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The utility of evaluating mediation effects spans across research domains. The model
facilitates investigation of underlying mechanisms of event timing and, as such, has
the potential to help strengthen etiological research and inform intervention work that
incorporates the evaluation of mediating variables. In order for the analyses to be
maximally useful however, it is critical to employ methodology appropriate for the
data under investigation. The purpose of this paper is to evaluate a regression-based
approach to estimating mediation effects with discrete-time survival outcomes. We
empirically evaluate the performance of the discrete-time survival mediation model in
a statistical simulation study, and demonstrate that results are functionally equivalent to
estimates garnered from a potential-outcomes framework. Simulation results indicate
that parameter estimates of mediation in the model were statistically accurate and
precise across the range of examined conditions. Type 1 error rates were also tolerable
in the conditions studied. Adequate power to detect effects in the model, with binary X
and continuous M variables, required effect sizes of the mediation paths to be medium
or large. Possible extensions of the model are also considered.

Keywords: event history, discrete-time, survival analysis, mediation, onset

INTRODUCTION

Mediation hypotheses have become increasingly pervasive across a wide range of research areas in
recent years, as investigators use statistical mediation analysis to elucidate developmental pathways
of behavior (e.g., Selig and Preacher, 2009; George et al., 2014; Gonzalez and MacKinnon, 2018),
inform etiological underpinnings of disease symptoms and other health behaviors (e.g., Ranby
et al., 2009, 2011), and enhance the evaluation of prevention/intervention programs (e.g., Petrosino,
2000; Donaldson, 2001; Fairchild and MacKinnon, 2014; Fairchild and McDaniel, 2017). In reaction
to this sustained interest in use, methodologists have developed and analyzed a wide array of
techniques to examine statistical mediation across a variety of data types, as well as have increased
investigations into improving causal interpretation of model parameters. The use of discrete-time
survival analysis to model time-to-event occurrence has also increased with applications across
a wide range of developmental and behavioral outcomes such as youth alcohol and other drug
involvement onset, first relapse following drug or alcohol treatment, early initiation of sexual
activity, school expulsion, and timing of death (e.g., Capaldi et al., 1996; Nichols et al., 1999;
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Xie et al., 2005; Petras et al., 2011;Kerr et al., 2015; Atherton
et al., 2016; Beydoun et al., 2016; Mason et al., 2017; Kilburn
et al., 2018). To date, however, little methodological work has
been conducted to study methods appropriate for examining
mediation effects with discrete-time survival outcomes. This is a
salient outstanding need.

Previous work has considered the examination of mediation
effects with continuous time survival data (e.g., Tein and
MacKinnon, 2003; Lange and Hansen, 2011; Tchetgen Tchetgen,
2011; Gelfand et al., 2016). The estimation and interpretation of
model parameters across continuous vs. discrete-time survival
analyses differ in critical ways, however, engendering the need to
understand and develop discrete-time survival methods in their
own right. These differences manifest in large part due to the
“tied survival data” (e.g., Chalita et al., 2002) that materializes
when one measures time-to-event occurrence in discrete epochs
such as days, months, semesters, or years. Such periodic data
collection, which is routine in academic settings and clinical
trials, allows multiple individuals to experience an event within
the same period, thus yielding grouped survival times. The
ensuing focus of analysis in discrete-time models centers on
the conditional probability of an individual experiencing the
event of interest in a given time period, given that they have
not experienced the event prior to that time (i.e., the hazard
probability; Masyn, 2014). This focus is in contrast to an emphasis
on the usual hazard rate in continuous-time survival models
(e.g., Cox, 1972).

Fairchild et al. (2015) discussed key strengths of investigating
mediation effects in discrete-time survival data with respect
to ameliorating the nationwide public health problem of
substance use in youth. Indeed, a brief survey of recent
applied work suggests that there is a clear and present
interest in examining mediation effects with discrete-time
survival outcomes1, particularly with research questions relating
to different facets of substance use onset in youth. For
example, Atherton et al. (2016) examined mediation effects
in discrete-time survival data in a sample of Mexican-Origin
youth to understand how familism impacted timing to onset
of substance use through three proposed mediators: access
to substances, intent to use substances, and association with
deviant peers. In another study related to timing to substance
use initiation, Mason et al. (2017) explored how cumulative
contextual risk at the time of birth predicted timing to
onset of substance use through childhood peer marginalization,
aggression, and behavior problems. Kerr et al. (2015) also
examined a substance use model that considered how parental
use of marijuana in adolescence impacted time to onset
of child marijuana use indirectly via a variety of risk and
protective factors at both the child and parent-level. There
have been applications beyond the substance use literature

