. A graded submodule N of M is a
submodule, verifying N = ⊕g∈G(N ∩Mg).

In the remainder of this section, R will denote a commutative G-graded ring
with identity.

Definition 153. [16, 3.1] We say that a graded R-module M is a comultiplication
graded module ( gr-comultiplication module) if, for every graded submodule N of
M , there exists an ideal I of R such that N = (0 :M I).
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Remark 154. [16, 3.2] It is clear that every comultiplication R-module, which is a
graded module, is a gr-comultiplication R-module. Furthermore, if N = (0 :M I) for
some ideal I of R, then N = (0 :M AnnR(N)). Thus, the ideal I of the definition
can be taken graded. We will show that there is an example of a gr-comultiplication
module that is not comultiplication module (see Example 155 (d)).

Example 155. [16, 3.3]

(a) Let G be a finite group. Then, for each positive integer n, the group ring
R = Zn[G] is a gr-comultiplication R-module [7, 15.26 (5)].

(b) Let K be a field, A = K[x, y] be the polynomial ring over a field K in two
indeterminates x, y. Then Ā = A/(x2, y2) is a gr-comultiplication Ā-module.

(c) Let K be a field, R = K[x], where x is an indeterminate and let M =
K[x−1, x]. Then R is a graded R-submodule of M and R ̸= (0 :M AnnR(R)) =
M . Thus, M is not a gr-comultiplication R-module.

(d) If we take the graded ring R = K[x, x−1](= K[x]x), where K is a field and x
is an indeterminate, then R is a gr-comultiplication R-module, which is not a
comultiplication R-module.

Theorem 156. [16, 3.4] Let R be a strongly graded ring and let M be a graded R-
module. ThenM is a gr-comultiplication module if and only ifMe is a comultiplication
module as an Re-module.

Lemma 157. [16, 3.5] An R-module M is a gr-comultiplication R-module if and
only if for all graded submodules N and K of M with AnnR(N) = AnnR(K), we
have N = K.

Theorem 158. [16, 3.6] Let R be a strongly graded ring and let M be a graded
R-module. Then we have the following.

(a) If M is a comultiplication Re-module, then M =Me.

(b) If M is a gr-multiplication R-module, then Jgr(M) ∩Me = J(Me).

Theorem 159. [16, 3.7] Let M be a gr-comultiplication R-module. Then we have
the following.

(a) Every graded submodule of M is a gr-comultiplication R-module.

(b) If P is a gr-maximal ideal of R and (0 :M P ) ̸= 0, then (0 :M P ) is a gr-simple
R-submodule.

(c) If I and J are graded ideals of R such that (0 :M I) = (0 :M J), then IM =
JM .
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(d) If B is a graded ideal of R such that (0 :M B) = 0, then, for each homogeneous
element m ∈M , there exists an element b ∈ B such that m = bm.

(e) If B ⊆ Jgr(R) and (0 :M B) = 0, then M = 0.

Theorem 160. [16, 3.8] Let M be a gr-comultiplication R-module. Then we have
the following.

(a) If {Mλ}λ∈Λ is a collection of graded submodules of M , then

(0 :M ∩λ∈ΛAnnR(Mλ)) =
∑
λ∈Λ

(0 :M AnnR(Mλ)).

(b) If {Mλ}λ∈Λ is a family of submodules of M with ∩λ∈ΛMλ = 0, then, for every
graded submodule N of M , we have

N = ∩λ∈Λ(N +Mλ).

(c) If M is finitely generated and B is a graded ideal of R such that (0 :M B) = 0,
then there exists b ∈ B such that 1− b ∈ AnnR(M).

(d) If P is a gr-minimal ideal of R such that (0 :M P ) = 0, then M is gr-cyclic.

(e) If R is a ring, satisfying the descending (res. ascending) chain condition on
graded ideals containing AnnR(M), then M is a gr-Noetherian (resp. a gr-
Artinian) module.

Theorem 161. [16, 3.9] Let M be a gr-comultiplication R-module. Then we have
the following.

(a) Every non-zero graded submodule of M contains a graded minimal submodule
of M .

(b) Let K be a graded submodule ofM . Then K is a gr-minimal submodule ofM if
and only if there exists a gr-maximal ideal P of R such that K = (0 :M P ) ̸= 0.

(c) If R has a unique gr-maximal ideal, then M is a gr-cocyclic R-module.

