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The significant biochemical and physiological effects of psychological stress are

beginning to be recognized as exacerbating common diseases, including osteoporosis.

This review discusses the current evidence for psychological stress-associated mental

health disorders as risk factors for osteoporosis, the mechanisms that may link

these conditions, and potential implications for treatment. Traditional, alternative, and

adjunctive therapies are discussed. This review is not intended to provide therapeutic

recommendations, but, rather, the goal of this review is to delineate potential interactions

of psychological stress and osteoporosis and to highlight potential multi-system

implications of pharmacological interventions. Review of the current literature identifies

several potentially overlapping mechanistic pathways that may be of interest (e.g.,

glucocorticoid signaling, insulin-like growth factor signaling, serotonin signaling) for

further basic and clinical research. Current literature also supports the potential for

cross-effects of therapeutics for osteoporosis and mental health disorders. While studies

examining a direct link between osteoporosis and chronic psychological stress are

limited, the studies reviewed herein suggest that a multi-factorial, personalized approach

should be considered for improved patient outcomes in populations experiencing

psychological stress, particularly those at high-risk for development of osteoporosis.

Keywords: osteoporosis, bone, psychological stress, mental health, depression, PTSD, pharmacology,

alternatives

BACKGROUND

Emerging evidence points to the potential pathological impact of mental health on disease.
It has long been held that stress has negative impacts on health and disease risk, but the
specific mechanisms by which this occurs, as well as implications for treatments and clinical
recommendations, have not been examined in-depth. This review will provide an overview
of recent literature regarding the impact of psychological stress and stress-related disorders,
such as post-traumatic stress disorder (PTSD), depression, and anxiety, on risk and treatment
of osteoporosis. In this review, we first highlight mechanisms that impact both bone health
and mental health toward identification of potentially overlapping signaling pathways. We then
review current literature regarding the impact of common therapeutic agents for treatment
of osteoporosis and mental health disorders. This will promote recognition of the potential
interaction of these therapeutic agents in patients with concurrent mental health disorders and
osteoporosis to encourage a broad view of disease management toward improved patient health.
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Finally, we provide a perspective outlook on the potentially
beneficial effects of alternative treatments, such as exercise
and nutritional supplementation, on both osteoporosis and
psychological stress.

OSTEOPOROSIS

There are four major bone cell types: osteoclasts, osteoblasts,
osteocytes, and osteogenic stem cells. Osteoclasts, which are of
myeloid origin, are giant, multinucleated cells that adhere to
the bone and resorb it through acidification and proteolytic
digestion. Osteoblasts counteract osteoclast-mediated bone
resorption by secreting osteoid, which mineralizes to form new
bone. There is a tightly-regulated balance between osteoclast-
mediated removal of old or damaged bone and osteoblast-
mediated replacement of new bone to maintain bone mass
and skeletal homeostasis. After secretion of osteoid, osteoblasts
either become trapped within the osteoid and terminally
differentiate into osteocytes, quiesce into bone lining cells,
or undergo apoptosis. Osteocytes comprise 90–95% of the
bone cell population (1). Once they become embedded in the
mineralized tissue, they develop cytoplasmic projections that
intercalate throughout the bone, creating a signaling network
to communicate directly with other osteocytes (2). Through
this network, osteocytes regulate phosphate homeostasis and
transduce mechanical stress signals into biologic activity to
stimulate either bone resorption or formation. Osteogenic stem
cells are the source of osteoblasts and osteocytes and are involved
in bone repair, regeneration, and development. The functions
and number of these cell types can become disrupted following
bone damage or in disease states, such as osteoporosis.

Osteoporosis is the most common form of metabolic bone
disease and is characterized by low bone mass and micro-
architectural bone deterioration. TheWorld Health Organization
defines osteoporosis as a bone mineral density (BMD) that
is ≤2.5 standard deviations below peak bone mass, which is
typically achieved around age 30. In the United States alone,
osteoporosis accounts for over 1.5 million fractures per year (3).
By 2025, treatment costs are estimated to exceed $25 billion
(4). Osteoporosis is characterized by an imbalance of skeletal
remodeling, resulting in increased osteoclast activity and/or
decreased numbers of osteoblasts, which can lead to decreased

Abbreviations: ALP, Alkaline Phosphatase; ASD, Acute Stress Disorder; BDNF,
Brain-Derived Neurotrophic Factor; BMD, Bone Mineral Density; BMPs, Bone
Morphogenic Proteins; CNS, Central Nervous System; COLI, Procollagen Type I;
DHA, Docosahexaenoic Acid; EPA, Eicosapantaenoic Acid; FDA, Food and Drug
Administration; GABA, Gamma-Aminobutyric Acid; GAD, Generalized Anxiety
Disorder; H2O2, Hydrogen Peroxide; HPA, Hypothalamic-Pituitary Adrenal; IGF-
1, Insulin Growth Factor-1; IGFBPs, Insulin Growth Factor Binding Proteins;
mTOR, Mammalian Target of Rapamycin; MDD, Major Depressive Disorder;
MSCs, Mesenchymal Stromal Cells; NFκB, Nuclear Factor Kappa B; NMDAR,
N-methy-D-aspartate receptor; OCN, Osteocalcin; OPG, Osteoprotegerin; PTH,
Parathyroid Hormone; PTHR1, Parathyroid Hormone Receptor-1; PTSD, Post-
Traumatic Stress Disorder; QOL, Quality of Life; RANKL, Nuclear Factor Kappa
B Receptor Ligand; ROS, Reactive Oxygen Species; SAM, Sympathomedullary;
SERMs, Selective Estrogen Receptor Modulators; SSRI, Selective-Serotonin
Reuptake Inhibitors; TGFβ, Transforming Growth Factor-β; TNF-α, Tumor
Necrosis Factor-α.

bone strength and mass, as well as increased susceptibility
to fracture.

Osteoporosis is an umbrella term for a group of distinct
pathological conditions and has been traditionally classified into
primary and secondary types based on mechanism of disease
(5). There are two main types of primary osteoporosis: type
I osteoporosis and type II osteoporosis. Type I osteoporosis
occurs most frequently in postmenopausal women and primarily
results from estrogen deficiency. Estrogens inhibit production of
receptor activator of nuclear factor kappa-B ligand (RANKL),
which is crucial for osteoclast differentiation and recruitment,
as well as interleukin (IL)-1, IL-6, and tumor necrosis factor-
alpha (TNF-α) (6, 7). In addition, estrogens promote osteoblast
differentiation and positively regulate several anabolic bone-
related proteins, including insulin-like growth factor-1 (IGF-1),
bone morphogenetic proteins (BMPs), and procollagen type I
(COL1) (8). Thus, postmenopausal decrease in estrogen may
affect both bone resorption and bone formation. The functional
outcome is a rate of bone resorption that is higher than that
of bone formation, resulting in a net decrease in bone mass.
Type II osteoporosis is associated with aging and is commonly
observed in men and women after the age of 60. Aging results
in a progressive decline in osteoblast numbers and decreased
osteoblast activity, but no change in osteoclast activity. It is
still unknown how the cellular and molecular mechanisms that
contribute to these two primary types of osteoporosis compare to
each other or to what extent sex steroid deficiency contributes
to age-related skeletal degradation. Findings in mouse models
suggest that the effects of age on skeletal health are independent
of estrogens, but data describing a similar mechanism in humans
is lacking (9, 10).