1The focus of this paper is on mediation models, where a discrete-time onset
variable serves as the outcome. Note that there are other types of mediation
models where putative mediators can take the form of a discrete-time onset
variable. Kilburn et al. (2018) examined one such model in the context of a
randomized controlled trial to understand the impact of a conditional cash
transfer intervention on reducing intimate partner violence for young women in
South Africa.

as well (Reis et al., 2011; Garner and Hunter, 2013; Hill
et al., 2013; Lambert et al., 2013; Slater and Henry, 2013;
Beydoun et al., 2016).

Varied tests of mediation were used throughout these
applications. Although a handful of examples used
contemporary, recommended approaches to test for mediation
(e.g., bias-corrected bootstrapped confidence intervals, and
potential outcomes approach), the majority of examples
employed methods that have been shown to be limited in a
variety of circumstances (see MacKinnon et al., 2002; Fritz
and MacKinnon, 2007). That is, some of the applications
used a point estimate and normal theory standard error
estimator to test mediation but did not have sufficient sample
size to invoke asymptotic efficiency (Sobel, 1982). Other
studies assessed mediation via the causal steps (Baron
and Kenny, 1986) and did not report a point estimate
of the mediated effect, precluding tests of its statistical
significance. An abundant amount of methodological work
has demonstrated serious shortcomings with the latter approach
to testing mediation effects (e.g., Shrout and Bolger, 2002;
MacKinnon and Fairchild, 2009). Namely, the causal steps
approach as originally described lacks sufficient power to
detect mediation effects in a variety of circumstances (e.g.,
MacKinnon et al., 2002). This problem is particularly serious
in complete mediation models, where (in the population)
there is no direct effect of an independent variable on the
outcome while controlling for the mediator. Indeed, Fritz
and MacKinnon (2007) illustrated that the causal steps
required approximately n = 21,000 subjects for adequate
power to detect mediation when component paths of the
mediated effect were small in size and the direct effect was
zero. Others have also written on issues of power associated
with this requirement of the test (e.g., Kenny and Judd, 2014;
O’Rourke and MacKinnon, 2015)2.

Taken as a set, the above examples serve to highlight the
need for well-tested, uniform methods for estimating, and
testing mediation effects on discrete time survival outcomes
in the applied literature. Fairchild et al. (2015) introduced a
framework to test mediation hypotheses with univariate discrete
time survival data (i.e., non-recurring events) that incorporates
current methodological recommendations from the broader
mediation analysis literature. The authors demonstrated both
a regression-based approach to analysis, as well as a structural
equation modeling-based approach that estimates model
parameters within a mixture-modeling framework. Neither
variant, however, has yet to be evaluated statistically. Given the
utility of examining mediation hypotheses with discrete-time
survival outcomes, and the current lack of guidelines to do so,
the formal evaluation of such a method is merited.

2Beyond issues associated with statistical power, the causal steps notion that there
needs to be a significant overall relation of the predictor and outcome variables
for mediation to exist is fallible from a variety of additional perspectives. Though
testing the overall relationship between a predictor and outcome is important in
any research study, it is a separate test from mediation and indirect effects can
exist in the absence of a significant overall effect. This might occur in multiple
mediator models where different mediated effect pathways have varying signs or
when the sign of the mediated effect is opposite in value from the direct effect,
yielding inconsistent mediation models.
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CURRENT STUDY

Our goal in this paper is to evaluate statistical properties of
the discrete-time survival mediation (DTSM) model. Specifically,
we examine the models in a statistical simulation study to
examine power, Type 1 error, and accuracy of model parameter
estimates. Additionally, in line with an increased focus on
causal frameworks to conduct statistical mediation analysis, we
demonstrate analytical equivalency (under linearity assumptions)
of the Fairchild et al. (2015) approach to that of Imai et al.
(2010) potential outcomes framework for estimating the average
causal mediated effect (ACME) and illustrate that simulation
results of the two approaches are functionally indistinguishable.
The intention of this study is to document the statistical
properties of the DTSM model and to develop recommendations
for its use in applied research. To best achieve study goals,
we first orient readers to the DTSM model (for a more
comprehensive overview of the model and component parts see
Fairchild et al. (2015). We then briefly explain the potential
outcomes framework for examining mediation effects, before
describing the design, and findings of the statistical simulation
study. We end by providing general recommendations and
considerations for applied researchers, as well as by discussing
limitations of our study.