(d) If M is a faithful finitely generated R-module, then (0 :M I) ̸= 0 for every
proper graded ideal I of R.

(e) If R is a strongly graded ring, and for each family {Nλ}λ∈Λ of graded submodules
of M , we have (

∑
λ∈ΛNλ) ∩Me =

∑
λ∈Λ(Nλ ∩Me), then Socgr(M) ∩Me =

Soc(Me).

Theorem 162. [16, 3.10] Let M be a gr-comultiplication R-module. Then we have
the following.
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(a) Every graded submodule of M is fully invariant.

(b) For every graded endomorphism f of M , there exists an ideal I of R such that
Im(f) = IM .

(c) M is graded co-Hopfian.

(d) If M a is finitely generated R-module, then M is co-Hopfian.

(e) If M is graded semisimple R-module, then, for each graded endomorphism f
of M , we have M = Ker(f)⊕ Im(f).

Theorem 163. [16, 3.11] Let M be a faithful gr-comultiplication R-module. Then
we have the following.

(a) W gr(M) = Zgr(R), where

W gr(M) = {a ∈ h(R) : the homothety M
a→M is not surjective}

and

Zgr(R) = {a ∈ h(R) : the homothety R
a→ R is not injective}.

(b) M is gr-divisible.

(c) For each graded submodule N ofM , we have AnnR(AnnR(M/N)) = AnnR(N).

(d) If M is finitely generated, then M is gr-uniform if and only if every proper
graded ideal of R is gr-small.

(e) If M is finitely generated, then a graded submodule N of M is gr-large if and
only if there exists a gr-small ideal I of R such that N = (0 :M I).

Theorem 164. [16, 3.12] LetM be a gr-comultiplication R-module. IfW gr(M) = 0
and M has a gr-maximal submodule, then M is gr-simple R-module.

Lemma 165. [16, 3.13] Let R be a gr-Noetherian ring and let M be a graded R-
module. Then we have the following.

(a) If M is a gr-comultiplication R-module and S ⊆ h(R) is a multiplicatively
closed subset of R, then S−1M is a gr-comultiplication S−1R-module.

(b) If M is a finitely generated R-module, then M is a gr-comultiplication R-
module if and only ifMP is a gr-comultiplication RP -module for every gr-prime
ideal P of R.
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7 Fully coidempotent modules

Let N and K be two submodules of an R-module M . The product of N and K is
defined by (N :R M)(K :R M)M and denoted by NK. Also, the coproduct of N
and K is defined by (0 :M AnnR(N)AnnR(K)) and denoted by C(NK) [9].

In below, we recall the concept of idempotent submodules, which is introduced
and investigated by some authors (see [5], [4], [34], and [51].)

In [34], a submodule N of an R-module M is called idempotent, provided that
N = Hom(M,N)N =

∑
{ϕ(N) : ϕ :M → N}.

In [5], a submodule N of an R-module M is called idempotent, if N = (N :R
M)N .

Definition 166. [21, 2.1] We say that a submodule N of an R-module M is
idempotent if N = N2.

The following lemma and Example 168 show the relation between the above
various concepts of idempotent submodules.

Lemma 167. [21, 2.2] Let N be a submodule of an R-module M . Consider the
following statements.

(a) N = N2.

(b) N = (N :M)N .

(c) N = HomR(M,N)N =
∑

{ϕ(N) : ϕ :M → N}.

Then (a) ⇔ (b) and (b) ⇒ (c).

Example 168. [21, 2.3] For each prime number p, the submodule N = Zp ⊕ 0 of
the Z-module M = Zp ⊕ Zp is not idempotent but N = HomZ(M,N)N .

Definition 169. [21, 2.4] An R-module M is said to be fully idempotent if every
submodule of M is idempotent.

Definition 170. [21, 3.1] We say that a submodule N of an R-module M is
coidempotent if N = C(N2).

Definition 171. [21, 3.2] An R-module M is said to be fully coidempotent if every
submodule of M is coidempotent.

Example 172. [21, 3.3] For each prime number p, the Z-module Zp is fully coidempo-
tent. Moreover, E(ZP ) = Zp∞ is not a fully coidempotent Z-module.

A non-zero submodule S of an R-moduleM is said to be naturally semi-coprime
if, for a submodule N of M , the relation S ⊆ C(N2) implies that S ⊆ N [9].

