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Introduction

Until now, the Korea Medical Licensing Examination (KMLE) 
has been administered in the form of a paper-based test. Recently, 
the Korea Health Personnel Licensing Examination Institute has de-
cided to implement a computer-based test in the near future and to 
employ computerized adaptive testing (CAT) in the long term. How-
ever, with computer-based exams, the number of examinees who can 
be tested at one time is limited. Therefore, it is preferable to intro-
duce a periodic test in which multiple tests are administered over a 

certain period of time. In this context, it is necessary to construct 
multiple item sets and to design the tests by estimating the difficulty 
levels of all item sets. As a result, it is necessary to determine a statis-
tical method to construct item sets and to equate item difficulty for 
effective periodical examinations.

This study aimed to identify the best method of developing an 
equivalent item set for the implementation of periodical computer-
based testing of the KMLE. Specifically, a simulation study using 
linear programming (LP) was done to equate the difficulty of item 
sets. Furthermore, the best method to minimize the difference of the 
mean difficulty among 5 item sets was suggested.

Methods

Ethical statement
The raw data file of study was provided by the Korea Health Pro-
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fessional Licensing Examination Institute for research purpsoe only. 
There was no idenfifer of the examiness from examinee’s response file. 

Therefore, informed consent and permission of institutional review 
board was exempted according the Korean law of “Enforcement Rule 
of Bioethics and Safety Act”. 

Materials and/or subjects
The average number of KMLE candidates is over 3,500 every 

year. Therefore, this study assumed that 5 item sets would be need-
ed, with 1,000 students taking each set. The simulation study was 
conducted using 6 years of cumulative data. To validate the data, this 
study investigated item difficulty parameters and the ability distribu-
tions of the candidates for each year. The resulting dataset consisted 
of a total of 2,410 items, including 450 items from 2012, 400 items 
from 2013, 400 items from 2014, 400 items from 2015, 400 items 
from 2016, and 360 items from 2017. This study assumed that the 
item bank would include 2,410 items and constructed 5 item sets, 
each consisting of 360 items.

Study design
The necessary constraints to construct 5 equated item sets are as 

follows. First, it is important to balance several content areas on the 
KMLE. Item sets were categorized according to the subjects of the 
licensing examination. The sub-factors of the KMLE are composed 
of 8 categories according to the subjects of the licensing examination 
and 18 categories according to a more specific classification. In gen-
eral, if sub-factors are too specific and numerous, equating 5 item 
sets is inefficient and cannot be accomplished through LP because 
there are too many degrees of freedoms. As a result, this study sought 
to balance 8 sub-factors based on the subjects of the licensing exami-
nation. The DETECT value [1] was used to examine the extent of 
the multidimensional simple structure of the KMLE for the 6 years 
of cumulative data. A confirmatory DETECT analysis was conduct-
ed by using the ‘sirt’ package [2] in the R statistical software 3.4.4 
(The R Foundation for Statistical Computing, Vienna, Austria) [3]. 
All the DETECT values were less than 0.1 (0.019 in 2012, 0.025 in 
2013, 0.024 in 2014, 0.025 in 2015, 0.025 in 2016, and 0.028 in 
2017). This indicates that each year of data was essentially unidimen-
sional. The KMLE is composed of easy items, as seen by the fact 
that its pass rate is over 90%. For this reason, the DETECT pro-
gram might provide results showing the 8-dimensional data as uni-
dimensional. We supposed that each year of data was multidimen-
sional based on the test specification that comprised 8 categories.

Second, the mean and standard deviation of the item difficulty sta-
tistics across the 5 item sets should be the same. Because using a con-
straint according to which these values had to be exactly the same 
would drastically reduce the amount of mathematically feasible solu-
tions, this study implemented a constraint according to which the 
mean and standard deviation had to be similar across the 5 item sets. 
Therefore, the item difficulty statistics were divided into 2 categories 

and 3 categories using the predicted correct answer rate (PCAR), and the 
same number of items was assigned for each item difficulty category.

In this case, the item difficulty was determine using the PCAR, 
which was computed by the KMLE item developers when they cre-
ated items and could be interpreted as a predicted value. The PCAR 
ranged from 0 to 100, with values interpreted as the ratio of the 
number of correct responses to the total number of responses. If the 
PCAR is large, the item is easy, and vice versa.

Previously, the PCAR was divided into 6 categories based on the 
subjects of the licensing examination to determine the difficulty con-
straint. The item parameter distribution of the PCAR is presented in 
Table 1.