DISCRETE-TIME SURVIVAL MEDIATION
ANALYSIS

Mediation analysis allows a researcher to examine how one or
more intermediate variables conveys the effect of a predictor to an
outcome of interest, enhancing one’s understanding of theoretical
relations in a model (Judd and Kenny, 1981; Baron and Kenny,
1986; MacKinnon et al., 2007a; MacKinnon, 2008). Discrete-time
survival analysis supports research questions regarding both the
“if ” and “when” of an outcome by modeling the probability of
event occurrence over discrete intervals of time (e.g., Allison,
1982; Singer and Willett, 1991; Singer and Willett, 1993; Willett
and Singer, 2004; Masyn, 2014). This method lends insight
into temporal windows of critical risk by providing information
on risk for event occurrence in each interval. Drawing on
mediation analysis and discrete-time survival analysis, the DTSM
model allows testing of hypotheses about the mechanisms
of event timing.

In line with conventional mediation models, the DTSM model
parses the overall effect of an independent variable on the
outcome (here the hazard probability of event occurrence) into
a direct effect and an indirect effect. The direct effect in the
DTSM model captures the influence of a predictor on the hazard
probability of event occurrence controlling for the mediator, and
the indirect effect captures the influence of the predictor on the
hazard probability of event occurrence through the mediator.

With a single predictor, mediator, and event time, two
equations define the DTSM model under a proportional
hazard odds assumption that specifies invariant effects of X
and M (see Figure 1).

Mi = β01 + aXi + ε1i (1)

FIGURE 1 | Path diagram for the discrete-time survival mediation model with
proportional odds constraint imposed for both the effects of M and X on the
event history indicators, where X = the independent variable, M = the mediator
variable, η = the latent propensity for event occurrence, and e1-ej = binary
indicators of event occurrence at each time period.

η = logit
(
Ph
(
tj|Xi,Mi

))
= β02 + c′Xi + bMi + ε2i (2)

where Ph represents the hazard probability of the event outcome,
and η is the logit of the latent propensity for event occurrence3.
The hazard probability describes the probability of an individual
experiencing the event in a particular time interval provided
that individual is still event-free at the beginning of the interval.
The logit hazard is defined as a linear weighted combination
of the predictor X and mediator M. Indirect effects in the
model can be defined in line with tracing rules from the path
analysis literature (e.g., Wright, 1921; Alwin and Hauser, 1975),
such that a parameter estimate of the mediation effect can be
computed by multiplying the a coefficient from equation (1) and
the b coefficient from equation (2). We consider the product
of coefficients estimator with bootstrapped confidence limits
in our study, as prior methodological work has shown that
this is a desirable approach to conducting statistical mediation
analysis with a variety of different data types (e.g., Fritz and
MacKinnon, 2007; MacKinnon et al., 2007b; Preacher and Hayes,
2008; Taylor et al., 2008)4.

The model can be estimated using full-information maximum
likelihood procedures as used in conventional logistic regression
models (Singer and Willett, 1993; Muthén and Masyn, 2005). This
estimation allows for missing data in the form of non-informative
right censoring. Individuals with right-censored event times are

3Note: we use a latent underlying response variable parameterization, with latent
variable η, as estimated in Mplus.
4Previous work has noted the fallibility of estimating mediation with a difference
in coefficients approach for both categorical and time-to-event outcomes (e.g.,
Lapointe-Shaw et al., 2018).
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individuals who are still “event free” at the time they cease
to be observed in the study. FIML estimation can incorporate
the partial information available about the event times for
right-censored individuals into the likelihood function for the
sample. Null hypothesis significance testing of mediated effects
can be conducted by estimating asymmetric confidence limits
for ab either via bootstrapping (Efron and Tibshirani, 1993) or
the distribution of the product of two random variables (Aroian,
1947; Meeker et al., 1981).

We consider the simplest case of both X and M as time
invariant variables with a time invariant effect for exposition
purposes, but more complicated parameterizations of the model
are possible. It is straightforward to incorporate time-varying
predictors into the DTSM model, as well as to test for evidence
of time-varying effects in model estimation. Though the DTSM
model can be estimated in an SEM-based mixture-modeling
framework to accommodate model extensions (see Fairchild
et al., 2015), we limit our scope to the regression-based
framework presented in Fairchild et al. (2015) in the interest
of simplicity. This facilitates comparison of simulation results
to Imai et al. (2010) causal mediation analysis framework.
Note however, that in the simplest case as demonstrated here,
maximum likelihood estimates of the hazard probabilities in the
latent variable parameterization of the model are statistically
equivalent to maximum likelihood estimates of the binary event
indicators in an observed variable regression approach (see
Muthén and Masyn, 2005).