In the following proposition, we characterize the fully coidempotent R-modules.
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Proposition 173. [21, 3.4] Let M be an R-module. Then the following statements
are equivalent.

(a) M is a fully coidempotent module.

(b) Every completely irreducible submodule of M is coidempotent.

(c) Every non-zero submodule of M is naturally semi-coprime.

(d) For all submodules N and K of M , we have N +K = C(NK).

Proposition 174. [21, 3.5] Let M be a fully coidempotent R-module. Then we have
the following.

(a) M is a comultiplication R-module.

(b) Every submodule and every homomorphic image of M is fully coidempotent.

(c) If M is a finitely generated R-module, then M is a multiplication module.

(d) If R is a Noetherian ring andM is an injective R-module, then every submodule
of M is also an injective R-module.

The following example shows that the converse of part (a) of the above proposition
is not true in general.

Example 175. [21, 3.6] Z4 is a comultiplication Z-module, which is not fully
coidempotent.

Let M be an R-module and N be a submodule of M . The following example
shows that if N andM/N are fully coidempotent modules, thenM is not necessarily
a fully coidempotent module.

Example 176. [21, 3.7] Consider the Z-module M = Z/4Z and set N = 2Z/4Z.
Then N andM/N are fully coidempotent Z-modules, whileM is not fully coidempotent.

Theorem 177. [21, 3.8] Let M be an R-module. Then we have the following.

(a) If M is a Noetherian fully idempotent module, then M is a fully coidempotent
module.

(c) If R is a von Neumann regular ring and M is a comultiplication R-module,
then M is a fully coidempotent R-module.

(b) IfM is a comultiplication module such that every completely irreducible submodule
of M is a direct summand of M , then M is a fully coidempotent module.

(d) If M is a semisimple comultiplication module, then M is a fully coidempotent
module.
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Theorem 178. [21, 3.9] Let M be a fully coidempotent R-module. Then we have
the following.

(a) M is Hopfian.

(b) If R is a domain and M is a faithful R-module, then M is simple.

Definition 179. [21, 3.10] We say that an R-module M is fully copure if every
submodule of M is copure.

Lemma 180. [21, 3.11] Let M be a semisimple R-module. Then M is fully copure.

Theorem 181. [21, 3.12] Let M be a comultiplication R-module and N be a
submodule of M . Then the following statements are equivalent.

(a) N is a copure submodule of M .

(b) M/N is a comultiplication R-module and N is a coidempotent submodule of
M .

(c) M/N is a comultiplication R-module and K = (N :M AnnR(K)), where K is
a submodule of M with N ⊆ K.

(d) M/N is a comultiplication R-module and (N :M AnnR(K)) = (N :M (N :R
K)), where K is a submodule of M .

Corollary 182. [21, 3.13] Let M be an R-module. Then we have the following.

(a) If M is a fully coidempotent module, then M is fully copure.

(b) If M is a comultiplication fully copure module, then M is fully coidempotent.

The following example shows that in part (b) of the above corollary, the condition
”M is a comultiplication module” can not be omitted.

Example 183. [21, 3.14] Set M = Z2 ⊕ Z2. Then M , as a Z-module, is fully
copure, while M is not fully coidempotent.

Proposition 184. [21, 3.15] Let M be an R-module and N be a submodule of M .
Then we have the following.

(a) If M is a multiplication module and N is a copure submodule of M , then N
is idempotent.

(b) If M is a comultiplication module and N is a pure submodule of M , then N
is coidempotent.

Corollary 185. [21, 3.16] Let M be an R-module. Then we have the following.
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(a) If M is a multiplication fully copure module, then M is fully pure.

(b) If M is a comultiplication fully pure module, then M is fully copure.

(c) IfM is a multiplication fully coidempotent module, thenM is fully idempotent.

(d) IfM is a comultiplication fully idempotent module, thenM is fully coidempotent.

The following example shows that in part (d) of the above corollary, the condition
”M is a comultiplication module” can not be omitted.

Example 186. [21, 3.17] Let

R = {(an) ∈
∞∏
i=1

Z2 : an is eventually constant}

and let

P = {(an) ∈ R : an is eventually 0}.

Then R is a Boolean ring and P is a maximal ideal of R. Moreover, AnnR(P ) = 0.
Hence, P is an idempotent submodule of R but it is not a coidempotent submodule
of R. Thus, R is a fully idempotent R-module but it is not a fully coidempotent
R-module.