Secondary osteoporosis is characterized by bone loss resulting
from an underlying etiology, such as Cushing’s syndrome, or
prolonged treatment with glucocorticoids. In glucocorticoid-
induced osteoporosis, bone loss occurs within several months of
glucocorticoid treatment and can lead to significant decreases
in cancellous bone mass and increased fracture risk. Excess
glucocorticoids exert an inhibitory effect on osteoblast
differentiation (11). Glucocorticoid-induced osteoporosis is
the most common form of secondary osteoporosis and is the
most common form of osteoporosis among young people
[reviewed in Briot and Roux (12)]. Secondary osteoporosis can
also be caused by disuse. Prolonged bone unloading, as seen
in extended bed rest or space travel, inhibits bone formation
and enhances bone resorption. This occurs due to the lack of
appropriate regulation of bone mass by the osteocyte network
and, possibly, through involvement of the sympathetic nervous
system (13).

Although decreased BMD is what defines osteoporosis, this
factor alone is not a major cause of pain or morbidity.
Instead, morbidity associated with osteoporosis is primarily
due to increased incidence of fragility fracture. Due to the
biomechanical and biological alterations in osteoporotic bones,
only a minor external force, such as a short fall, is required
to induce a fracture. Osteoporotic fractures are three times
more likely in women and typically occur after the age
of 50 (14). Not only does osteoporosis increase fracture
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risk, but it is also associated with poorer fracture healing
outcomes [reviewed in Cheung et al. (15)]. Current treatment
strategies are aimed at increasing calcium and vitamin D
levels through supplementation, inhibiting bone resorption
through bisphosphonate administration, and mitigating the
effects of menopause through hormone replacement (discussed
in detail below). The FDA has also approved the anabolic
agent, human parathyroid hormone (PTH) peptide, to treat
osteoporosis. In addition, newer therapies, such as strontium
ranelate administration and antibodies against RANKL, are being
investigated (16). Stem cell therapies are being examined for their
ability to enhance repair of fractures (17). Transplantation of
allogeneic non-osteoporotic stem cells may be able to normalize
the aberrant bone remodeling that occurs in osteoporotic
patients, thereby reducing fracture risk (18). However, the
optimal stem cell phenotype and method of delivery are still
poorly characterized (19). There is an ongoing need to identify,
develop, and improve therapeutics that reduce fracture risk,
enhance bone mineral density, and promote fracture healing.

PSYCHOLOGICAL STRESS

Psychological stress is defined as an emotional experience
that is accompanied by predictable biochemical, physiological,
and behavioral changes (20). Psychological stress can occur in
response to an acute event, as in a fight-or-flight response to
a life-threatening or traumatic event, or stress can be chronic,
as in the case of caregivers, service members, and high-stress
occupations. In acute psychological and physical stress, stress
signaling is initiated through the hypothalamic-pituitary-adrenal
(HPA) axis and the sympathomedullary (SAM) pathway via
secretion of stress hormones, which include glucocorticoids
(cortisol) and catecholamines (epinephrine, norepinephrine).
Immune cells (leukocytes) express receptors for these hormones
(glucocorticoid receptors and adrenergic receptors, respectively)
and rapidly respond to their induction by altering the
inflammatory immune response. However, in chronic stress
and chronic stress-associated mental health conditions, the
HPA-axis becomes dysregulated, resulting in hypercortisolism
or glucocorticoid resistance (21). Whether the stress response
becomes pathologic is dependent on many factors, including
individual coping skills, life history, severity, and duration of
the stressor.

Anxiety or depression disorders can arise as a result of
acute or chronic stress. Depressive mood disorders, such as
major depressive disorder (MDD), are characterized by persistent
emotional and physical symptoms, including depressed mood,
loss of interest and enjoyment (anhedonia), and dysregulated
sleep. Depression is often comorbid with anxiety, and both
conditions can alter the HPA response. Anxiety can manifest
as excessive worry, fear, irritability, difficulty concentrating,
and with physical symptoms, such as increased heart rate and
breathlessness. Mental health disorders, such as depression,
result in a variety of potentially detrimental biochemical and
physiological changes [reviewed in Yang et al. (22)]. Other
stress-related conditions include acute stress disorder (ASD), in

which individuals experience a constellation of symptoms, such
as anxiety, flashbacks, and distress related to and surrounding
a traumatic event. When these symptoms persist beyond the
acute phase of 1 month, they are recognized as the chronic
condition, termed post-traumatic stress disorder (PTSD). PTSD
is recognized as an extreme case of chronic stress in which
symptoms can persist for months to years. It is defined by
display of symptoms that include heightened response to events
or circumstances related to an initial traumatic and/or life-
threatening event. Symptoms of PTSD are both intrusive, such
as flashbacks and unwanted upsetting memories, and avoidant,
such as evasion of stimuli that could recall the initiating trauma.
Together, these symptoms have a significant impact on patient
quality of life (QOL) and can lead to severe anxious, depressive,
and debilitating effects (23). PTSD impacts approximately 3.6%
of individuals annually, with increased incidence among Veteran
populations, for whom rates have approached 20% in those
returning from recent conflicts in Afghanistan and Iraq (24,
25). Estimates of the number of individuals with mental health
disorders, or even those experiencing short-term psychological
stress, are difficult to obtain, partially owing to the fear of
stigmatism and rejection that may accompany mental health
disorder diagnosis. Nonetheless, mental health disorders impact
a significant percentage of the population, and it is becoming
increasingly clear that psychological stress has significant impact
on patient QOL, as well as physical health.

PSYCHOLOGICAL STRESS AS A RISK
FACTOR FOR OSTEOPOROSIS

Psychological stress can have lasting impact on risk for
development of comorbid disease, as well as significant impact
on pre-existing diseases. Chronic stress has been associated with
obesity, atherosclerosis, lung pathologies, and diabetes (26, 27).
In regard to osteoporosis, U.S. military veterans diagnosed with
PTSD have a higher risk of developing osteoporosis (28), as
do civilians with PTSD diagnosis (29). Likewise, it was found
that among 73 female Holocaust survivors there was a 3.47-
fold increase in prevalence of osteoporosis compared to controls
(30), suggesting psychological stress may be a risk factor for
osteoporotic disease. However, malnutrition and other factors
likely played a role as well, although the authors did not
discuss this possibility. A recent mouse study by Foertsch et al.
showed that chronic stress induced by a chronic subordinate
colony housing model of PTSD resulted in reduced growth plate
endochondral ossification in adolescent mice (31). Increased
expression of tyrosine hydroxylase (a catalytic enzyme involved
in catecholamine biosynthesis) by bone marrow cells located
in the growth plates of the femurs of chronically stressed mice
suggested that decreased bone length and density may be due to
stress-induced catecholamine impact on bone growth.