Potential Outcomes Approach to DTSM
In theory, DTSM implies causal relations among variables in
the model. However, as with other mediation models, real-world
study design elements will often preclude investigators from
drawing causal inferences even in the presence of longitudinal
data. Though random assignment of the X variable allows the
a path from the model to be treated as a causal estimate, the b
and c’ coefficients cannot be interpreted as causal effects unless
there is also random assignment of M. Given these limitations,
methodologists have worked on developing analytical corrections
to improve causal inference in mediation models (Imai et al.,
2010; Coffman, 2011; Jo et al., 2011; VanderWeele, 2011). These
methods permit one to move beyond associational estimators
that consider how variables relate, toward causal estimators that
instead evaluate how a given variable of interest causes another
(in this case through a third, mediating variable). The frameworks
also provide machinery to conduct sensitivity analyses to assess
robustness of model effects against omitted confounders (e.g.,
VanderWeele, 2015). Though there are alternative frameworks
available, such as Didelez’s (2018) recent work stemming from
the decision theoretic perspective, we focus on the causal
mediation approach presented by Imai et al. (2010), which utilizes
counterfactuals and is an extension of the potential outcomes
framework originally presented by Rubin (1974).

Suppose X is a binary variable, with X = 1 for treatment and
X = 0 for control. Imai et al. (2010) define the causal mediation
effect based on the potential outcomes framework as:

δi(t) ≡ Yi(t,Mi(1))− Yi(t,Mi(0)), for t = 0, 1 (3)

where δ(x) represents the difference between the two potential
outcomes, changing the mediator from Mi(1) to Mi(0) while
holding the treatment constant at t. This quantity has also been
termed the natural indirect effect in the literature. Note that
for Mi(1) and Mi(0) only one of the quantities will actually be
observed, and thus unit-level causal effects are not identifiable.
If the unit participates in the control group (Xi=0), then we will
observe Mi(0) but not Mi(1). In contrast, if the unit participates
in the treatment group (Xi=1), then we will observe Mi(1) but
not Mi(0). Accordingly, δ(0) reflects how the outcome would
change if the mediator value was adjusted from the value that
was observed under the control group Mi(0) to the value that
would be observed if the participant was assigned to the treatment
group Mi(1), and δ(1) reflects how the outcome would change
if the mediator value was adjusted from the value that was
observed under the treatment group Mi(1) to the value that
would be observed if the participant was assigned to the control
group Mi (0).

The average causal mediation effect (ACME) across
participants in a sample is identifiable and given by:

δ̄i(t) ≡ E (δi(t)) ≡ E (Yi(t,Mi(1))− Yi(t,Mi(0))), for t = 0, 1
(4)

Under the sequential ignorability assumption, we can rewrite
the equations (1) and (2) as:

E(Mi|Xi) = β01 + aXi (5)

and
E(log it(Ph(t|Xi,Mi))) = β02 + c

′

Xi + bMi (6)

Assuming that there is no interaction between the treatment
and the ACME, the ACME is identified and given by δ̄(1) =
δ̄(0) = ab. In logit form, the product of coefficients method
is equivalent to the causal mediated effect under the potential
outcomes framework.

METHODS

To assess the statistical performance of the DTSM model,
we conducted a Monte Carlo simulation study. Specifically,
we conducted an experiment in which we had knowledge of
population parameters by random sampling from probability
distributions specified a priori. With access to these true
parameter values, we defined and evaluated different statistical
properties of model estimates. We conducted two variants of the
study to demonstrate equivalency of the mediated effect estimates
across the product of the coefficients and potential outcomes
frameworks. The first study variant was conducted in Mplus
Version 6.11 (Muthén and Muthén, 1998–2012) to estimate the
product of the coefficients approach in a conventional, observed
variable, linear structural model as defined by equations (1)
and (2). The second study variant was conducted in R (R
Core Team, 2013) using the “mediation” R package for Causal
Mediation Analysis Tingley et al. (2014) to estimate the ACME
as defined above. The latter approach proceeded in two steps.

