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Abstract
Anostomidae are a neotropical fish family rich in number of species. Cytogenetically, they show a con-
served karyotype with 2n = 54 chromosomes, although they present intraspecific/interspecific variations 
in the number and chromosomal location of repetitive DNA sequences. The aim of the present study was 
to perform a comparative description of the karyotypes of two populations of Leporinus friderici Bloch, 
1794 and three populations of Leporellus vittatus Valenciennes, 1850. We used conventional cytogenetic 
techniques allied to fluorescence in situ hybridization, using 18S ribosomal DNA (rDNA) and 5S rDNA, 
a general telomere sequence for vertebrates (TTAGGG)n and retrotransposon (RTE) Rex1 probes. The 
anostomids in all studied populations presented 2n = 54 chromosomes, with a chromosome formula of 
32m + 22sm for L. friderici and 28m + 26sm for L. vittatus. Variations in the number and location of the 
5S and 18S rDNA chromosomal sites were observed between L. friderici and L. vittatus populations and 
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species. Accumulation of Rex1 was observed in the terminal region of most chromosomes in all popula-
tions, and telomere sequences were located just on all ends of the 54 chromosomes in all populations. The 
intraspecific and intergeneric chromosomal changes occurred in karyotype differentiation, indicating that 
minor chromosomal rearrangements had present in anostomid species diversification.
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Chromosomal differentiation, karyotype evolution, ribosomal DNA, retrotransposon

Introduction

Eukaryotic chromosomes can be classified into different DNA classes: single copy 
DNA, which are sequences found only once in a genome; and repetitive DNA, which 
are sequences repeated from a few tens to millions of times (Sumner 2003). Repetitive 
DNA can be classified into tandem repeats (multigene families and satellite, minis-
atellite, and microsatellite DNA) and transposable elements (TEs): transposons and 
retrotransposons with dispersed distribution in genomes (Sumner 2003).

Satellite DNA and TEs are responsible for a large part of the structural and func-
tional organization of genomes (Sumner 2003, Feschotte 2008), and carry sequences 
containing DNA double-strand break hotspots, resulting in chromosome/genome re-
shuffle (Eichler and Sankoff 2003, Longo et al. 2009, Farré et al. 2011, Barros et al. 
2017a, Glugoski et al. 2018). The movement of repetitive sequences within the ge-
nome promotes chromosomal differentiation, which has an important role on karyo-
type evolution (Wichman et al. 1991, Pucci et al. 2016, 2018a, 2018b, Lorscheider et 
al. 2018, do Nascimento et al. 2018).

Anostomids are neotropical fishes with a high number of species and diverse mor-
phology (Garavello and Britski 2003, Graça and Pavanelli 2007, Britski et al. 2012, 
Ramirez et al. 2017a). Cytogenetically they present a conserved diploid number (2n) of 
54 chromosomes, with mostly metacentric (m) and submetacentric (sm) chromosomes 
(Galetti Jr and Foresti 1986, Galetti Jr et al. 1991, 1995, Venere et al. 2004). Anostomi-
dae species present differentiated karyotypes regarding the distribution of heterochroma-
tin and repetitive sequences, presenting different localizations of heterochromatic bands 
and repetitive DNA sites (Martins and Galetti Jr 1999, Parise-Maltempi et al. 2007, 
Porto-Foresti et al. 2008, Hashimoto et al. 2009, Marreta et al. 2012, Borba et al. 2013).

Therefore, although they retain 2n = 54 chromosomes, anostomids present very high 
intra- and interspecific chromosomal/genetic variability, which is highly compatible with 
restricted gene flow (Parise-Maltempi et al. 2007, 2013, Ramirez et al. 2017a, 2017b, Sil-
va-Santos et al. 2018). With the aim of better understanding the intra- and interspecific 
chromosomal differentiation due to accumulation of repetitive sequences, in the present 
study we performed a comparative evaluation of the karyotypes of two populations of 
Leporinus friderici (Bloch, 1794) and three populations of Leporellus vittatus (Valenci-
ennes, 1850). Cytogenetic analysis was performed using Giemsa staining and C-banding, 
and chromosome mapping of repetitive DNAs using the ribosomal DNA (rDNA) 18S 
and 5S rDNA, the (TTAGGG)n sequence and the retrotransposon (RTE) Rex1.
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Material and methods

Specimens of Leporinus friderici and Leporellus vittatus were collected from rivers be-
longing to different Brazilian hydrographic basins (Table 1). Fish capture was author-
ized by the Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio – li-
cense numbers 10538-1 and 15117-1) and the processing was performed in accordance 
with the Ethical Committee on Animal Use (CEUA 29/2016) of the Universidade Es-
tadual de Ponta Grossa and current Brazilian legislation. The analyzed specimens were 
identified by taxonomists experts in the Núcleo de Pesquisas em Limnologia, Ictiologia 
e Aquicultura (Nupelia) museum, Universidade Estadual de Maringá (UEM).

