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INTRODUCTION

Quillaja saponaria (Quillay) is an endemic Chilean tree species within theQuillajaceae family, from
the Fabales order that is adapted to grow under dry temperate conditions and poor soils (Villagran
andHinojosa, 1997; Luebert, 2014). Its high tri-terpenoid saponin contentmakes it an economically
attractive species. Quillay contains amphipathic glycosides called saponins that are used by the
pharmaceutical and cosmetic industries (Hostettmann and Marston, 1995; Guo et al., 1998). Their
harvest has conventionally been done using natural Quillay populations as the raw material,
damaging natural ecosystems (Santelices and Bobadilla, 1997). This unsustainable overexploitation
of native Quillaja forest has compelled the establishment of new plantations that would satisfy an
increased demand for Q. saponaria products (Donoso et al., 2011). In this study, we present the
first draft of Quillay’s chloroplast genome sequence (cpDNA) and functional annotation. Our study
provides information for Quillay germplasm characterization, to address genetic diversity and gene
flow from parental trees through uniparental mode of chloroplast inheritance (Daniell et al., 2016),
which may contribute to the long-term goal of selection for superior saponin-producing trees
amenable for commercial plantations.

MATERIALS AND METHODS

Plant Materials, DNA Extraction, Library Preparation, and
Sequencing
We collected young leaves from a Quillay clone with high saponin content. Genomic DNA was
extracted by a modified Healey’s protocol (Healey et al., 2014). The integrity of genomic DNA
was verified using 1% agarose gel electrophoresis, and its concentration was quantified with a
Picogreen Assay. Total DNA samples with concentrations >30 ng/µL−1 were chosen for Illumina
sequencing. Library construction and Illumina (Illumina, CA, USA) sequencing were done at
GenomaMayor (University Mayor, Santiago, Chile) and the Cornell University Biotechnology
Resource (BRC–Ithaca, NY, USA). The DNA was used to prepare a library with NEBNext dsDNA
Fragmentase according to the manufacturer’s instructions (M0348- New England Biolabs). Three
libraries were sequenced in Illumina MiSeq and Illumina HiSeq 2500 platforms to generate 250
bp paired-end reads. Reads were filtered against adapter contamination or low-quality values
(quality value ≤ 5) using FastQCv.0.11.5 (http://www.bioinformatics.babraham.ac.uk/projects/
fastqc/). In order to obtain chloroplast specific reads, we performed a BLAST search using NCBI-
blast version 2.2.31+ against 441 sequenced plastomes of the Fabales order, and plastomemodels of
C. quinoa (CM008430),G. max (NC_007942), L. japonicus (NC_002694), P. vulgaris (NC_009259),
P. trichocarpa (NC_009143), and A. thaliana (NC_000932). The e-value cut-off was 10−6 and
90% identity.
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Plastome Assembly, Annotation and
Analysis
De-novo assembly was processed with the software
SOAPdenovo2 (parameters: kmers35, rd_len_cutof = 200) (Luo
et al., 2012), ABySS version 1.9.0 (parameters: K = 16 k = 96)
(Simpson et al., 2012), and SPAdes version 3.1.0 (Bankevich
et al., 2012) with k-mers sizes of 21, 33, 55, and 77 for several
runs of the de-novo assembly to increase accuracy. Before the
assembly reconciliation (Zimin et al., 2008), the assemblies
were evaluated and scaffolded using CAMSA (Aganezov
and Alekseyev, 2017). The workflow consisted of sequential
assembly steps with the highest similarity 90% and decreased
the percentage of length fraction of 100 bp over read and
contig length between assemblers. The scaffolding process was
performed using a guided reference (from 441 plastomes) to
join gradually every super-contig to form the scaffold of the
plastome. The assembled contigs were pooled and ordered
against 441 plastomes downloaded from Genbank using the
Burrows-Wheeler Alignment tool BWA (Li and Durbin,
2010) to obtain super-contigs. To close gaps between super-
contigs and reduce ambiguous bases, we re-mapped reads
to candidate scaffold using BWA. Only reads that aligned
to a sequence with at least 98% identity and with non-zero
mapping quality were considered to close gaps. Ambiguous
bases were corrected by visual inspection of the alignment.
Any positions with low coverage or low-quality base calls were
checked manually. To reduce the number of false positive or
false negative variant calls, we used only calls at a position
with a minimum 90% depth of coverage threshold. Then the
consensus sequence was exported using a minimum coverage
threshold of 1X. At positions where the threshold of low coverage
was not met, the scaffold was trimmed and joined by minor
manual adjustment. This approach has been used to assemble
several large and complex genomes (Gajer et al., 2004; Card
et al., 2014; Olson et al., 2015). To identify simple sequence
repeat (SSR) loci, we used the MISA microsatellite finder tool
(Beier et al., 2017).