While the mechanisms underlying the physiological and
biochemical impact of psychological stress on disease are
not well-understood, several studies have shown that stress
hormone signaling via the brain-immune connection is a
significant contributor (32). Chronic stress has been associated
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FIGURE 1 | Molecular targets of osteoporosis and psychological stress. While

psychological stress and osteoporosis occur via distinct mechanisms, there

are several factors that overlap between psychological stress-associated

mental health disorders and osteoporosis. The molecular factors that are

distinct to osteoporosis (left panel) and psychological stress (right panel) are

listed. Intersecting factors related to osteoporosis and psychological stress are

listed in the (middle panel).

with increased systemic inflammation (26, 27, 33) and altered
hematopoiesis (34). Inflammatory factors have been shown to
have a detrimental effect on osteoporosis through promotion of
osteoclast differentiation and apoptosis of osteoblast populations
[reviewed in Eastell et al. (35)]. It has also been suggested that a
number of inflammatory factors may actually exhibit inhibitory
effects on osteoclast activity, thereby potentially improving bone
health in osteoporosis (36). Thus, while common to both
conditions, the roles of inflammatory factors in osteoporosis
and in psychological stress are likely highly complex and
both context- and dose-dependent. A review of the current
literature identifies several additional pathways and cellular
mechanisms that are common to chronic psychological stress and
osteoporosis. Literature is limited in terms of studies examining
any direct mechanistic interaction between these pathways in
the context of osteoporosis and psychological stress; however,
independent examination of the mechanisms of disease and
shared risk factors suggests that further research is warranted.
The studies below, and summarized in Figures 1 and 2, discuss
several of these common pathways, cellular and molecular
mechanisms, and risk factors to highlight the potential for future
examination of the role of chronic psychological stress/mental
health on osteoporosis.

Glucocorticoids
In chronic psychological stress, dysregulated glucocorticoid
signaling has profound impacts on inflammation and may also
contribute to disease risk (21). Stress-induced dysregulation
of endogenous glucocorticoids may mimic the skeletal effects
of glucocorticoid-induced osteoporosis. Glucocorticoids are
hormones that exert their effects largely by entering the
nucleus and modulating gene transcription. Glucocorticoid-
responsive transcription factors are primary regulators of
inflammation resulting from stress hormone signaling and
include NF-κB. There is some evidence to suggest that

FIGURE 2 | Potentially overlapping pathways of osteoporosis and

psychological stress. Key pathways that may have overlapping effects

between chronic stress and osteoporosis are identified based on current

literature. These include reactive oxygen species (ROS), serotonin,

glucocorticoid, insulin-like growth factor (IGF), and estrogen signaling

pathways. Arrows indicate the potential of these pathways/factors to influence

both chronic stress and osteoporosis in a bi-directional fashion. Dashed gray

arrow between pathways indicates potential interactions between the

pathways. Quality of life (QOL)/shared risk factors and inflammatory signaling

are positioned at ends of ellipse to demonstrate cross-effects between chronic

psychological stress and/or osteoporosis.

activation of NF-κB through glucocorticoid responsive elements
in response to psychological stress may contribute to the risk
of osteoporosis through RANK signaling (37). In addition,
glucocorticoids are known to act directly on bone cells, leading
to decreased osteocyte viability, decreased osteoblast function
due to reductions in IGF-2, and prolonged osteoclast viability
[reviewed in Briot and Roux (12)]. Therefore, psychological
stress may negatively impact bone health through modulation of
endogenous glucocorticoids.

Catecholamines
Catecholamines are stress hormones that include
norepinephrine, epinephrine, and dopamine. Norepinephrine
and epinephrine are released by the adrenal glands as part of the
rapid fight-or-flight response to stress. This elevation is typically
in response to a physical stressor; however, psychological stress
(e.g., sudden bad news, fear, or PTSD-related flashbacks) can
also trigger catecholamine release. Chronic and/or repeated
elevations in norepinephrine or epinephrine in response to
psychological stress may contribute to the development of
depression (38). Dopamine is also increased in specific brain
regions in response to pain or stress. Like other catecholamines,
dopamine may become dysregulated in the case of chronic stress
[reviewed in Vaessen et al. (39)].

One way in which psychological stress may impact
osteoporotic disease risk and severity is through catecholamine-
induced activation of β-adrenergic receptors on osteoblasts
and osteoclasts. β-adrenergic receptor activation has been
shown to increase RANKL expression, resulting in osteoclast
differentiation (40). Treatment with a β-agonist resulted in
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bone loss due to increased bone resorption (41). β-adrenergic
signaling was also shown to exacerbate bone loss through
promotion of osteoclastogenesis via generation of reactive
oxygen species (ROS) (42). These studies suggest that alterations
in catecholamines due to chronic stress may impact bone health
and contribute to risk and severity of osteoporosis.

Myeloid Populations
Chronic psychological stress has been shown to alter myeloid
phenotype and increase myelopoeisis. Activation and increased
contribution of myeloid populations are significant in that
myeloid-derived immune cells are the primary mediators of the
inflammatory response promoted by chronic stress (43). The
myeloid response to chronic stress may significantly contribute
to bone health and osteoporotic disease, given that osteoclasts
are myeloid-derived, and monocytes are well-known for their
plasticity during wound repair. However, the role of myeloid
cells in bone health is complex. Depletion of macrophages in
mice was shown to lead to early skeletal growth retardation
and osteoporosis and decreased the number of bone marrow-
derived mesenchymal stromal cells (MSCs) present in the bones
(44). Further, these so-called “osteomacs” were shown to be
closely associated with areas of bone remodeling and were
directly involved in formation of the canopy structure that
makes up the bone-remodeling compartment. Depletion of
osteomacs caused complete loss of this compartment. However,
removal of osteomacs from calvarial cultures decreased markers
of osteoblastic function, including osteocalcin (OCN) mRNA
expression and mineralization in vitro. Thus, targeting the
myeloid cell population as an osteoporotic treatment may not be
an optimal approach due to the duality of its effects.

Insulin-Like Growth Factors (IGFs)
Glucocorticoids and IGFs are known to regulate one another,
suggesting that mood may influence levels of IGF-1 (45, 46).
IGFs may also play a role in psychological stress (47) and
osteoporosis (48). Circulating IGF-1 is increased in individuals
with depression or anxiety disorders (49, 50) and has been shown
to be a biomarker for vulnerability of an individual to stress
following traumatic brain injury (51). Yu et al. found that, in a
single prolonged stress model, IGF-1 levels were up-regulated by
approximately 25% in the stressed group, although this data was
not statistically significant (52). Another study by Hoshaw et al.
demonstrated an anti-depressant and anti-anxiolytic effect of IGF
due to its effects on serotonin (53). These conflicting reports
suggests that further research is needed to determine whether
IGF has beneficial or detrimental impacts on psychological stress-
related mental health disorders.