Example 187. [21, 3.18] Zn is a fully idempotent and fully coidempotent Zn-module
if and only if n is square free.

Theorem 188. [21, 3.19] Let M be a fully coidempotent R-module. Then we have
the following.

(a) For each submodule K of M and each collection {Nλ}λ∈Λ of submodules of M ,
∩λ∈Λ(Nλ +K) = ∩λ∈ΛNλ +K.

(b) If M is a finitely generated R-module, then M is a semisimple R-module.

Corollary 189. Let M be a fully coidempotent R-module. Then M is a distributive
R-module.

Proof. This follows from Theorem 188 (a) and [64, 2.3].

8 Second submodules and comultiplication modules

A non-zero submodule N of an R-module M is said to be second if, for each a ∈ R,
the homomorphism N

a→ N is either surjective or zero [68]. More information about
this class of modules can be found in [19], [20], [23], [31], and [32].
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Definition 190. [19, 2.1] We say that a second submodule N of an R-module M
is a maximal second submodule of a submodule K of M , if N ⊆ K and there does
not exist a second submodule L of M such that N ⊂ L ⊂ K.

Theorem 191. [19, 2.3] Let M be a finitely cogenerated comultiplication R-module
which satisfies the property AB5∗. Suppose that for each maximal second submodule
K of M , we have that M/K is Artinian. Then the number of maximal second
submodules of M is finite.

Theorem 192. [20, 2.7] Let M be a faithful finitely generated comultiplication R-
module, satisfying the descending chain condition on second submodules. Then R
satisfies the ascending chain condition on prime ideals.

Theorem 193. [17, 3.1] Let M be a Noetherian comultiplication R-module. Then

(a) M has a finite number of second submodules.

(b) Every second submodule of M is a minimal submodule of M .

Definition 194. [13, 3.13] A submodule N of an R-moduleM is said to be completely
coirreducible, if N =

∑
λ∈ΛNλ, where {Nλ}λ∈Λ is a family of submodules of M ,

implies that N = Nλ for some λ ∈ Λ.

Remark 195. [13, 3.13] Let M be an R-module. It is clear that every completely
coirreducible submodule of M is a cyclic module. However, the converse is not true
in general. For example, for the cyclic Z-module Z, we have 2Z + 3Z = Z, but
Z ̸= 2Z and Z ̸= 3Z.

Theorem 196. [10, 3.11], [17, 3.7], and [13, 3.14] Let M be a comultiplication
R-module. Then

(a) If N is a submodule of M such that AnnR(N) is a prime ideal of R, then N
is a second submodule of M .

(b) If R is a ring such that every prime ideal of R is contained in the unique
maximal ideal of R, then every second submodule of M contains a unique
minimal submodule of M .

(c) If S is a finitely generated second submodule of M , then S is completely
coirreducible.

Corollary 197. [13, 3.15] Let M be a comultiplication R-module and let S be a
finitely generated second submodule of M . Then S is a multiplication R-module.

Remark 198. [13, 3.17] In the part (c) of Theorem 196, the condition, that S
is finitely generated, can not be omitted. For example, let p be a prime number.
Then Zp∞, as a Z-module, is a comultiplication module and it is second. Also is not
finitely generated and it is not completely coirreducible. (Note that Zp∞ is equal to
the sum of all its submodules but it is not equal to any one of them.)
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Proposition 199. [14, 2.12] Let R be a principal ideal domain and let M be an
R-module. If M is a second module, then every pure submodule of M is a second
submodule of M .

Theorem 200. [21, 33.9] Let M be a fully coidempotent R-module. Then every
second submodule of M is a minimal submodule of M .

Definition 201. [16, 3.14] Let M be a graded R-module and let N be a non-zero
graded submodule of M . We say that N is a graded second ( gr-second) if, for each
homogeneous element a of R, the endomorphism of M , given by multiplication by a,
is either surjective or zero.

Proposition 202. [16, 3.15] Let M be a graded R-module and let N be a graded
submodule of M . Then we have the following.

(a) If N is a gr-second submodule of M , then AnnR(N) is a gr-prime ideal of R.

(b) If M is a gr-comultiplication R-module and AnnR(N) is a gr-prime ideal of
R, then N is a gr-second submodule of M .

Theorem 203. [16, 3.16] Let M be a Noetherian gr-comultiplication R-module.
Then we have the following.