Frontiers in Psychology | www.frontiersin.org 4 April 2019 | Volume 10 | Article 740

https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-10-00740 April 4, 2019 Time: 18:1 # 5

Fairchild et al. Discrete-Time Survival Mediation

First, we specified the model for the conditional distribution of
the mediator M given predictor variable X and fit a least squares
regression through the linear model function. We also fit a model
for the conditional distribution of the outcome Y given predictor
variable X and mediator M by specifying a generalized linear
mixed effect model, with a logit link to model the discrete-time
survival data via a random effect component. After fitting the
mediator and outcome models, we specified the fitted objects as
well as the names of the treatment and mediating variables to the
‘mediate’ function to compute the estimated ACME.

Monte Carlo Study Design
Data Generation
We generated values of the exogenous X variable for the
simulation studies with the Mersenne Twister pseudorandom
number generator (Matsumoto and Nishimura, 1998). The
default random number generator in R 2.13.1, the Mersenne
Twister algorithm constructs a generally uniform distribution
of data with a period of 2(19937−1). Formal tests of statistical
randomness have shown that the number sequences the
Mersenne Twister generates are sufficiently random. We
considered the DTSM model with a dichotomous X variable5,
a specified that the data be randomly sampled from a binomial
Bernoulli distribution, B(1,0.5), with probability mass function
given by:

p (x) =
{

px(1− p)1−x x ∈ {0, 1}
0 x /∈ {0, 1}

(7)

We generated data for the M variable using equation (2), such
that M was defined by a linear regression on X with β01 = 0 and
ε1 randomly drawn from a standard normal distribution, N(0,1).
We generated event histories under a proportional hazard odds
model with a constant baseline hazard probability as given by:

Pr
(
eji|Xi,Mi

)
=

1
1+ exp

(
−
(
β02 + c′Xi + bMi

)) (8)

where β02 was fixed to values that corresponded to specific
baseline hazard probability values, e.g., β02 = −2.94 corresponds
to a baseline hazard probability of 0.05. Using a different random
seed for each time interval, we randomly sampled values yij from
a standard logistic distribution, L(0,1), with probability density
function given by:

f (y) =
exp

(
−y
)(

1+ exp
(
−y
))2 (9)

If yij>−(β02+c′X+bM), then eji = 1, otherwise eji = 0.
After all eji values had been generated, values were recoded

such that if, for a given case i, the first eji = 1 occurred at j=m,
all remaining eji (i.e.,e(m+1)i, . . . , eJi) were coded as missing, to
yield non-informative fixed right-censoring at the end of the
final time period.

5We specified a dichotomous X variable to align with a randomized controlled trial
scenario where there would be treatment and control groups.

Simulation Parameters
We varied 6 factors in the Monte Carlo study (see Table 1). We
considered two variants of the number of measurement occasions
associated with the event outcome to investigate how waves of
measurement may affect DTSM parameter estimates. We also
compared three different sample size conditions to ascertain
how performance of the DTSM model fared across a range of
sample sizes observed in the social sciences, and evaluated a
variety of effect sizes for the a, b, and c’ parameters in the
DTSM model to observe how the magnitude of different relations
influenced properties of the ab parameter estimate in both full
mediation and partial mediation contexts. Note that values of
the b and c’ parameters reflect partially standardized odds ratios.
Finally, we investigated two different baseline hazard conditions
to assess in what ways baseline risk impacted performance of the
DTSM model. Crossing all levels of each of these factors in a
full factorial design yielded 384 unique experimental conditions.
Replicating the model estimation process R = 500 times (e.g.,
MacKinnon et al., 1995; Nylund et al., 2007; Beyersmann et al.,
2009) for each unique parameter combination created a sample
of 192,000 datasets for analysis. A 6-way 2 × 3 × 4 × 4 × 2 × 2
ANOVA was conducted on the data to analyze the influence
of each factor, and all possible interactions among the factors,
on outcome variables under study. Due to the extremely large
sample size of the experiment and corresponding inflation of
statistical significance, we examined the practical significance
of effects via η2 to determine whether a given factor or
interaction was meaningful. Specifically we interpreted the effect
if η2

≥ 0.01, indicating that at least 1% of the variance
in a given outcome was attributable to the effect of interest
(Cohen, 1988).

Simulation Outcome Measures
We evaluated four statistical properties to assess performance
of the DTSM model in the simulation study. First, we looked
at the accuracy of parameter estimates by assessing the mean
relative bias of the ab estimator. We defined mean relative bias
by ascertaining the average deviation of the estimator’s expected
value from the true population parameter as a proportion of the
true value in each unique parameter combination.