In bone health, IGF-1 and−2 regulate osteoblast-osteoclast
interactions, thus making them important regulators of bone
remodeling (54). IGF-1 has also been shown to activate
mammalian target of rapamycin (mTOR) remodeling to
stimulate MSC differentiation into osteoblasts (55). Knockout of
IGF-1 impairs osteoblast differentiation and leads to decreased
trabecular bone formation (56). Its role in fracture healing is
still not fully understood, as some studies suggest beneficial

effects of IGF-1 treatment, while other studies demonstrate non-
significant effects (57–59). IGF-1 action and circulating levels
also decline with age, and this mechanism has been suggested
to be an underlying cause of age-related osteoporosis [reviewed
in Perrini et al. (60)]. IGF-2 is most commonly thought of as
a fetal growth factor; however, it is the most abundant growth
factor stored in adult bone. Induction of the osteogenic lineage
from parthenogenetic embryonic stem cells is enhanced with
IGF-2 treatment (61). Interestingly, different effects of IGF-1
vs. IGF-2 have been reported in human bone cell metabolic
pathways, suggesting they activate different signaling cascades,
even though they both primarily signal through the IGF1R
(62, 63). The differing effects of IGF-1 and IGF-2 could be due
to cell-specific expression patterns. It is also possible that the
presence and concentration of specific insulin-like growth factor
binding proteins (IGFBPs), which mediate IGF bioavailability
and are temporally and spatially regulated, may regulate these
differing effects. Together, these studies suggest IGF as a potential
connecting pathway between osteoporosis and psychological
stress. Additional studies are needed to delineate the role of IGF-
1 vs. IGF-2 and to determine how IGFBPs (64) may be temporally
and differentially regulated during osteoporosis, psychological
stress, and in osteoporotic patients who have a history of mental
health disorders.

Oxidative Stress
Studies on depressive disorders have shown a significant decrease
in neuronal and glial cells in depressed patients. It has been
suggested that the decline in these populations is due to
an increased amount of ROS [reviewed in Michel et al.
(65)]. ROS have been shown to induce osteoblast apoptosis,
leading to decreased bone formation (66, 67). ROS, as well
as hydrogen peroxide (H2O2), are required for RANKL-
induced osteoclast generation (68–70). Further, increased ROS
in the bone marrow compartment can lead to expansion
of lymphocytes, altered cytokine production (71, 72), and
promotion of osteoclastogenesis (42). In regard to impacts on
osteoporosis, ovariectomized rats were found to have increased
oxidative stress compared to controls. However, treatment with
palm tocotrienol, a potent antioxidant, for 8 weeks resulted in
suppression of malondialdehyde levels, a marker of oxidative
stress, and promotion of plasma glutathione peroxidase and
erythrocyte superoxide dismutase activity, two key antioxidant
enzymes (73). Thus, palm tocotrienols may have bone protective
effects by limiting oxidative stress damage [reviewed in Chin and
Ima-Nirwana (74)].

Serotonin
Serotonin, or 5-hydroxytryptamine (5-HT), is a monoamine
neurotransmitter that is involved in a host of important
processes, including sleeping, eating, digesting, and mood
regulation [reviewed in Sangkuhl et al. (75)]. Serotonin is
synthesized both in the gut and in the brain by different
isoforms of tryptophan hydroxylase (TPH), TPH-1 and TPH-2,
respectively. The vast majority (95%) of serotonin is produced
in the periphery, mainly by enterochromaffin cells in the
duodenum. Until recently, it has been thought that serotonin
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does not interact with bone; however, recent studies have begun
to unmask a complex role for serotonin in regulating bone
mass and bone metabolism [reviewed in Wadhwa et al. (76)].
Serotonin has been shown to regulate osteoblast proliferation
and function in vitro (77), and osteoblasts and osteoclasts
express a variety of serotonin receptors (Htr1a, Htr1b, Htr1d,
Htr2a, Htr2b) (78, 79). Addition of serotonin to RAW264.7
cells induced osteoclast differentiation through intracellular
accumulation of serotonin via the serotonin transporter (SERT
or 5-HTT), resulting in upregulation of NF-κB (80). When
produced peripherally, serotonin inhibits bone formation and
decreases osteoblast proliferation [reviewed in Ducy and
Karsenty (81)]. When produced in the brain, serotonin acts as
a neurotransmitter to exert a positive effect on bone mass accrual
by enhancing bone formation and limiting bone resorption via
regulation of the sympathetic response [reviewed in Dimitri and
Rosen (82)].

Shared Risk Factors
Several independent lifestyle risk factors for development of
osteoporosis may also be impacted by concurrent stress-
associated mental health disorders, such as smoking, alcohol
use, and substance abuse. Smoking, in particular, represents a
strong risk factor for development of osteoporosis. The direct
mechanism(s) by which this occurs are not well understood.
However, a study by Ko et al. demonstrated that serum from
animals exposed to smoking resulted in increased osteoclast
differentiation from macrophages in response to RANKL, as well
as a reduction in alkaline phosphatase (ALP) and consequent
reduction in osteoblast differentiation (83). In patients seeking
mental health care, 28.2% report smoking, as compared to
17.5% among the general population (84). This finding suggests
that psychological stress is associated with an increased risk
for smoking. Due to the reported negative impact of smoking
on bone health (85), psychological stress may also indirectly
increase risk of osteoporosis. Similarly, alcohol consumption is
a significant risk factor for development of osteoporosis (86,
87), due, in part, to senescence and ROS production in bone
marrow-derived MSCs, which results in decreased osteogenic
potential (88). Substance abuse, such as opioid addiction, is
also elevated among those suffering with psychological stress-
associated mental health disorders (18.7 vs. 5% among those
without mental health disorders) (89). Increased rates of
osteopenia and osteoporosis have been found among women
addicted to opioids (90).

Obesity may represent another risk factor for osteoporosis,
due to increased inactivity, leading to cases of unloading.
Likewise, as described below, exercise may provide benefit for
BMD and in reducing fracture risk. In addition, obesity leads
to increased systemic inflammation, with many of the signals,
such as NF-κB and TNF-α, being differentiation factors for
osteoclasts as well. There is also a clear link between obesity and
development of type 2 diabetes, which is another known risk
fracture for development of osteoporotic fracture [reviewed in
Walsh and Vilaca (91)]. However, weight gain, itself, may have
positive effects on osteoporosis. Weight loss in postmenopausal
women was shown to increase risk of frailty fractures (92).