(a) M has a finite number of gr-second submodules.

(b) Every gr-second submodule of M is a gr-minimal submodule of M .

An R-module M is said to be a weak multiplication module if M does not have
any prime submodule or for every prime submodule N of M there exists an ideal I
of R such that N = IM [3].

The following definition can be regarded as a dual notion of weak multiplication
module.

Definition 204. [20, 3.1] We say that an R-module M is a weak comultiplication
module if M does not have any second submodule or, for every second submodule S
of M , we have S = (0 :M I), where I is an ideal of R.

Remark 205. [20, 3.2] It is clear that every comultiplication R-module is a weak
comultiplication R-module. However, in general, the converse is not true. For
example, the Z-module Q is a weak comultiplication module which is not a comultipli-
cation Z-module.

Lemma 206. [20, 3.3] Let M be an R-module. Then we have the following.

(a) M is a weak comultiplication module if and only if S = (0 :M AnnR(S)) for
each second submodule S of M .
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(b) If M is a weak comultiplication module, then every submodule of M is a weak
comultiplication module.

Theorem 207. [20, 3.4] Let M be an R-module. Then we have the following.

(a) If M is a weak comultiplication R-module and has finite length, then every
second submodule of M is minimal.

(b) If M is a Noetherian weak comultiplication R-module, then M has a finite
number of second submodules

(c) If M is an Artinian weak multiplication R-module, then M has a finite number
of prime submodules.

Lemma 208. [20, 3.5] Let R be a Noetherian ring and let M be a finitely generated
R-module. Then we have the following.

(a) If S is a multiplicatively closed subset of R and N is a second submodule of M
such that AnnR(N) ∩ S = ∅, then S−1N is a second submodule of S−1M .

(b) If, for every maximal ideal P of R, MP is a weak comultiplication RP -module,
then M is a weak comultiplication R-module.

Theorem 209. [20, 3.6] Let (R, P ) be a Noetherian local ring and let M be a finite
length weak comultiplication R-module. Then M is a comultiplication R-module.

Xs = Specs(M) will denote the set of all second submodules of an R-moduleM .
If Xs ̸= ∅, then, for every S ∈ Xs, the map ψs : Xs → Specs(R/AnnR(M)),

defined by S ↦→ AnnR(S)/AnnR(M), will be called the natural map of Xs.

Lemma 210. [22, 2.10] Let M be an R-module. Then we have the following.

(a) If M is a finitely generated comultiplication module and P is a prime ideal of
R, containing AnnR(M), then (0 :M P ) is a second submodule of M .

(b) If M is a finitely generated comultiplication module, then the natural map ψs

of Specs(M) is surjective.

(c) If the natural map ψs of Specs(M) is surjective and I is an ideal of R,
containing AnnR(M), then AnnR((0 :M

√
I)) =

√
I.

The intersection of all prime submodules of an R-module M , containing N , is
said to be the prime radical of N and denoted by radMN (or simply by rad(N)).
In case N is not contained in any prime submodule, the radical of N is defined to
be M [53].

For a submodule N of an R-module M , the second radical (or second socle) of
N is defined as the sum of all second submodules of M , contained in N , and it is
denoted by sec(N) (or soc(N)). In case N does not contain any second submodule,
the second radical of N is defined to be (0). N ̸= 0 is said to be a second radical
submodule of M if sec(N) = N ([31] and [23]).
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Theorem 211. [22, 2.11] Let M be a faithful R-module such that the natural map
ψs of Specs(M) is surjective. Consider the following equalities:

(a) sec((0 :M I)) = (0 :M
√
I) for each ideal I of R.

(b) sec(N) = (0 :M
√
AnnR(N)) for each submodule N of M .

(c) AnnR(sec(N)) =
√
AnnR(N) for each submodule N of M .

(d) AnnR(sec((0 :M I))) =
√
I for each ideal I of R.

Then (b) ⇒ (c) ⇒ (d) and (b) ⇒ (a) ⇒ (d). Furthermore, if M is a comultiplication
module, then (a), (b), (c) and (d) are all equivalent.

Proposition 212. [22, 2.6] Let M be a comultiplication R-module. If S is a second
submodule of M such that S ⊆ N +K for any pair of submodules N and K of M ,
then either S ⊆ N or S ⊆ K. Consequently,

sec(N +K) = sec(N) + sec(K)

for every pair of submodules N and K of M .