Genomic DNA was extracted from the liver tissue, using the protocol of Doyle and 
Doyle (1990), from the Megaleporinus obtusidens (Ramirez et al. 2017a), described first 
time in the literature as Leporinus obtusidens (Valenciennes, 1837). The 18S rDNA am-
plification was performed using primers 18S Fw (5’-ccgctttggtgactcttgat-3’) and 18S Rv 
(5’-ccgaggacctcactaaacca-3’), according to Gross et al. (2010). The 5S rDNA sequence was 
amplified using primers 5SA (5’-tcaaccaaccacaaagacattggcac-3’) and 5S (5’-tagacttctgggtg-
gccaaaggaatca-3’), according to Martins and Galetti (1999). The vertebrate telomere se-
quence (TTAGGG)n was obtained according to Ijdo et al. (1991). The non-long termi-
nal repeats retrotransposon (non-LTR RTE) Rex1 sequence was obtained by PCR using 
primers RTX1-F1 Fw (5’-ttctccagtgccttcaacacc-3’) and RTX1-R1 Rv (5’-tccctcagcagaaa-
gagtctgctc-3’), according to Volff et al. (1999, 2000). The sequences of the 5S rDNA, 
18S rDNA and Rex-1 were analyzed and their nucleotide identities were confirmed using 
BLASTn (National Center for Biotechnology Information) and the CENSOR tool for re-
peated sequences (Kohany et al. 2006). Finally, the sequences were deposited in GenBank 
(Sequences ID: MH697559, MH701851, MH684488, respectively).

Mitotic chromosomes were obtained according to Blanco et al. (2012) and stained 
with 5% Giemsa in phosphate buffer, pH 6.8. Heterochromatin detection was per-
formed according to Sumner (1972), with modifications (Lui et al. 2009).

Table 1. Cytogenetic data of Leporinus friderici and Leporellus vittatus analyzed in the present study. 
SP = São Paulo State, PR = Paraná State, MG = Minas Gerais State, MT = Mato Grosso State, 2n = diploid 
number, FN = fundamental number, KF = karyotype formula, term = terminal sites.

Species River/Basin/State/GPS 2n FN KF 5S sites 18S 
sites

Rex1

Leporinus 
friderici

Mogi-Guaçu River, Upper Paraná Basin – SP 
(21°58'52"S, 47°17'36"W)

54 108 32m+22sm pairs 10 
and 11

pair 1 term

Jangada River, Iguaçu River Basin – PR (26°13'5.22"S, 
51°16'17.40"W)

54 108 32m+22sm pairs 3 
and 11

pair 1 term

Leporellus 
vittatus

Mogi-Guaçu River, Upper Paraná Basin – SP 
(21°58'52"S, 47°17'36"W)

54 108 28m+26sm pair 3 pair 5 term

Aripuanã River, Aripuanã River Basin – MT 
(10°09'57.8"S, 59°26'54.9"W)

54 108 28m+26sm pairs 6 
and 8

pair 6 term

São Francisco River, São Francisco Basin – MG 
(20°16'15"S, 45°55'39"W)

54 108 28m+26sm pair 3 pair 6 term

http://www.ncbi.nlm.nih.gov/nuccore/MH697559
http://www.ncbi.nlm.nih.gov/nuccore/MH701851
http://www.ncbi.nlm.nih.gov/nuccore/MH684488
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The 18S rDNA was labeled with digoxigenin-11-dUTP, using the DIG-Nick 
Translation Mix (Roche Applied Science), according to the manufacturer’s recom-
mendations. The 5S rDNA sequence was labeled with biotin 16-dUTP by PCR, and 
Rex1 and (TTAGGG)n sequences with digoxigenin-11-dUTP by PCR. PCR reac-
tions were performed with 20 ng DNA template, 1× polymerase reaction buffer, 1.5 
mM MgCl2, 40 µM dATP, dGTP and dCTP, 28 µM dTTP, 12 µM digoxigenin-11- 
dUTP or biotin 16 dUTP, 1 µM of each primer and 1 U of DNA Taq polymerase. 
The PCR program consisted of an initial step of denaturation at 95 °C for 5 min, 
30 cycles of 95 °C for 30 s, 56 °C for 45 s, 72 °C for 2 min, and a final extension at 
72 °C for 7 min.