Our gene annotation process was based on cumulative
bioinformatic evidence. To generate high-quality annotation,
we curated gene annotations using Dual Organellar GenoMe
Annotator “DOGMA” (Wyman et al., 2004) and GeSeq (Tillich
et al., 2017) using default parameters to predict protein-coding
genes by HMMER profile search and ARAGORN v1.2.38 (Laslett
and Canback, 2004). tRNA genes were annotated with tRNAscan-
SE v2.0(Lowe and Eddy, 1997), and BLAST searches were used
to annotate ribosomal RNA (rRNA), tRNA and DNA genes
conserved at embryophyte chloroplasts (Wommack et al., 2008).
AUGUSTUS software was used to validate putative genes, using
the Arabidopsis thaliana chloroplast genome as a reference (Sato
et al., 1999). The coding region sequences (CDS) were translated
into aminoacids using a standard codon table. The functions of
the predicted genes were annotated by BLAST2GOPRO (B2G)
(Conesa et al., 2005) with NR, SwissProt, InterProScan, KEGG,
COG, and Gene Ontology (GO) methods. Finally, GenomeVx
(Conant andWolfe, 2008) software was used to draw the circular
map of the chloroplast genome.

RESULTS AND DISCUSSION

To obtain a high-quality assembly of quillay plastome, we
developed a pipeline that included several stages of validation
based at the information available from chloroplast genomes
from several related species, as plastomes have low mutation
rates with high conservation in their structure and gene
content (Jansen et al., 2007). From a total of 13,6 million reads
obtained in the sequencing of Quillay complete genome, a
1,512,173 chloroplast specific reads (766,658 paired reads and
783,579 single reads) were obtained for de-novo assembly. As
an independent control for the read selection, we applied
the approach of mapping reads to 441 plastomes. The
top ten plastomes with the highest coverage can be found
in Supplementary Table 1. Alignments revealed that the
greatest number of conserved positions and highest coverage
were obtained with the Chenopodium quinoa ecotype Real
Blanca chloroplast (CM008430), with a 90% and 1,239X
average coverage.

The progressive analysis of de-novo genome assembly and
the assembly reconciliation resulted in 97 contigs. We obtained
a contig N50 was 9,536 bp with a minimum contig size of
2,045 bp, a maximum contig size of 50,454 and a 36.04%
G+C content. From the results obtained of the mapped reads
to several plastomes, de-novo Quillay contigs were arranged
using the complete plastome of Quinoa (Hong et al., 2017)
and C. chuniana. Interestingly, Quinoa and Quillay species had
traits related to biotic-abiotic stress and saponin production
(Gómez-Caravaca et al., 2012; Shin et al., 2015). These results
could be favorable to the identification of cpSSRs (Ebert and
Peakall, 2009), since the regions flanking them are strongly
conserved, facilitating the breeding selection of individuals and,
the identification and conservation of valuable traits found in
Quillaja varieties.

Finally, the scaffolding process using a guided reference,
resulted in eleven super-contigs. To close sequence gaps
and, to improve accuracy in sparsely covered regions from
super-contigs, we mapped reads to the putative scaffold. The
read coverage was adequate to detect any miss-assemblies
(Supplementary Figure 1). The first draft of the Quillay
plastome, consisting of one scaffold chloroplast genome sequence
with a total length of 132,854 bp (Figure 1), corresponding,
on average, to a 2,417 × coverage of the assembled genome
size. This study also shows that it is possible to assemble
high-quality complete chloroplast genomes from whole genome
shotgun sequencing datasets. We identified 10 SSR loci, 112
mononucleotide motifs with variable length, which ranged
between 10 and 25 nucleotides. We also found 10 dinucleotide,
15 trinucleotide, and 5 tetranucleotide SSRs. The most common
SSRs were A or T mononucleotide repeats.

We identified approximately 139 putative ORFs that represent
112 of the 120–130 genes comprising the plant plastomes
(Rogalski et al., 2015), 76% of them were completely B2G
annotated (GOmapping, INTERPROSCAN, and Blast Hits). We
assigned the Enzyme Code to 17 putative genes that matched
Blast2Go functions. INTERPROSCAN profiles or domains were
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FIGURE 1 | Gene map of Quillaja saponaria cpDNA. Genes depicted within the map are transcribed in a clockwise direction. Genes on the outer part of the map are

transcribed counterclockwise. Plastome map was drawn with the OrganellarGenomeDRAW (OGDRAW) program. See GenBank accession no MH880827.

found in 100% of the sequences. For genes with low sequence
identity, we used manual annotation with translated amino
acid sequences of the chloroplast/bacterial genetic code. Ninety
percent sequences were assigned GO ID. Among them, about
49 genes encoded proteins of photosystem I and II as well as
for other photosynthesis categories. We also found 26 genes
for ribosomal proteins (large and small subunit), 5 genes
coding for RNA polymerases, 4 ribosomal RNAs genes, 13
genes coding for proteins with unknown function, 33 genes
coding for tRNAs, one-carbon metabolism (cemA), one RNA
processing gene (matK), one fatty acid synthesis gene (accD) and,
three genes coding for proteolysis protein (clpP). As shown in
Table 1, we list the genes and functional groups identified in the
Quillay cpDNA.