Theorem 213. [22, 2.12] Let N and K be two submodules of a finitely generated
comultiplication R-module M . Then the following hold.

(a) sec(N) = (0 :M
√
AnnR(N)).

(b) AnnR(sec(N)) =
√
AnnR(N).

(c) If AnnR(K) =
√
AnnR(K) and AnnR(N) =

√
AnnR(N), then Ann(sec(N +

K)) = AnnR(N +K).

(d) If N , K are secondary submodules of M with sec(N) = sec(K), then N +K
is a secondary submodule of M .

Corollary 214. [22, 2.13] If Q is a secondary submodule of a finitely generated
comultiplication R-module M , then sec(Q) is a second submodule of M .

Definition 215. [23, 3.2] Let M be an R-module. We define V s(N) = {S ∈
Specs(M) : AnnR(N) ⊆ AnnR(S)}. Then

(i) V s(M) = Specs(M) and V s(0) = ∅,

(ii) ∩λ∈ΛV
s(Nλ) = V s(∩λ∈Λ(0 :M AnnR(Nλ))) for every Nλ ≤M , λ ∈ Λ,

(iii) V s(N) ∪ V s(K) = V s(N +K), for every N,K ≤M .

Set ζs(M) := {V s(N) : N ≤ M}. Then from (i), (ii), and (iii) we see that always
there exists a topology, say τ s, on Xs = Specs(M), having ζs as the family of all
closed sets. We call the topology τ s the Zariski topology on Xs.
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Definition 216. [23, 1.3] Let M be an R-module. Set V s∗(N) = {S ∈ Specs(M) :
S ⊆ N}. Then

(i) V s∗(M) = Specs(M) and V s∗(0) = ∅,

(ii) ∩λ∈ΛV
s∗(Nλ) = V s∗(∩λ∈ΛNλ) for every Nλ ≤M , λ ∈ Λ,

(iii) V s∗(N) ∪ V s∗(K) ⊆ V s∗(N +K) for every N,K ≤M .

Put ζs∗(M) = {V s∗(N) : N ≤ M}. ζs∗(M) is not closed under finite union in
general. Following [2], M is called a tops-module (or cotop module, for convenience)
if ζs∗(M) induces a topology on Xs. When this is the case, we call the topology τ s∗

the quasi-Zariski topology on Xs.

Example 217. [23, 3.5] Every comultiplication module is a cotop module so that
τ s∗ = τ s.

For a prime ideal p of R, Xs
p(M) = Specsp(M) denotes the collection of second

submodules N of an R-module M such that AnnR(N) = p.

For any set Y , |Y | will denote the cardinality of Y .

Theorem 218. [23, 2.11] Consider the following statements for an R-module M .

(a) M is a comultiplication module.

(b) For every submodule N of M there exists an ideal I of R such that V s∗(N) =
V s∗((0 :M I)).

(c) |Xs
p(M)| ≤ 1 for every prime ideal p of R.

(d) (0 :M p) is a cocyclic module for every maximal ideal p of R.

Then (a) ⇒ (b) and (c) ⇒ (d). In case M is Artinian, (b) ⇒ (c). Moreover,
(d) ⇒ (a) if R is a Noetherian ring and M has finite length.

Example 219. [23, 2.12] Let p be any prime integer and let M denote the Z-module
Z⊕ Zp. Then M is not a comultiplication module but for every submodule N of M
there exists an ideal I of R such that V s∗(N) = V s∗((0 :M I)).

Example 220. [23, 2.14] Let M denote the Z-module Q⊕Q. Then (0 :M p) = 0 for
every prime p in Z but there exist distinct second submodules K and N of M such
that 0 = AnnR(K) = AnnR(N). In particular, M is not a comultiplication module.

Proposition 221. [23, 3.7] Let M be an R-module. Then the following statements
are equivalent.

(a) The natural map ψs : Xs → XR is injective.
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(b) If V s(S1) = V s(S2), then S1 = S2 for any S1, S2 ∈ Xs.

(c) |Xs
p(M)| ≤ 1 for every p ∈ Spec(R).

Theorem 222. [23, 6.3] Let M be an R-module and ψs the natural map of Xs =
Specs(M). Consider the following cases:

(1) Xs is a T0-space;

(2) Xs is a spectral space;

(3) Xs is homeomorphic to Spec(R) under ψs;

(4) M is a comultiplication R-module.