Conversely, weight gain reduced risk of hip fractures, although
it does increase risk of other types of fracture (93, 94). Clearly,
the effects of weight on fracture are complex and require
further study.

Together, these studies indicate that, in patients with extreme
and/or chronic psychological stress, osteoporotic risk may be
exacerbated by compounded effects of these common risk factors.
As such, in addition to independent risk factors for osteoporosis,
the potential for amultifactorial feedback loop with psychological
stress exists and should not be overlooked.

INTERACTION OF TREATMENTS

Based on the studies above demonstrating potentially
overlapping factors, cellular mechanisms, and signaling
pathways between osteoporosis and chronic psychological stress,
it is not surprising that treatments for these conditions may
also have overlapping and opposing effects. Thus, it is critical
that the interplay between stress and disease-mediated pathways
is considered during the planning of best course of treatment
for an osteoporotic patient, particularly one with a history of
mental health disorder. While this review does not provide,
and is not intended to provide, clinical recommendations,
a discussion of current literature and potential crosstalk
between treatments for osteoporosis and psychological stress-
related mental health disorders is provided to encourage
consideration of the implications of drug selection from a broad,
whole-health perspective.

Osteoporosis Treatments
Given the potential impact of psychological stress and its
treatments on bone health, treatments that benefit both bone and
mental health may be preferred, especially in patients at high-risk
for concurrent osteoporosis and mental health disorders. In this
section, we discuss common treatment options for osteoporosis,
independent of type, and detail literature that provides evidence
of potential impacts of these treatments on mental health.
Literature findings outlined below are summarized in Table 1.
For each osteoporotic treatment, we first discuss its primary use
and impacts on bone health, followed by a review of current
literature as to its effects on mental health.

It is worth noting that osteoporosis, particularly osteoporotic
fracture, may affect mental health and QOL. Osteoporotic
fractures can lead to poorer QOL outcomes and negatively
impact physical, social, financial, and psychological well-being
(95–97). In regard to psychological well-being, osteoporosis can
lead to feelings of anxiety, due to fear of falling or fear of fracture,
and depression. It has been shown that anxiety and depression
are comorbidities of osteoporosis (98), and osteoporotic fracture
can cause reduced self-esteem and self-image, likely due to
feelings of helplessness and loss of independence (99). All of these
factors (loneliness, anxiety, depression, loss of independence,
reduced self-esteem, loss of social role, etc.) may, in turn,
contribute to disease exacerbation. Effective management of
osteoporosis that reduces incidence of osteoporotic fracture (e.g.,
effective caregiver support) likely provides substantial indirect
mental health benefit by preventing these negative outcomes. As
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TABLE 1 | Interactions of treatments for osteoporosis and psychological stress.

Drug/therapy Relevant target Osteoporosis Psychological stress Other considerations

Bisphosphonates Osteoclasts/bone mineral density + ? Potential improvement in mobility, which may improve QOL

Statins TGFβ pathway + +/? Cardiovascular impacts

Denosumab RANKL + ?

Teriparatide Parathyroid hormone + –/?

Estrogen/SERM Multiple + +/– Long-term use could increase cancer risk

Strontium ranelate Bone mineral density + ?

SSRI Serotonin - +

Benzodiazepines GABA receptor - + Cardiovascular impacts

Beta-blockers β-adrenergic antagonist + + Cardiovascular impacts

Barbiturates GABA receptor - + Addictive; No reversal agent

Fish oil (EPA and DHA) Unknown/multiple + +/? Cardiovascular impacts

Calcium Bone mineral density + ? Kidney stone development

Magnesium Bone mineral density + +/?

Vitamin D Required for calcium absorption + +/– Kidney stone development

Exercise Multiple + + Multiple health benefits

Treatments for osteoporosis and those for psychological stress potentially interact with each other. Positive benefit is denoted by “+”. Negative effects are denoted by “-”. Unknown or

understudied effects are denoted by “?”. Relevant targets in context of osteoporosis or stress are listed. Considerations that may have important clinical impacts are included.

described below, many treatments for osteoporosis may also have
direct, biochemical effects on mental health.

Bisphosphonates
Bisphosphonates are antiresorptive agents that bind to
hydroxyapatite crystals and become ingested by osteoclasts,
where they suppress an enzyme involved in osteoclast-mediated
bone resorption. This slows the rate of bone remodeling. In
addition, they have been well-documented to reduce fracture risk
[reviewed in Crandall et al. (100)]. However, bisphosphonates
have negative effects on fracture repair, as they interfere with
maturation of cartilaginous callus to mature bone (101).
Furthermore, atypical femoral fractures and osteonecrosis of the
jaw are two serious side effects of extended bisphosphonate use
[reviewed in Black and Rosen (102)]. While bisphosphonates are
effective at stalling bone loss, they cannot restore bone mass, as
they are antiresorptive and not anabolic. Thus, they may be less
effective for patients presenting with severe bone loss.

Bisphosphonates are often the first-choice treatment
for osteoporosis, however, there are a limited number of
studies, to date, that have examined potential implications
of bisphosphonate treatment on mental health. Citraro et al.
demonstrated that treatment of ovariectomized rats, a model of
osteoporosis, with sodium alendronate had short-term benefit
on anxiety and had beneficial impacts on motor performance
(103). Reduced immobility, increased distance traveled, and
increased mean velocity in behavioral assessments were
shown in ovariectomized rats following 3 months of sodium
alendronate treatment. However, benefit was not maintained
following 6 months of treatment, and short-term benefit can
likely be attributed to improved mobility. This suggests that
bisphosphonate treatment may provide positive impact on QOL
outcomes, due to improved mobility, and may have short-term
benefit for anxiety and depression, particularly for patients

with type I osteoporosis. An important consideration with
bisphosphonate treatment, however, is non-compliance due to
incidence of flu-like illness and gastrointestinal upset associated
with their use, as well as complicated dosing schedules (104).
Non-compliance may be further increased among patients with
PTSD, therefore, additional follow-up may be necessary (105).
Studies by Kastelan et al. have demonstrated that a monthly,
rather than weekly, dosing schedule may also be beneficial
toward improving compliance and QOL (106).

Denosumab
Denosumab is a monoclonal antibody to RANKL, a ligand
expressed by osteoblasts that is necessary for the differentiation
of osteoclasts. Denosumab sequesters RANKL and prevents
its interaction with osteoclastic RANK, mimicking the natural
function of osteoprotegerin (OPG). The resulting decrease in
osteoclastogenesis is associated with significant increases in
BMD, which have been shown to continue for up to 10
years of treatment (107). Treatment with denosumab also
decreases risk of hip, vertebral, and non-vertebral fractures (108).
However, cessation of denosumab leads to a rapid rebound
in bone turnover, which has raised concerns over multiple
vertebral fractures (109, 110). Denosumab is administered
as a subcutaneous injection every 6 months, which has
been associated with higher compliance and greater patient
satisfaction (111).