The general protocol for FISH (Pinkel et al. 1986) followed under hybridization 
mixture (2.5 ng/μl probe, 50% formamide, 2×SSC, 10% dextran sulfate, at 37 °C for 
16 h). Post-hybridization washes were performed in high stringency [50% formamide 
at 42 °C for 10 min (twice times), 0.1×SSC at 60 °C for 5 min (three times), and 
4×SSC 0.05% Tween at room temperature for 5 min (two baths)]. Streptavidin Alexa 
Fluor 488 (Molecular Probes) and Anti-digoxigenin rhodamine fab fragments (Roche 
Applied Science) antibodies were used for probes detection. The chromosomes were 
stained with DAPI (0.2 μg/ml) in Vectashield mounting medium (Vector) and ana-
lyzed under epifluorescence microscopy.

Chromosome preparations were analyzed using the brightfield and epifluorescence 
microscope Zeiss Axio Lab 1, coupled to the Zeiss AxioCam ICM1 camera with the 
Zen Lite software and a resolution of 1.4 megapixels (Carl Zeiss). The karyotypes were 
organized and classified as metacentric (m) or submetacentric (sm) according to Levan 
et al. (1964).

Results

All anostomids evaluated in the present study presented 2n = 54 chromosomes and 
a fundamental number (FN) of 108 (Table 1). The two populations of L. friderici 
(Mogi–Guaçu and Jangada rivers) presented a karyotype formula (KF) of 32m + 22sm 
(Fig. 1a, b), and the three populations of L. vittatus (Mogi–Guaçu, Aripuanã and São 
Francisco rivers) a karyotype formula of 28m + 26sm (Fig. 1c, d, e). Sex chromosome 
heteromorphism was not detected in the populations/species analyzed.

C-banding showed discrete blocks of centromeric heterochromatin for L. friderici, 
with very evident blocks in the terminal regions of the long arms of just one homo-
logue of chromosomes 1 and 5 for the population of the Mogi–Guaçu river (Fig. 2a); 
and, in the subterminal regions of pairs 1 and 17 for the population of the Jangada 
river (Fig. 2b). Leporellus vittatus showed blocks of heterochromatin in the pericentro-
meric or proximal regions of most chromosomes (Fig. 2c, d), which was very evident 
for the populations from the Mogi–Guaçu and Aripuanã rivers and less evident for the 
populations from the São Francisco river (Fig. 2e).
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Double-FISH using 5S and 18S rDNA probes detected one 45S rDNA site in the 
short arm (p) of chromosome pair 1 for both populations of L. friderici (Fig. 3a, b). The 
5S rDNA was located in the pericentromeric region of chromosome pair 10 and in the 
short arm (p) of pair 11 for L. friderici from the Mogi–Guaçu river (Fig. 3a), whereas 
it was located in the p arm of chromosome pairs 3 and 11 for L. friderici from the 
Jangada river (Fig. 3b). Leporellus vittatus from the Mogi–Guaçu river presented 45S 
rDNA in the terminal region of the long arm (q) of pair 5, and 5S rDNA was located in 
the proximal region of 3p pair (Fig. 3c). In L. vittatus from the Aripuanã river, the 45S 
rDNA was located in synteny with 5S rDNA in the chromosome pair 6, with terminal 
location 6q for 45S rDNA and proximal q arm site for 5S rDNA, and an additional 
5S rDNA site in the proximal q arm of pair 8 (Fig. 3d). Leporellus vittatus from the 
São Francisco river presented the 45S rDNA in the terminal region of 6q, and the 5S 

Figure 1. Karyotypes of Leporinus friderici (a, b) and Leporellus vittatus (c, d, e) after conventional 
Giemsa staining. Scale bar: 10 µm.
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rDNA in the proximal region of 3p (Fig. 3e). In situ mapping of RTE Rex1 (Fig. 4a–e) 
and (TTAGGG)n (Fig. 5a–e) showed signals in the terminal regions of all chromo-
somes for all populations of both L. friderici and L. vittatus. In L. vittatus from the 
Mogi-Guaçu river, the telomeres signals were tiny in all metaphases analyzed (Fig. 5c).