Then all conditions in Proposition 221 are equivalent to part (1) (resp., parts (2) and
(3), if ψs is surjective). Moreover, if R is a Noetherian ring and 0 ̸= M has finite
length, then all the conditions in Proposition 221 are equivalent to parts (1)-(4).

Corollary 223. [23, 6.4] IfM is a cotop module (in particular, ifM is a comultiplica-
tion module), then Specs(M) is a T0-space for both the Zariski topology τ s and the
quasi-Zariski topology τ s∗.

Proposition 224. [26, 3.8] Let R be a Noetherian ring and let M be a cotop R-
module with finite length. Then M is a comultiplication R-module.

A proper ideal I of a ring R is called pseudo-irreducible, if it satisfies the following
equivalent conditions:

(a) For all ideals J,K of R, if I = JK and J +K = R, then J = R or K = R;

(b) For all x ∈ R, if x(x− 1) ∈ I, then x ∈ I or x− 1 ∈ I;

(c) The ring R/I is indecomposable.

Definition 225. [59, 2.2] A nonzero R-module M is called an API-module if
AnnR(M) is a pseudo-irreducible ideal of R.

The following lemma gives some useful characterizations of API-modules.

Lemma 226. [59, 2.4] Let M be a non-zero R-module. Then the following are
equivalent:

(a) M is an API-module.

(b) For all r ∈ R, if r(r − 1)M = 0, then rM = 0 or (r − 1)M = 0.

(c) For all submodules A,B of M , if M = A+B and AnnR(A) +AnnR(B) = R,
then M = A and B = 0 or M = B and A = 0.
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Let M be a non-zero R-module. By a comaximal decomposition of M we mean
an expression M = ⊕n

i=1Ni, where the AnnR(Ni)’s are pairwise comaximal proper
ideals of R. We call this comaximal decomposition complete if the Ni’s are API-
modules [59].

Lemma 227. [59, 3.1] Let M be a finitely generated comultiplication R-module
and N be a non-zero submodule of M . Then every finite direct sum decomposition
of N into non-zero submodules is a comaximal decomposition. Therefore, N is an
API-module if and only if it is indecomposable.

Theorem 228. [59, 3.2] Let M be a finitely generated comultiplication R-module.
Then every non-zero submodule of M can be written uniquely as a finite direct sum
of non-zero indecomposable submodules.

Proposition 229. [59, 3.3] Let M be a strong comultiplication R-module. Then
every nonzero submodule of M has a complete comaximal decomposition.

For a cotopR-moduleM , we considerMin(M), the set of all minimal submodules
of an R-module M , as a subspace of Specs(M) with respect to the quasi-Zariski
topology.

Theorem 230. [59, 3.5] Let M be a comultiplication R-module. Then the following
are equivalent:

(a) Every nonzero submodule of M has a complete comaximal decomposition.

(b) M has only finitely many simple submodules.

(c) Min(M) is a Noetherian topological space as a subspace of Specs(M).

(d) M has no infinite collection of submodules with pairwise comaximal annihilators.

Now, let N be a submodule of M . We define W s(N) = Specs(M) − V s∗(N)
and put Ωs(M) = {W s(N) : N ≤ M}. Let ηs(M) be the topology on Specs(M),
defined by the sub-basis Ωs(M). In fact, ηs(M) is the collection U of all unions
of finite intersections of elements of Ωs(M) [54]. We call this topology the second
classical Zariski topology of M . It is clear that if M is a cotop module, then its
related topology, as it was mentioned in the above paragraph, coincides with the
second classical Zariski topology [26].

Theorem 231. [26, 2.9] Let M be a finite length module over a commutative
Noetherian ring R such that Specs(M) is a T1-space. Then M is a comultiplication
module.

Lemma 232. [26, 2.14] Let M be a finite length weak comultiplication module.
Then Specs(M) is a cofinite topology.
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Proposition 233. [26, 3.9] LetM be a comultiplication R-module with finite length.
Then Specs(M) is a spectral space.

Conclusion 234. As we mentioned in the introduction, there is a large body of
researches related to comultiplication modules since this notion has been introduced.
Also, there is large open space for this notion parallel to researches on multiplication
modules. In [27], the authors applied the notion of comultiplication modules in the
graph theory. Also, this concept has been used in lattice theory [30, 57]. Moreover,
the concept of comultiplication module can be applied in other fields such as Fuzzy
theory.
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