The gene content and organization of a Quillay chloroplast
was compared with a closely related species of the Fabaceae
family, Cercis chuniana. Comparison of the intergenic spacer in
trnD-trnT genes showed differences related to the presence of
trnY-trnE genes between both genes (trnY-trnE genes absent in

C. chuniana). An additional difference is absence of the trnG
and infA genes at Quillaja, also reported in Legumes (Magee
et al., 2010), Rosids (Millen, 2001) and Solanales (Wicke et al.,
2011). Comparison analysis of three plastomes shows positional
differences next to IRb regions. These are related to rbcL, atpB,
and atpE genes, which are different in Quinoa and Quillay
but are highly conserved between Quillay and C. chuniana
(Supplementary Figure 2). The rest of the overall structure
resembles the majority of 441 plant cp genomes evaluated.

Even though a direct relationship between the plastome-
encoded genes and saponin biosynthesis has not yet been
established, it has been shown that Quillay trees significantly
reduce their photosynthesis rate, stomatal conductance, and
transpiration under restricted irrigation conditions (Donoso
et al., 2011). In addition, environmental changes, such as season,
soil fertility, light, and water availability alter biomass, and
saponin content. The lowest concentration of saponin has been
found during the winter, and the highest in autumn, suggesting
that abiotic factors may play a major role in the regulation of
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TABLE 1 | Genes identified in the Quillaja saponaria chloroplast genome.

Group of gene Name of gene

Photosystem I psaA,psaB,psaC,psaI,psaJ

Photosystem II psbA,psbB,psbC,psbD,psbE,psbF,psbH,

psbJ,psbL,psbM,psbN(2),psbT,psbZ,psb30

cytochrome b/f complex petA,petB, petD,petG,petL,petN

ATP synthase atpA,atpB,atpE,atpF(2),atpH,atpI

cytochrome c synthesis ccsA

Rubisco rbcL

NADH oxidoreductase

/NADPH dehydrogenase

ndhA(2),ndhB(2),ndhC,ndhD,ndhE,ndhF,

ndhG,ndhH,ndhI,ndhJ,ndhK(2)

Large subunit ribosomal

proteins

rpl14,rpl16,rpl2(2),rpl20,rpl22(2),rpl23,rpl32,rpl33,

rpl36

Small submit ribosomal

proteins

rps11(2),rps12(2),rps12_3end,rps14,rps15,rps16,

rps18,rps19,rps2,rps3,rps4,rps7,rps8

RNA polymerase rpoA,rpoB,rpoC1(2),rpoC2

RNA genes ribosomal RNA rrn16,rrn23,rrn4.5,rrn5

Proteins with conserved

reading frames

ycf1(3),ycf15(2), ycf2,ycf3(3),ycf4,ycf68(3)

Others proteins accD,cemA,clpP(3),matK,orf188,orf42,orf56

Transfer RNA trnA-UGC(2),trnC-GCA,trnD-GUC,trnE-UUC,trnF-

GAA,trnfM-CAU,trnG-UCC,trnI-CAU,trnI-GAU(2),

trnK-UUU, trnL-CAA, trnL-UAA(2),trnL-UAG,trnM-

CAU,trnN-GUU,trnP-GGG,trnP-UGG,trnQ-UUG,

trnR-ACG,trnR-UCU,trnS-GCU,trnS-GGA,

trnS-UGA,trnT-GGU,trnT-UGU,trnV-GAC,trnV-

UAC(2),trnW-CCA,trnY-GUA

saponin production (Copaja et al., 2003; Szakiel et al., 2011).
Furthermore, chloroplasts also have a critical role in plant
immunity, as a site for the production for salicylic acid and
jasmonic acid (Nomura et al., 2012; de Costa et al., 2013)
demonstrated an overproduction of triterpene saponins in cell
suspensions treated with methyl jasmonate (MeJA) in both
P. ginseng and P. Notoginseng, and an enhancement of saponin
content using different light and UV radiation treatments in

P. ginseng and Quillaja. This result suggests that chloroplasts
can act as environmental sensors increasing accumulation of
triterpene saponins as a part of the defense response. Our results
can provide valuable information related to molecular markers
and facilitate the identification of valuable traits and genetic
variants that can be subsequently used for breeding programs.

LINKS TO THE DEPOSITED DATA

The draft genome sequence and gene models of Quillay
are available at NCBI genome database with the BioProject
number PRJNA415043. The high-throughput sequencing data
for genome assembly is available at the Sequence Read
Archive (https://www.ncbi.nlm.nih.gov/sra) under the accession
number SRR6297481. The source accession for this DNA
sample is SAMN07812699. The first draft chloroplast genome
sequence with all genes annotated has been submitted to
GenBank MH880827.
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