The effect of denosumab treatment on mental health is
currently unknown. However, Suzuki et al. demonstrated that
denosumab treatment altered levels of serum bone-related
minerals in osteoporotic patients with rheumatoid arthritis,
including alteration of magnesium levels, which is known to
impact mental health (described below) (112). Further, recent
reports are expanding our understanding of the role of the
RANKL-RANK axis outside of the skeletal system [reviewed in
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Nagy and Penninger (113)]. RANKL is also expressed by T cells,
which is thought to underlie the decrease in BMD associated with
diseases of chronic T cell activation (114). RANKL-expressing T
cells are known to home to the CNS, where they interact with
RANK-expressing astrocytes and microglia (115, 116), cell types
with an increasingly apparent role in the central response to
chronic stress [reviewed in Calcia et al. (117)]. How denosumab
affects immunomodulation of the CNS by RANKL-expressing
T cells remains to be elucidated. There is also some evidence
to suggest that activation of the sympathetic nervous system,
commonly associated with chronic psychological stress, affects
the peripheral expression of RANKL on osteoblasts (118, 119)
and T cells (120). However, it is currently unknown how altered
RANKL expression modulates the efficacy of denosumab in
individuals with chronic psychological stress.

Estrogen Replacement Therapy/Selective Estrogen

Receptor Modulators (SERMs)
Estrogen replacement can prevent postmenopausal bone loss
and reduce fracture risk (121–125). The lack of estrogen
in postmenopausal women causes dysregulation of bone cell
differentiation, alters osteoblast/osteoclast activity, and induces
osteoblast and osteocyte apoptosis, thereby leading to increased
bone turnover, with a net effect of resorption exceeding
formation (126–128). This is due to increased secretion of pro-
inflammatory factors, such as IL-1 IL-6, and TNF-α, as well
as estrogen’s regulatory role in osteoclast receptor signaling,
including RANKL and OPG (129–133). In addition, estrogen
loss leads to decreased production of IGF-1, transforming
growth factor β (TGFβ), and COL1, all of which are involved
in stimulating osteoblast differentiation and activity. Estrogen
replacement therapy, in effect, reverses these changes (134–
137). However, the anabolic effects of estrogen on bone are
dependent on preparation, dose, and route of administration
(138). Likewise, estrogen plays a significant role in many tissues
throughout the body, so systemic replacement of estrogen
creates a complex clinical scenario. For example, a study by
the Women’s Health Initiative found that estrogen replacement
had beneficial effects on fracture and colon cancer risk, but also
increased incidence of cardiovascular events, strokes, pulmonary
embolisms, and invasive breast cancers (139). Thus, although
clearly effective, these systemic effects have lessened enthusiasm
for estrogen replacement therapy as the first-line treatment
option for osteoporosis (140).

Similarly, selective estrogen receptor modulators (SERMs)
have been studied for their impacts on BMD and fracture risk.
SERMs are compounds that interact with estrogen receptors and,
like estrogen replacement, have broad systemic effects. Raloxifene
has been widely used for treating osteoporosis, although its effects
on BMD are modest, and it appears to only impact vertebral
fractures (141, 142). Long-term use of raloxifene also decreased
breast cancer risk, but increased risk of thromboembolic events
(108, 143–145). Thus, as with estrogen replacement, SERMs
are unlikely to be the gold standard treatment option for
osteoporosis, but may be particularly beneficial for women with a
strong family history of estrogen receptor-positive invasive breast
cancer (146).

Along with impacting a range of tissues, estrogen has
profound effects on mental health and is a known regulator of
the stress response (147–149). Postmenopausal estradiol therapy
provides protective effects against stress-induced cognitive
effects, particularly working memory (150). Estrogen also
positively impacts distribution of serotonin receptors, suggesting
a role for estrogen in mood regulation (151, 152). Glover et al.
found that low circulating estrogen levels are associated with
higher fear-potentiated startle and fear extinction deficits in
women with PTSD (153). Therefore, low levels of estrogen may
play a role in PTSD by decreasing fear inhibition. Though
several studies have demonstrated a positive impact of estrogen
on mental health, negative effects of estrogen on brain activity
and memory formation have also been observed. Shansky
et al. showed that estrogen treatment impacted activity in the
medial prefrontal cortex, resulting in increased sensitivity to
working-memory impairment caused by pharmacologic and
restraint stressors, possibly through regulation of the alpha-2a
adrenergic receptor (154). Dysfunction of the medial prefrontal
cortex is associated with stress-related disorders, including major
depressive disorder and PTSD. Estrogen may also lead to
increased intrusive memories, thereby influencing memory of
emotionally arousing events (155). Further, estrogen has been
shown to play a role in the pathophysiology of migraines, which
are linked to depression, anxiety, abuse, and PTSD (156). Thus,
estrogen plays a major and complex role in the stress response
and may have both positive and negative effects on different
areas of the brain. Estrogen’s effects on cognition are likely
further complicated by age and hormone status of the patient.
It is of note that raloxifene does not appear to affect memory
or cognition, and, thus, may be a better treatment option than
estrogen replacement for women with a history of mental health
disorders (145).

Statins
Statins have been prescribed for the treatment of cardiovascular
disease for decades, but are just beginning to be investigated for
their anabolic impact on bone [reviewed in Ruan et al. (157)].
Statins have been shown to influence bone remodeling through
the BMP pathway and may inhibit osteoclast differentiation
through increased BMP-2 expression (158). Statins may also
regulate the RANK pathway to inhibit osteoclastogenesis. Bone
formation may be promoted by statins through inhibition
of osteoblast apoptosis mediated by Smad3 deletion via the
TGFβ pathway. Currently, simvastatin and atorvastatin have
been shown to have clinical efficacy (increased BMD) in the
treatment of osteoporosis, while trials with other statins, such
as pravastatin and rosuvastatin, failed to meet study primary
outcomes of reduced fracture risk [reviewed in Wang et al.
(159)]. Statin bioavailability in bone is low and may explain the
lack of full efficacy despite the strong role in bone anabolism
demonstrated in animal models and basic laboratory studies
(160, 161). However, additional studies and efforts to improve
bioavailability should be pursued as a result of the promising
outcomes of early clinical and basic studies.

Statins may have beneficial effects on depression and anxiety.
Simvastatin had an anti-depressant effect in a chronic mild stress
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model (162). However, data is conflicting with respect to patient
benefit (163, 164). Epidemiological data suggests a potential
positive effect, especially as an adjunctive therapy [reviewed
in Salagre et al. (165)]. Statins also have anti-inflammatory
and anti-oxidant functions, which may be beneficial for both
stress-related pathologies and osteoporosis [reviewed in Bedi
et al. (166)]. However, their use for treating psychological stress
or osteoporosis concurrent with psychological stress requires
additional examination.