Discussion

The present cytogenetic analysis confirmed the conservation of the karyotype macro-
structure of 2n = 54 chromosomes in Leporinus friderici and Leporellus vittatus, with 
metacentric and submetacentric chromosomes (FN=108). This karyotype structure is 
shared by most species belonging to Anostomidae (Galetti Jr et al. 1995, Venere et al. 
2004). In addition, L. friderici and L. vittatus presented small differences in their karyo-

Figure 2. Karyotypes of Leporinus friderici (a, b) and Leporellus vittatus (c, d, e) after C-banding. 
Scale bar: 10 µm.
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type formulas resulted of the chromosome rearrangements such as pericentric inver-
sions, translocations or centromere repositioning, which alters the chromosome mor-
phology without any accompanying chromosomal rearrangements (Rocchi et al. 2012).

Some chromosomal markers presented some differentiation within and between 
species of anostomids. Intraspecific variations were observed in the chromosomal loca-
tion and quantity of heterochromatin blocks, which were mainly located in pericen-
tromeric regions in L. vittatus and terminal positions of chromosomes in L. friderici. 
These heterochromatin distribution in the chromosomes have also been observed 
for other anostomids (Pereira et al. 2002, Aguilar and Galetti Jr 2008, Barros et al. 
2017b). Satellite DNA is one of the components of heterochromatin, which is also 
enriched in other dispersed repeated elements, including transposons (Mazzuchelli and 
Martins 2009, Vicari et al. 2010). It is usually accepted that the number of repetitive 
copies of a heterochromatin block may increase through mechanisms of homologous 
recombination, TEs invasion, or replication slippage for microsatellite expansion in-
side heterochromatin (Gray 2000, Kantek et al. 2009, Kelkar et al. 2011, Glugoski 
et al. 2018). These mechanisms may play a role in the microstructural differentiation 

Figure 3. Karyotypes of Leporinus friderici (a, b) and Leporellus vittatus (c, d, e) submitted to fluores-
cence in situ hybridization with 18S rDNA and 5S rDNA probes. Scale bar: 10 µm.
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of heterochromatin chromosome blocks once no evident large heterochromatic blocks 
were observed in anostomids species analyzed.

In situ location of ribosomal genes showed that these sites were also involved in the 
chromosomal changes, especially in the studied L. vittatus populations. The location 
of rDNA in different positions and number of chromosomal sites also supports the hy-
pothesis of population differentiation. On the other hand, the location of rDNA sites 
was observed to be highly conserved in the karyotypes of some anostomids (Martins 
and Galetti Jr 1999, 2000, 2001). In the present study, consistent differences in the 
location of rDNA sites were observed between the L. vittatus populations evaluated. 
These differences are exclusive conditions due to population isolation and contribute 
to genomic diversification in this fish group.

Anostomids usually present only one pair of 45S rDNA (Martins and Galetti Jr 
1999), being a common characteristic of this group. Previous studies observed poly-
morphisms in the number of 45S rDNA sites in Leporinus taeniatus Lütken, 1875, 
Leporinus trifasciatus Steindachner, 1876, Rhytiodus microlepis Kner, 1858 and Schizo-
don fasciatus Spix & Agassiz, 1829 (Barros et al. 2017b). In the present study, although 

Figure 4. Karyotypes of Leporinus friderici (a, b) and Leporellus vittatus (c, d, e) submitted to fluores-
cence in situ hybridization with Rex1 probe. Scale bar: 10 µm.
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this was also observed, differences in the chromosomal position of 45S rDNA were 
additionally observed between species, with signals in the terminal region of the p arm 
for L. friderici and in the q arm for L. vittatus. The rDNAs usually present high rates 
of karyotype rearrangements in evolutionary lineages (Symonová et al. 2013). These 
sequence movements within karyotypes have been proposed to occur by transposition 
and/or by transposon-mediated by TEs in a non-homologous recombination mecha-
nism (Symonová et al. 2013, Barros et al. 2017a, Glugoski et al. 2018). The L. vittatus 
specimens from the Aripuanã river presented synteny of 45S rDNA and 5S rDNA, in 
contrast with the specimens from the Mogi–Guaçu and São Francisco rivers and the L. 
friderici populations corroborating to high evolutionary chromosomal change level to 
rDNA sites. The rDNA synteny was also observed in other anostomids, such as L. tri-
fasciatus, S. fasciatus and Laemolyta taeniata (Kner, 1858), showing that it is a recurrent 
chromosomal characteristic of this group (Barros et al. 2017b).