R̂B (θ) =
Ê(θ̂)− θ

θ
(10)

TABLE 1 | Simulation factors and corresponding levels of each factor.

Factor Levels

Time intervals (J) 4, 8

Sample size (n) 250, 500, 1000

Parameter effect size

a path 0, 0.14, 0.39, 0.59

b path 1, 1.5, 2, 4

c’ path 1, 1.5

Baseline hazard 0.05, 0.2∗

∗Corresponding to β02 = 2.944,1.386.
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where

Ê
(
θ̂
)
=

1
R

R∑
r=1

(
θ̂(r)
)

(11)

θ̂(r) refers to the sample estimate of âb̂ in a given dataset
r, θ refers to the population value of ab in the experimental
condition, r refers to the replication number, and R is the
total number of replications. Values of relative bias ≤0.10 were
considered desirable (Muthén et al., 1987). For those parameter
combinations where the true value of ab was zero and relative
bias was therefore undefined, we evaluated accuracy of parameter
estimates by simply assessing the magnitude of unstandardized
bias for the condition:

B̂ (θ) = Ê
(
θ̂
)
− θ (12)

We then examined the mean squared error (MSE) as a
measure of overall accuracy and precision for the ab estimator
in the DTSM model:

M̂SE (θ) =
1
R

R∑
r=1

[
(θ̂(r) − θ)2

]
= v̂ar

(
θ̂
)
+

(
B̂ (θ)

)2
(13)

where

v̂ar
(
θ̂
)
=

1
R

R∑
r=1

[(
θ̂(r) − Ê(θ̂)

)2
]

(14)

Though often used as a comparative metric across two or
more estimators (where the estimator with the smallest MSE
is supported), we analyzed the metric in an absolute sense
here to accompany our evaluation of bias in investigating
how the simulation factors impact variability in the parameter
estimates. As with both measures of bias, smaller values of
MSE are desirable.

Finally, we evaluated statistical power and Type 1 error rates
to evaluate accuracy of hypothesis testing of the ab estimate
in the DTSM model. Specifically, we conducted significance
testing by using the non-parametric percentile bootstrap to
construct asymmetric confidence limits for the mediated effect.
A resampling technique, the percentile bootstrap forms the 95%
asymmetric confidence limits by empirically constructing the ab
sampling distribution from the data and identifying the 2.5th
and 97.5th quantiles of the distribution. The percentile bootstrap
constructs an empirical sampling distribution of ab by taking
repeated draws with replacement of size=n from the data and
estimating âb̂ in each drawn sample. By using the data as a
pseudo-population and creating a large number of bootstrap
samples in which the parameter is estimated, the resampling
technique effectively approximates the sampling distribution of
the test statistic. In the studies conducted here, we utilized
n = 1000 bootstrap draws (e.g., Fisher et al., 2016; Chowdhury
et al., 2017; Fang et al., 2019).

For experimental conditions where the true value of ab was
non-zero, we defined power as the proportion of simulation
replications where the 95% asymmetric confidence interval did
not include zero. We evaluated the results against the nominal
1-β = 0.80 criterion (Cohen, 1988), such that the statistical

test was characterized as underpowered in conditions where
empirical power was <0.80. For experimental conditions where
the true value of ab was zero, we defined Type 1 error as the
proportion of simulation replications where the 95% asymmetric
confidence interval did not include zero. We evaluated results
against the nominal α = 0.05, such that inflated Type 1 error rates
were identified for those conditions where empirical α> 0.05.

RESULTS

Accuracy and Precision of Parameter
Estimates
Because results across the ab and ACME estimators were either
identical or only differed in the third decimal place for all effects,
we just plot results associated with the ab estimator. We report
both estimates in the text when they differ. When X is binary
and M is a continuous variable, mean relative bias of the ab
estimator and ACME in the DTSM model (when ab6=0) were
both 0.013, indicating that parameter estimates were within 1.3%
of the true population values across simulation conditions. There
were no main effects or interactions of practical significance
on the relative bias outcome. In those parameter combinations
where the true value of ab = 0 or ACME = 0, mean unstandardized
bias of the estimators was 0.00007. There were no main effects
or interactions of practical significance on the unstandardized
bias outcome. These results indicate that the ab estimator and
ACME in the DTSM model are unbiased when X is binary and
M is continuous.