Strontium Ranelate
Strontium ranelate is a divalent cation, similar to calcium, and
can be administered daily in powder form to treat osteoporosis.
Although its effects are weak, it is approved in Europe for
treatment of osteoporosis in postmenopausal women and in
men at high risk of vertebral and hip fractures who cannot use
other pharmacological agents, such as bisphosphonates (16). It
results in large increases in BMD, but this is partially due to the
heavier strontium ions physically replacing calcium ions within
the hydroxyapatite. In postmenopausal women with established
osteoporosis, 4-year treatment with strontium ranelate reduced
incidence of vertebral fractures by ∼40% and non-vertebral
fractures by 16%, while hip fractures were found to be reduced
only after post-hoc analysis of a high-risk patient subgroup (167,
168). While a potentially effective antiresorptive agent, strontium
ranelate may be associated with increased risk of cardiovascular
events and, thus, patients must be closely monitored (169).

There are minimal studies that have examined the direct
effect of strontium ranelate onmental health. However, improved
QOL outcomes associated with its use may offer benefit
to those experiencing psychological stress. For example, oral
administration of strontium ranelate in postmenopausal women
with established vertebral osteoporosis resulted in prevention
of QOL impairment compared to placebo group, with clear
improvement in emotional and physical dimension scores (170).
In addition, a 2008 multicenter trial in Russia analyzed the
effect of 1-year administration of strontium ranelate on BMD
of patients with postmenopausal osteoporosis. It was found that
strontium ranelate increased lumbar vertebra BMD, inhibited
local tissue-mediated bone resorption markers, and resulted in
improved QOL outcomes, with patients reporting better motility,
lowered rates of depression, and improved self-assessments
(171). While promising, further studies are needed to determine
the impacts of strontium ranelate on mental health and whether
or not it may serve as a more suitable treatment option for
osteoporotic patients with a history of mental health disorder.

Teriparatide
Teriparatide is a recombinant form of PTH, consisting of
the bioactive N-terminal 34 amino acids. PTH is involved in
regulation of serum calcium levels and is a stimulator of both
bone formation and bone resorption. Teriparatide is the only
FDA-approved anabolic bone agent for treating osteoporosis,
but is, currently, cost-prohibitive (35, 172). Daily or weekly
subcutaneous injections of teriparatide were shown to increase
both spine and hip BMD (173). Neer et al. demonstrated
that a 20 µg/daily dose of teriparatide resulted in ∼70%

reduction in vertebral fractures and ∼50% reduction in non-
vertebral fractures in women with low BMD and a previous
history of vertebral fractures over a 21-month treatment period
(174). However, teriparatide did not reduce hip fracture risk.
Teriparatide is associated with a number of negative side effects,
including nausea, headache, hypercalcemia, and musculoskeletal
pain. In addition, benefits of teriparatide are quickly lost after
discontinuation, and it is only approved for up to 2 years of use
(102). Importantly, it has also been shown that co-therapy with
teriparatide and alendronate does not provide advantage over
monotherapy (175).

In regard to mental health effects, common symptoms
of hyperparathyroidism overlap with those of psychological
stress-associated mental health disease, including fatigue,
anxiety, insomnia, and depression. The molecular, cellular, and
biochemical mechanisms behind the relationship between PTH
and mental health are not known. Recently, however, PTH levels
were shown to negatively correlate with plasma corticosterone
levels after acute restraint stress (176). In addition, a significant
reduction in parathyroid hormone receptor 1 (PTHR1) levels
in both the kidney and thyroid was observed in rats exposed
to chronic (28-day) daily restraint stress. This potential link is
supported by clinical data, which demonstrated that teriparatide
resulted in increased plasma and urinary cortisol following
sustained treatment (6 months-1 year) (177). These studies
suggest clinical considerations should be made regarding
the potential impact of teriparatide use on cortisol levels in
osteoporotic patients with PTSD, depression, or anxiety.

Psychological Stress Treatments
As described above, it is clear that osteoporosis, particularly
osteoporotic fracture, and associated treatments may have
substantial mental health impacts. Mental health disorders may
also, in turn, have significant impact on bone health. Anxiety
has been reported to contribute to lower hip BMD (178). Several
studies have shown that depression is a predictive factor for
osteoporosis and fracture development (179–181). In addition,
pharmacological interventions targeted at improving mental
health, particularly in patients with major depressive disorder
or PTSD diagnoses, may impact bone health. In the subsections
below, we describe commonly prescribed medications for PTSD
and depression and then review current literature indicating
impacts of these agents on bone health.

Selective Serotonin Reuptake Inhibitors (SSRIs)
Selective-serotonin reuptake inhibitors (SSRIs) have become
a first-line treatment for patients with moderate to severe
depressive disorders, as they are generally considered safe, well-
tolerated, and associated with minimal severe side effects (182).
SSRIs function by inhibiting serotonin (see section Serotonin)
reuptake by the presynaptic neuron, thereby maintaining higher
levels of serotonin in the synapse and increasing postsynaptic
neurotransmission. As a result of this inhibition, there is a
resultant increase in extracellular concentrations of serotonin
in both the brain and periphery. In addition, SSRIs are most
highly concentrated in the bonemarrow, thus raising the concern
as to their impacts on bone metabolism (183). Interestingly,
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SSRIs appear to exert a temporally regulated dual-effect on
bone. Short-term SSRI administration results in elevated systemic
serotonin levels, but these levels are reduced by about 50%
over a longer treatment period [reviewed in Ducy and Karsenty
G (81)]. In a rigorous study by Ortuno et al., fluoxetine was
shown to act on bone remodeling via two distinct mechanisms
in mice. When used for <3 weeks, fluoxetine acts peripherally
to cause anti-resorptive effects by directly impairing osteoclast
differentiation and function through a serotonin-reuptake-
independent mechanism that is dependent on intracellular Ca2+

levels and the transcription factor, Nfatc1. In addition, these
effects were reversible, thus ruling out cell death as the reason for
the observed anti-resorptive effects. No effect of fluoxetine was
observed on osteoblasts. However, when fluoxetine was given to
mice for 6 weeks, it triggered a brain serotonin-dependent rise
in sympathetic output that increased bone resorption sufficiently
to counteract its local anti-resorptive effect, which led to a net
effect of impaired bone formation and bone loss. Hypothalamic
extracts from mice treated for 6 weeks with fluoxetine showed
significantly lower levels of p-CREB, a downstream mediator
of serotonin signaling through Htr2c. The study also found
that it was possible to neutralize this long-term effect of
fluoxetine treatment through co-treatment with the beta-blocker,
propranolol, which leaves the localized peripheral effect intact
and prevents fluoxetine-induced bone loss (184).