Recently, some studies have proposed that the dispersal of ribosomal sites and 
changes in their chromosomal location may affect recombination rates in these spe-
cific sites, and that these changes can lead to rapid genome divergence (Symonová 

Figure 5. Karyotypes of Leporinus friderici (a, b) and Leporellus vittatus (c, d, e) submitted to fluores-
cence in situ hybridization with (TTAGGG)n probe. Scale bar: 10 µm.
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et al. 2013). Therefore, these populational chromosome rearrangements due to rDNA 
transposition could promote differentiation (Symonová et al. 2013, Pucci et al. 2014, 
Barbosa et al. 2017), which may lead to speciation, as observed in the present study 
for Anostomidae.

The chromosomal mapping of the non-LTR retrotransposon family Rex (Rex1, 
Rex3 and Rex6) has been conducted in the genomes of different teleost species (Volff 
et al. 1999, 2000, Cioffi et al. 2010, Valente et al. 2011, Borba et al. 2013, Sczepanski 
et al. 2013, among others). Although they may have a dispersed distribution (Ozouf-
Costaz et al. 2004), in most cases, they show strong association with heterochromatic 
regions (Cioffi et al. 2010, Valente et al. 2011). Overall, the accumulation of RTE 
sequences in the terminal region of chromosomes has been well documented in Dros-
ophila melanogaster (Meigen, 1830) and in Sorubim lima (Bloch & Schneider, 1801), a 
Neotropical catfish (Eickbush and Furano 2002, Sczepanski et al. 2013). The distribu-
tion of Rex1 sequences in terminal regions of chromosomes in some species of Anos-
tomidae was also detected by in situ mapping (Borba et al. 2013). Transpositions and 
DNA repair by non-homologous recombination involving repetitive sequences in the 
terminal regions of chromosomes are common during the Rabl configuration of cell 
division (Schweizer and Loid 1987, Sumner 2003). Furthermore, an efficient strategy 
to limit the damage caused by retrotransposition in the host genome is to direct the 
insertion in fairly safe regions, poor in genes, for example in heterochromatin or at 
telomeres (Okazaki et al. 1995, Zou et al. 1996, Takahashi et al. 1997).

Telomere shortening is usually prevented by telomerase, a reverse transcriptase 
which adds telomeric repeats to the chromosome ends, thus elongating telomeres 
(Makarov et al. 1997). The phylogeny involving telomerases and retrotransposons was 
confirmed after the discovery of a group of retrotransposons, called elements like Pe-
nelope, which encodes reverse transcriptase (RT) directly related to an enzyme telom-
erase (Arkhipova et al. 2003). In Drosophila, retrotransposons protect the ends of chro-
mosomes, due to the absence of telomerase, which was possibly lost during evolution 
(Biessmann et al. 1990). TEs can play a role in the reorganization of the genome being 
co-opted or exapted to form new genomic functions (Feschotte 2008). This observa-
tion suggests the versatility of RT activity in counteracting the chromosome short-
ening associated with genome replication and that retrotransposons can provide this 
activity in case of a dysfunctional telomerase. In anostomids analyzed, the (TTAGGG)
n sequence was detected in the chromosomal ends, indicating telomerase activity. The 
short telomere signals detected in L. vittatus from the Mogi-Guaçu population can 
be resulted of the somatic cells telomere shortens with each cell division or, due to 
inconsistent FISH detection in short telomere sequences. Finally, we observed absence 
of an interstitial telomeric sequence (ITS), together with the conserved karyotype of 
2n = 54 chromosomes, indicating that just non-Robertsonian events may play a role in 
karyotype diversification in the studied species.

The present study showed intraspecific karyotype variation in populations with 
isolation of gene flow, and interspecific variation between populations of L. friderici 
and L. vittatus. This can be partly explained by genome reorganization due to move-
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ment of heterochromatin blocks, ribosomal sites, satellite repetitive sequences, and 
transposable elements. Our results therefore confirm the conservation of the chro-
mosome macrostructure and indicate karyotypic differentiation at the microstructural 
level during evolution in Anostomidae.
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