Almost 90% of PCARs were between 60 and 90. Based on a pre-
vious investigation [4], it is meaningless to divide the PCAR into 6 
categories. Two categories divided by a PCAR of 75 or 3 categories 
divided by PCARs of 60 and 75 would be appropriate for setting 
equal item difficulty constraints. As a result, this study examined the 
quality of equating 5 item sets using 2 or 3 divisions of item difficul-
ty. Based on this item difficulty design, this study examined which 
equating conditions provided 5 equally pre-equated item sets.

Third, this study investigated whether common items could con-
tribute to the accuracy of equating of item sets. Item sets that had 
20% of the total items in common and item sets without common 
items were constructed and compared with each other.

This study was designed through the following procedures. First, 
5 item sets were constructed by LP using 2 or 3 divisions of the 
PCAR, and then compared with 5-item sets constructed by random 
item selection. Second, 5 item sets with 20% of the items in com-
mon were compared with 5 item sets without common items.

To compare the accuracy of equating in each condition, we esti-
mated the actual correct answer rate (ACAR) and the difficulty pa-
rameter of item response theory (IRT). The Rasch model was used 
to estimate the IRT difficulty parameters in this study [5]. In the 
Rasch model, we used the marginal maximum likelihood method 

Table 1. Item distribution divided into 6 PCAR sections based on 8 sub-
ject areas

Subject 
area

PCAR 
≤ 30

30 <  
PCAR 
≤ 45

45 <  
PCAR 
≤ 60

60 <  
PCAR 
≤ 75

75 <  
PCAR 
≤ 90

90 <  
PCAR 
≤ 100

Total

A1 0 4 48 112 143 10 317
A2 0 0 3 68 241 4 316
A3 0 1 28 140 147 1 317
A4 0 0 14 56 110 2 182
A5 1 1 95 404 444 13 958
A6 0 0 17 47 88 0 152
A7 0 1 19 29 57 14 120
A8 0 0 3 17 28 0 48
Total 1 7 227 873 1,258 44 2,410

PCAR, predicted correct answer rate.
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for item parameter estimation and the expected a posterior for ability 
parameter estimation. IRT difficulty parameters were estimated on 
the assumption that the candidates’ abilities were the same every 
year. Therefore, the ACAR and IRT difficulty parameters were used 
to evaluate the equating accuracy.

Technical information
To equate the difficulty of the item sets, this study conducted a 

simulation study using LP, as suggested by van der Linden [6]. Each 
item set was composed of 360 items from the item bank. The item 
bank consisted of 8 sub-factors to consider the content balancing is-
sue [7]. As shown in Table 1, the sub-factors of the item bank had 
317, 316, 317, 182, 958, 152, 120, and 48 items, respectively, and 
each sub-factor was demonstrated to be a unidimensional trait [8]. 
The item sets also were composed of conditions with 20% common 
items or without common items. The constraints can be summa-
rized as follows: (1) generate 5 item sets; (2) the number of items in 
each item set is 360; (3) eight sub-factors have 45, 45, 45, 25, 154, 
20, 20, and 6 items, respectively; (4) and no common items or 20% 
common items.

To construct an optimal test using LP, the above constraints must 
be transformed into decision variables and then converted to a math-
ematical optimization problem. Decision variables can be defined as 
variables that make the best decision in the optimization problem. 
The solution of the problem is to find a set of values such that an 
objective function is optimal and all constraints are satisfied [4].

The constraints of this study can be solved by selecting the follow-
ing variables. i=1,…,360 is the number of items in each item set. It 
is assumed that the sub-factor A1 is composed of i=1,…,45, A2 is  
i=46,…,90, A3 is  i=91,…,135, A4 is  i=136,…,160, A5 is i=161, 
…,314, A6 is  i=315,…,334, A7 is i=335,…,354, and A8 is i=355, 
…,360.

The decision variable of this study was determined by a binary re-
sponse for each item. If the item i is selected, xi =1, and if the item i 
is not selected, xi =0. The sum of the number of items for each item 

set is expressed as follows ∑ i=1 xi .
In order to equate the item sets, the average PCAR was used in 

this study. Pi indicates the PCAR of item i. If xi =1 is the selected 
item,                  is the sum of the PCARs. If                   is divided by 
360, it becomes the average PCAR. This study was designed to con-
trol the average PCARs of each item set as closely as possible. The dif-
ference in average PCARs should be smaller than τ=0.05. The LP 
that obtains the optimal test from these constraints is summarized as 
follows.