With regard to MSE across both the ab and ACME estimators,
there were several practically significant main effects and
interactions. The largest effect, that accounted for 20.9% of the
variance in MSE, was a main effect of the size of the a path,
η2 = 0.209. We also found significant main effect of sample size,
η2 = 0.100 as well as the baseline hazard, η2 = 0.025. However,
there were significant interactions associated with these variables
that warrant further discussion. First, there was a practically
significant two-way interaction of sample size and the magnitude
of a,η2 = 0.065 (ab) and η2 = 0.066 (ACME). The decrease in
MSE associated with larger sample size was of greater magnitude
for those conditions with a larger a path (see Figure 2). We also
found a significant interaction of the number of waves of data
collected and the size of the a path, η2 = 0.011 (ab) and η2 = 0.010
(ACME). Here the increase in MSE associated with an increase in
the magnitude of the a path was mitigated by increasing waves of
data collected (see Figure 3). That is, the increase in MSE with
increasing size of the a coefficient was more negligible with 8
waves of data than with 4 waves of data. In addition, we detected
a significant interaction of the baseline hazard and the size of the
a path, η2 = 0.027 (ab) and, η2 = 0.028 (ACME). The increase
in MSE associated with an increase in the magnitude of the
a path was moderated by the size of the baseline hazard (see
Figure 4). When the baseline hazard was greater, the increase in
MSE associated with the a path was smaller.

Finally, there was a practically significant main effect of the
effect size of the b path, η2 = 0.025 (ab) and η2 = 0.024 (ACME).
MSE of the mediated effect increase with increasing effect size of
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FIGURE 2 | Two-way interaction of sample size and the magnitude of
a on MSE.

FIGURE 3 | Two-way interaction of number of waves of data collected and
the magnitude of a on MSE.

the b path (see Figure 5). Across both studies, average MSE was
0.002 for conditions that had a b path equal to 1.00 but increased
to an average MSE of 0.004 when the b path was equal to 1.8.

Power and Type I Error
The mean Type I error rate for the ab estimator in the
DTSM model with binary X and continuous M was α = 0.043;
similarly, the mean Type I error rate for the ACME was

FIGURE 4 | Two-way interaction of baseline hazard and the magnitude of a
on MSE.

FIGURE 5 | Main effect of the effect size of the b path on MSE.

α = 0.039. There were no practically significant main effects or
interactions among simulation factors of practical significance on
the outcome. Evaluated against the nominal α = 0.05 criterion,
the ab estimator and ACME in the DTSM model had acceptable
Type I error rates across parameter combinations in these
simulation studies.

There were several practically significant main effects and
two-way interactions on the power to detect effects in the DTSM
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model. Specifically, there were significant main effects of sample
size, η2 = 0.077 (ab) and η2 = 0.075 (ACME), the baseline hazard,
η2 = 0.015 (ab) and η2 = 0.014 (ACME), the size of the b path,
η2 = 0.250 (ab) and η2 = 0.257 (ACME), and the size of the a
path, η2 = 0.024 (ab) and η2 = 0.026 (ACME). However, these
effects should be interpreted in the context of their respective,
practically significant interactions.

We found a practically significant two-way interaction
between sample size and the size of the a path, η2 = 0.021 (ab)
and η2 = 0.020 (ACME), as well as between sample size and the b
path, η2 = 0.027 (see Figures 6, 7). Power to detect ab increased
with increasing sample size but this was moderated by the impact
of the effect size of the a or b coefficient. The increase in power
associated with increasing sample size was most marked when the
size of a or b was small.

We also noted a practically significant two-way interaction
between the baseline hazard and the size of the b path, η2 = 0.017
(see Figure 8). In general, greater power was associated with
a baseline hazard, however, this effect was moderated by the
size of the b path. In conditions in which the b path was
small, power rates were more disparate in conditions with a
baseline hazard of 0.05 vs. 0.20. As the effect size of b increased,
power rates in conditions with baseline hazard of 0.05 vs. 0.20
were more similar.

DISCUSSION

Discrete-time survival mediation analyses can strengthen
behavioral research by improving one’s understanding of
predictors of discretized periods of risk over time as well
as further illuminating through what mechanisms different

FIGURE 6 | Two-way interaction between sample size and the size of the a
path on power.

FIGURE 7 | Two-way interaction between sample size and the size of the b
path on power.