The objective function of (2) is to create 5 item sets that are 
equated. The constraint in (2) mandates that the 5 item sets have a 
difference of the average PCAR of 0.05 or less. The constraint in (3) 
determines the number of items for the 8 sub-factors in each item 
set. The constraint in (4) expresses the absence of common items, 
while (5) formalizes the presence of common items among the 5 
item sets.

The relationship between all constraints was linear. Therefore, the 
design for this study is equivalent to an LP for 0–1. The solution of 
an LP is to have 5 item sets that equate to a considerable degree. The 
solution is determined by a 0–1 value for which the objective func-
tion is minimal, and all constraints are met under the appropriate 
conditions. To summarize, this study was designed to construct 5 
item sets that were equated from the item bank.

360
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Table 2. Comparison of ACAR, IRT difficulty, and PCAR among the 5 item sets assembled by linear programming

Evaluation 
criteria

PCAR 
section

No common items 20% Common items

Set 1 Set 2 Set 3 Set 4 Set 5 Set 1 Set 2 Set 3 Set 4 Set 5

ACAR Random 74.75 74.99 75.23 76.42 76.99 74.12 76.36 76.41 77.12 76.99
2 73.65 76.12 74.20 73.93 76.31 72.79 74.72 76.13 76.20 76.05
3 77.38 75.42 77.02 75.63 75.53 74.65 77.04 77.44 77.05 76.88

IRT difficulty Random –1.40 –1.63 –1.67 –1.84 –1.79 –1.62 –1.84 –1.84 –1.80 –1.80
2 –1.54 –1.56 –1.56 –1.60 –1.72 –1.49 –1.68 –1.79 –1.75 –1.75
3 –1.81 –1.65 –1.71 –1.68 –1.61 –1.69 –1.82 –1.85 –1.84 –1.76

PCAR Random 76.44 77.58 78.02 77.07 78.25 77.78 77.04 77.06 78.20 78.25
2 76.56 76.08 76.90 76.58 76.71 76.19 76.26 76.68 76.91 76.94
3 78.33 78.13 78.14 78.22 78.27 78.02 78.34 78.45 78.26 77.98

ACAR, actual correct answer rate; IRT, item response theory; PCAR, predicted correct answer rate.
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Statistical analysis
The various conditions were compared in terms of PCAR, ACAR, 

and IRT difficulty parameters. The random equating method using 
PCARs was compared with the pre-equating method using LP with 
2 or 3 PCAR categories. In addition, the equating condition with 
common items was compared to the condition without common 
items. Finally, analysis of variance (ANOVA) was implemented for 
the dependent variables of ACAR and the IRT difficulty to deter-
mine whether there was a significant difference among the different 
equating conditions. This study used R statistical software (The R 
Foundation for Statistical Computing) for all statistical analyses [3]. 
The R code for constructing item sets using LP is presented in Ap-
pendix 1.

Results

The results of the pre-equating of 5 item sets are presented in Ta-
ble 2. In Table 2, the degree of equivalence of 5 item sets is compared 
using the LP method. The dependent variables are the average of 
ACAR, PCAR, and IRT difficulty. To statistically confirm the pre-
equating of the 5 item sets under each condition, ANOVA was per-
formed, and the results are presented in Table 3.

There was a statistically significant difference in IRT difficulty when 5 
item sets were composed randomly without common items (F(4,179) 
=4.075, P= 0.003, η2 =0.010). This means that the 5 item sets were 

not equated. There was no statistically significant difference between 
ACAR and IRT difficulty when PCAR was divided into 2 or 3 cate-
gories, regardless of the presence of common items. In other words, 
when the PCAR was divided into 2 or 3 categories, it was verified 
that the mean ACAR and IRT difficulty among the 5 item sets were 
similar to each other.

In the comparison of the common-item and no-common-item 
conditions, the majority of P-values in the evaluation criteria were 
above the 0.05 significance level. This means that there were no sig-
nificant differences among the item sets. 

Discussion

Using real data, this study proposed the use of LP to construct 5 
item sets that reflected the characteristics of each content area. It can 
be seen that the use of common items did not significantly contrib-
ute to the equating of the 5 item sets (Tables 2, 3). It is recommend-
ed that common items should not be used to equate 5 item sets be-
cause of item exposure.

LP performed well for constructing 5 pre-equated item sets com-
pared to the random and subject-based methods (Tables 2, 3). It was 
demonstrated that the LP method with real data was applicable to 
construct pre-equated item sets for the KMLE.

Based on this real data simulation study, several suggestions for 
constructing the equated 5 item sets can be made, as follows.

Table 3. Analysis of variance results of ACAR, IRT difficulty, and estimated PCAR for the 5 item sets

Evaluation  
   criteria

PCAR 
section

Group
No common item 20% Ccommon items

SS df F η2 P-value SS df F η2 P-value

ACAR Random Ba) 1,377 4 0.721 0.002 0.578 2,117 4 1.115 0.002 0.348
Wb) 857,108 1,795 852,224 1,795

2 B 2,318 4 1.172 0.001 0.321 3,095 4 1.574 0.003 0.179
W 888,050 1,795 882,320 1,795

3 B 1,248 4 0.644 0.003 0.631 1,787 4 0.98 0.005 0.417
W 869,796 1,795 818,104 1,795

IRT difficulty Random B 43 4 4.075 0.010 0.003** 12 4 1.173 0.003 0.321
W 4,713 1,795 4,698 1,795

2 B 8 4 0.723 0.001 0.576 20 4 1.926 0.004 0.104
W 4,871 1,795 4,767 1,795

3 B 8 4 0.763 0.001 0.549 6 4 0.6 0.001 0.662
W 4,827 1,795 4,593 1,795

PCAR Random B 784 4 2.162 0.005 0.049** 507 4 1.423 0.003 0.224
W 162,682 1,795 159,893 1,795

2 B 132 4 0.352 0.001 0.843 181 4 0.51 0.001 0.728
W 168,373 1,795 159,302 1,795

3 B 10 4 0.027 0.001 0.999 59 4 0.165 0.001 0.956
W 163,372 1,795 160,652 1,795

ACAR, actual correct answer rate; IRT, item response theory; PCAR, predicted correct answer rate; SS, sum of squares; df, degrees of freedom.
a)Between groups. b)Within groups. **P < 0.05.
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First, this study proposed equating 5 item sets using LP. However, 
an item bank must be quite large to construct a test with LP. An item 
bank is required to contain at least 10 to 30 times the number of 
items in the item sets. Even though the KMLE contains items ac-
counting for 18 times the length of the item set, there is some pres-
sure to produce the necessary items every year because the items of 
the KMLE have been released every year. To decrease this pressure, it 
has been suggested to reduce the number of items in each item set or 
to use CAT, which will be an effective alternative for future licensing 
examinations. CAT is advantageous because it provides only the ap-
propriate items for each individual and estimates each candidate’s 
ability based on adaptive items [9]. Therefore, it is possible to reduce 
the burden of developing many items every year.

Second, this study showed that dividing PCAR into 2 or 3 catego-
ries is enough to equate 5 item sets. If the item bank is large enough 
to be divided into numerous sections according to PCAR, the item 
sets constructed by LP are almost perfectly equated.

Third, the results using PCAR and ACAR criteria in empirical 
data conducted from 2012 to 2017 showed a small difference (for 
2012 to 2017, the average ACAR was 74.76 and the average PCAR 
was 76.89) in the KMLE (Table 2). However, if the difference is large, 
an alternative method should be considered to construct the parallel 
test. For example, it is possible to develop items with similar content 
for sub-factors or to construct item sets using sequential sampling. 
In order to reduce the difference between the PCAR and ACAR, the 
accuracy of the PCAR can be improved by continuously obtaining 
feedback on the actual difficulty after the test is taken every year.

Fourth, if pre-equating is not possible, post-equating can be con-
sidered for the real test. Post-equating means linking the item param-
eters of the unique items of item set A to item set B using a regres-
sion of common items [10]. Recent studies have shown that post-equat-
ing can be conducted using a concurrent calibration method [11,12]. 
The concurrent calibration based on IRT reduces the risk of item 
exposure because no common item is required. However, if item sets 
are equated on periodical examinations, post-equating using com-
mon items will be accurate and stable for the real test.

Fifth, when constructing an item set, the ratio of the number of 
items of each sub-factor must be considered through a job analysis. 
If sub-factors are too specific and numerous, constructing equated 
item sets using LP will be inefficient and will not converge because 
too many degrees of freedom are present. Therefore, this study pro-
poses a job analysis to accurately estimate the appropriate number of 
sub-factors and to decide the composition of details.