FIGURE 8 | Two-way interaction between baseline hazard and the size of the
b path on power.

predictors impact the timing of an event. Further, DTSM
analyses can be used to assess the impact of prevention
or intervention programs on time-to-event outcomes. By
incorporating the DTSM model into program evaluation efforts,
researchers can enhance their understanding of how prevention
or intervention programs achieve (or fail to achieve) effects on
time-to-event outcomes.

This article evaluated the statistical performance of a
DTSM model originally presented by Fairchild et al. (2015)
in a Monte Carlo simulation study. It was shown that the
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conventional product of coefficients estimator and the ACME
yielded comparable model results in the simulation conditions
under study. Results showed favorable statistical properties of
the model across a variety of different conditions. Specifically,
MSE and Type 1 error for the model were tolerable across
a range of different sample sizes, effect sizes, baseline hazard
conditions, and number of measurement waves. Adequate power
to detect mediation effects, however, required that effect sizes of
the model parameters be medium or large. Note that considering
the performance of a statistical test for mediation inherently
involves null hypothesis significance testing, which is not without
limitations. Given these limitations, and in line with other
authors (e.g., Sullivan and Feinn, 2012), we encourage readers
to report effect size estimates in any statistical model to assess
the magnitude of an effect under study. Alternatively, researchers
may consider different strategies entirely to investigate mediation
effects (e.g., design approaches; Pirlott and MacKinnon, 2016; or
Bayesian analyses; Enders et al., 2013; Miočević et al., 2018).

Limitations and Model Extensions
As this was the first examination of the DTSM model, we
considered the simplest case of a single mediator model
with time-invariant predictors that satisfied a proportional
hazard odds assumption. These constraints are necessarily a
limitation of the study that could be explored in subsequent
research. Accommodating time-varying predictors and
non-proportionality in the DSTMed model involves multiple a,
b, and c’ paths, which necessarily introduces additional issues in
estimating the mediated effect.

Future work might consider evaluating different latent
variable model extensions of the DTSM model that permit
examination of more complicated longitudinal processes. One
such example is a finite mixture model that examines joint
event history and growth processes (e.g., Malone et al., 2012).
Such models permit the examination of reciprocal effects across
the two processes, and may provide a good foundation for
exploring multifaceted developmental theories. The estimation
of non-parametric frailties to model unobserved heterogeneity in
the survival process is also possible. Such random factors have
been shown to be important in continuous survival models (e.g.,
Henderson and Oman, 1999), and may be particularly relevant
to multivariate survival models where recurring events and/or
competing risks are of interest.

Recommendations and Concluding
Remarks
The utility of evaluating mediation effects spans across research
domains, as such analyses strengthen prevention science and
etiological research more generally. In order for the analyses
to be maximally useful however, it is critical to employ
methodology appropriate for the data under investigation (e.g.,
logistic or probit models for categorical outcomes; multilevel
models for clustered data). The DTSM model presented in this
article intends to facilitate the investigation of mediation effects
with discrete-time survival data. By evaluating discrete-time
mediation effects, we can improve our understanding of

discretized periods of risk for myriad behavioral outcomes, as
well as target prevention and intervention work more effectively.
Interested researchers may consult Fairchild et al. (2015) for
applied example syntax and a detailed interpretation of model
parameters in the substantive context, for the model specification
evaluated here6.

Simulation results indicate that parameter estimates of
mediation in the DTSM model were statistically accurate and
precise across the range of examined conditions. Type 1 error
rates of the ab estimator and ACME were also tolerable in
the conditions studied. Thus, substantive researchers can feel
confident in using the DTSM model to make statistical inferences
in circumstances where the model is adequately powered. With
binary X variables, we cannot advocate that the model be used
when the relation between X and M is posited to be small in effect,
however. Though it may be possible that the model achieves
adequate power with a small effect size of a in sample sizes larger
than n = 1000, no such conditions were considered in this study
precluding any comment on the matter.

Finally, as noted by Pratschke et al. (2016), a linear
specification of the DTSM model using an applicable link
function (such as the logit) allows for a causal interpretation
of ab in this context. That is, the product of coefficients will
yield an estimate of the natural indirect effect on a logit scale,
lending support for ab as a viable estimator of mediation in
linearized discrete-time survival models when there are no
interaction effects. When incorporating non-linear relationships
into the model, however, we encourage researchers to estimate
ACME effects. The product of coefficients diverges from the
causal estimator in this case, and ab no longer retains a causal
interpretation (a limitation of the estimator). Fortunately, both
methods to estimate mediation effects are readily available in a
wide variety of software packages.
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