In this study, a simulation study was conducted once under each 
condition. This is a limitation of this study, because it does not guar-
antee replication with the PCAR in actual use. In the item bank with 
2,410 items, LP was used to construct 5 item sets with 360 items. 
For this reason, the average of the item parameters remained almost 
invariable even after several repetitions. In future studies, the results 
of this study should be confirmed by determining whether the re-

sults can be replicated using LP with a large item bank with varied 
conditions.

In addition, this study did not consider the problem of item diffi-
culty parameter drift from item exposure, even if 5 item sets are con-
stituted by the LP method. Therefore, a strategy to control item ex-
posure is to delete items or modify parameters by analyzing item pa-
rameter drift. If item sets are developed every year for the item bank, 
an item monitoring system should be established to control item pa-
rameter drift from item exposure [13]. If difficulty parameter drift is 
detected, a small difficulty drift can be adjusted by calculating the 
average of 2 difficulty parameters, and if the difficulty parameter drift 
is large, it is desirable to eliminate items.

In conclusion, the LP method is applicable to construct equated 
item sets that reflect each content area. The best method to construct 
equated item sets suggested is to divide the PCAR into 2 or 3 diffi-
culty categories regardless of the presence of common items. If pre-
equated item sets are necessary to construct a test based on the actual 
data, several methods should be considered by simulation studies to 
determine which is optimal before administering a real test. For ex-
ample, some potentially appropriate methods include sequential 
sampling of the test, concurrent calibration equating using IRT, and 
CAT. However, it is difficult to resolve the problem of item difficulty 
parameter drift from item exposure, even when using LP or other 
statistical methods. Therefore, if item exposure causes the item pa-
rameter drift issue, it is recommended to delete problematic items or 
to modify the corresponding parameters in a real examination situa-
tion.
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Appendix 1. R code for constructing item sets using linear programming 

#############################################################

## 

require(ltm) 

require(irtoys) 

require(catR) 

require(mirt) 

require(stringr) 

require(irtoys) 

library(lpSolveAPI) 

 

setwd("H:\\Item_Set_Equating_2018\\data_2015_2017") 

responses <- read.table("data2017.txt", header=F) 

items <- read.table("itemtotal_2012_2017.csv", header=T, sep=",") 

# Change the table into a numeric mode 

res <- as.matrix(responses[,-1]) 

head(res) 

 

################### difficulty equating ########################### 

attach(items) 

items$level[items$ratio<=75]<-1 

items$level[items$ratio>75]<-2 

#############################################################

## 

## Linear Programing & 5 forms 

#############################################################

## 

Appendix 1. R code for constructing item sets using linear programming



Page 8 of  12
(page number not for citation purposes)https://jeehp.org 

J Educ Eval Health Prof 2018; 15: 26  •  https://doi.org/10.3352/jeehp.2018.15.26
 

 

ID<-items$ID 

B=items$ratio 

Content=items$content 

level=items$level 

I=nrow(items) 

F=5 ##5 forms 

N=360 

Vc=list() 

for(k in 1:8){ 

Vc[[k]] = c(1:I)[Content==k]} 

####################### difficulty equating 

############################ 

DIF=list() 

for(k in 1:2){ 

DIF[[k]]=c(1:I)[level==k] 

M=I*F+1 

#Create the Model: model object with 0 constraints and 331 decision variables 

lprec=make.lp(0,M) 

# Set control parameters: minimization problem;  

#absolute MIP gap is set to 0.1; relative MIP gap is set to 0.05 

lp.control(lprec,sense="min",epsint=0.1,mip.gap=c(0.1,0.05)); 

## Constraints (8) and (9) 

set.type(lprec,columns=c(1:(5*I)),type="binary") ## 5 forms 

set.type(lprec,columns=M,type="real") 

set.bounds(lprec,lower=rep(0,M),upper=rep(1,M)) 

#Constraint (5) No Item overlap between two forms 

for(k in 1:I){ 



Page 9 of  12
(page number not for citation purposes)https://jeehp.org 

J Educ Eval Health Prof 2018; 15: 26  •  https://doi.org/10.3352/jeehp.2018.15.26
 

 

add.constraint(lprec,rep(1,5),"<=",1,indices=c(k,I+k,2*I+k,3*I+k,4*I+k)) } ## 5 forms 

#Constraint (5) 30 Item overlap between two forms 

#for(k in 1:I){ 

#add.constraint(lprec,c(1,1,1,1,1),"<=",2,indices=c(k,I+k,2*I+k,3*I+k,4*I+k))  

#} 

#Constraint(6) 

Nc=c(45,45,45,25,154,20,20,6) 

#Nc=c(4,4,4,2,10,2,2,2) 

 

#Form 1 

for (k in 1:8){ 

add.constraint(lprec,rep(1,length(Vc[[k]])),">=",Nc[k],indices=Vc[[k]]) 

} 

#Form 2 

for(k in 1:8){ 

add.constraint(lprec,rep(1,length(Vc[[k]])),">=",Nc[k],indices=I+Vc[[k]]) 

} 

#Form 3 

for (k in 1:8){ 

add.constraint(lprec,rep(1,length(Vc[[k]])),">=",Nc[k],indices=2*I+Vc[[k]]) 

} 

#Form 4 

for(k in 1:8){ 

add.constraint(lprec,rep(1,length(Vc[[k]])),">=",Nc[k],indices=3*I+Vc[[k]]) 

} 

#Form 5 

for (k in 1:8){ 
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add.constraint(lprec,rep(1,length(Vc[[k]])),">=",Nc[k],indices=4*I+Vc[[k]]) 

# Constraint(7) 

add.constraint(lprec,rep(1,I),"=",N,indices=1:I) 

add.constraint(lprec,rep(1,I),"=",N,indices=(I+1):(2*I)) 

add.constraint(lprec,rep(1,I),"=",N,indices=(2*I+1):(3*I)) 

add.constraint(lprec,rep(1,I),"=",N,indices=(3*I+1):(4*I)) 

add.constraint(lprec,rep(1,I),"=",N,indices=(4*I+1):(5*I)) 

#Constraint(3) and (4) 

Nd=c(180,180) 

# form 1 

for(k in 1:2){ 

add.constraint(lprec,rep(1,length(DIF[[k]])),">=",Nd[k],indices=DIF[[k]]) 

} 

# form 2 

for(k in 1:2){ 

add.constraint(lprec,rep(1,length(DIF[[k]])),">=",Nd[k],indices=I+DIF[[k]]) 

} 

# form3 

for(k in 1:2){ 

add.constraint(lprec,rep(1,length(DIF[[k]])),">=",Nd[k],indices=2*I+DIF[[k]]) 

} 

#form4 

for(k in 1:2){ 

add.constraint(lprec,rep(1,length(DIF[[k]])),">=",Nd[k],indices=3*I+DIF[[k]]) 

} 

#form 5 

for(k in 1:2){ 
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add.constraint(lprec,rep(1,length(DIF[[k]])),">=",Nd[k],indices=4*I+DIF[[k]]) 

} 

#Objective function 

set.objfn(lprec,1,indices=M) 

#Solve the model 

res_flag=solve(lprec) 

res_flag 

x_opt=get.variables(lprec) 

####################### construction 5 item sets ###################### 

f1<-x_opt[1: 2410] 

f2<-x_opt[2411:4820] 

f3<-x_opt[4821:7230] 

f4<-x_opt[7231:9640] 

f5<-x_opt[9641:12050] 

form1<-cbind(items,f1) 

form2<-cbind(items,f2) 

form3<-cbind(items,f3) 

form4<-cbind(items,f4) 

form5<-cbind(items,f5) 

 

form1_data<-form1[which(form1$f1==1),] 

form2_data<-form2[which(form2$f2==1),] 

form3_data<-form3[which(form3$f3==1),] 

form4_data<-form4[which(form4$f4==1),] 

form5_data<-form5[which(form5$f5==1),] 

 

rbind(apply(form1_data,2,mean), 
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apply(form2_data,2,mean), 

apply(form3_data,2,mean), 

apply(form4_data,2,mean), 

apply(form5_data,2,mean)) 

 

rbind(apply(form1_data,2,length), 

apply(form2_data,2,length), 

apply(form3_data,2,length), 

apply(form4_data,2,length), 

apply(form5_data,2,length)) 

 

table(form1_data$content) 

table(form2_data$content) 

table(form3_data$content) 

table(form4_data$content) 

table(form5_data$content) 

table(table(c(form1_data$id,form2_data$id,form3_data$id,form4_data$id,form5_data$id)) ) 

############################### END ###################### 

 

 