In accordance with these findings, clinical studies illustrate
that, with chronic usage of commonly prescribed SSRIs, bone
health is negatively impacted. In numerous studies, SSRIs have
been found to increase risk for secondary osteoporosis, lower
BMD, and increase incidence of both hip and vertebral fractures
(185–192). The direct mechanisms by which SSRIs impact bone
health, particularly in humans, are still not wholly understood,
particularly due to temporal and location-specific effects of
serotonin. However, a promising potential treatment option may
be LP533401, an inhibitor of Tph1, that does not cross the blood-
brain barrier, thus will not affect synthesis of brain serotonin.
LP533401 has been shown in a Phase II clinical trial to not exhibit
significant toxicity or side effects in patients being treated for
irritable bowel syndrome (193). In rats, LP533401 administration
once daily by oral gavage for up to 6 weeks resulted in full rescue
of osteoporosis in ovariectomized rodents in a dose-dependent
manner (194, 195). Taken together, these studies would suggest
that it is important to consider a patient’s history of SSRI use
when treating osteoporosis, as any benefit received from an
osteoporotic drug, such as a bisphosphonate, could be countered
by concurrent SSRI use [reviewed in Haney et al. (196)].

Benzodiazepines (anxiolytics)
Benzodiazepines are another commonly prescribed treatment
for psychological stress, especially as a second-line or
adjunctive medication. These drugs enhance the signaling
of the neurotransmitter, gamma-Aminobutyric acid (GABA),
through GABA receptors, and may also increase dopamine
signaling to reduce anxiety that is often associated with stress.
Benzodiazepines are central nervous system depressants and,
thus, have sedating effects.

Benzodiazepines have been shown to have significant negative
impact on bone health, primarily due to increased fall risk (197).
Benzodiazepines have also been shown to decrease osteoblast
differentiation through benzodiazepine-like receptors. BMDmay
also be reduced as a result of benzodiazepine treatment, and
their use has been associated with increased ALP, reduced serum
levels of vitamin D [reviewed in Fan et al. (198)], and increased
levels of prolactin, which, in turn, results in decreased estrogen
(199). These studies strongly suggest that benzodiazepines be
prescribed with caution among those at risk for development of
osteoporosis, and lifestyle modifications and supplementation as
adjunctive therapies warrant consideration in these patients.

Barbiturates
Barbiturates, derived from barbituric acid, are a class of central
nervous system depressants and are classified as anti-epileptic
drugs. Barbiturates are GABA receptor agonists, exerting their
effect by blocking transmembrane receptors for the primary
excitatory neurotransmitter in the central nervous system,
glutamate. The resulting activation of inhibitory GABA signaling
coupled with inhibition of excitatory neurotransmitters causes
sedation. These drugs are highly addictive and do not have a
reversal agent in the case of overdose. Therefore, barbiturates
are not as widely prescribed today as they have been in the past.
However, these drugs are still prescribed for treatment of anxiety,
seizures, migraine headaches, and in the elderly as sleep aids.

Barbiturates are detrimental to bone due to impacts on
calcium and vitamin D metabolism and absorption. Although
the negative effects of barbiturates are likely multifactorial
and complex (200), perhaps the most recognized mechanism
is through increased cytochrome p-450 enzymatic activity,
which results in production of an inactive form of vitamin D,
thereby leading to a reduction in calcium absorption from the
gastrointestinal tract. Reduced vitamin D and calcium levels
stimulate production of PTH and perpetuate bone loss due to
calcium resorption from bone (201, 202). Due to their significant
effects on bone resorption, use of barbiturates has been noted as a
cause of secondary osteoporosis. As with other CNS depressants,
barbiturate use is associated with increased risk of fracture due to
an increased fall risk resulting from gait disturbances. Thus, due
both to the risk of addiction and implication in osteoporosis, as
well as elevated fracture and fall risk, alternatives to barbiturates
for the treatment of psychological stress may be preferred.

Beta-Blockers
Beta-blockers act to inhibit β-adrenergic signaling and are
commonly prescribed for the treatment of hypertension. More
recently, beta-blockers, such as propranolol, have been prescribed
for other conditions, including anxiety. The use of beta-blockers
for PTSD has also been suggested, with the goal of preventing
detrimental memory relapse of traumatic events [reviewed
in Roque (203), Burbiel (204)]. However, due to concerns
regarding potential negative impact on depression, these
medications are not necessarily considered front-line treatments
for psychological stress-associated mental health disease.

Given the impact of catecholamines on bone health (discussed
above), it is not surprising that beta-blockers may have beneficial

Frontiers in Psychiatry | www.frontiersin.org 10 April 2019 | Volume 10 | Article 200

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Kelly et al. Psychological Stress and Osteoporosis Interactions

impacts on osteoporosis (205) and have been shown to reduce
fracture risk by as much as 50%. In a study of men over the
age of 55, long-term (> 5 years) beta-blocker use was associated
with increased maxillary BMD compared to those on calcium
channel blockers for hypertension (206). In a U.K. study, beta-
blocker treatment was associated with reduced fracture risk
(207). This was also demonstrated in an Australian study, in
which women on beta-blockers were shown to have decreased
fracture risk and increased BMD of the hip and ultradistal
forearm (208). In vitro studies suggest that the positive impact
of beta-blockers on bone health may be due to promotion of
bone formation by osteoblasts, increased osteoblast numbers,
decreased osteoclast numbers, and impairment of osteoclast-
mediated bone resorption (209).

LIFESTYLE MODIFICATION AND DIETARY
SUPPLEMENTS

In this section, we provide a perspective outlook on lifestyle
modifications and dietary supplements that may have beneficial
effects on bone health (210) and may reduce psychological
stress (211). For example, it has been suggested that the
Mediterranean diet may have positive impacts on bone health,
whereas the modern Western diet causes a state of low-grade
chronic inflammation that promotes osteoporosis (212–
214). A movement toward complimentary, alternative and
integrative medicine has provided insight into the benefits of
adjunctive and naturopathic remedies. Calcium and vitamin
D supplementation have well-recognized benefits toward
improved bone health and reducing osteopenia. However,
their impacts on psychological stress are less well-studied.
Other alternative therapies that have been gaining attention
include magnesium supplementation and fish oil/omega-3
supplementation. The benefits of exercise in promoting overall
health are well-recognized. Recent studies regarding several
lifestyle modifications and dietary supplements and their
effects on bone health and psychological stress are described
below. These alternatives may offer complementary benefit
with reduced risk compared to traditional pharmacological
intervention, and, therefore, warrant additional study toward
potential impact on patient outcome for those with, or at high
risk for, osteoporosis and concurrent psychological stress-
associated mental health disorders. In the subsections below,
literature supporting alternative or adjunctive therapies are
discussed. First, the literature indicating effects on bone health
are described, followed by a review of the literature indicating
impact on mental health.

Exercise
Besides obvious beneficial effects onmuscle mass, weight-bearing
and resistance exercises can lead to increases in BMD (215).
Although this impact may be more beneficial at a young
age, some studies have shown that exercise increases BMD in
postmenopausal women (216, 217). Longitudinal studies using
high-resolution computed tomography scans have shown that
regular physical activity improves skeletal microarchitecture

(218). Further, exercise and balance can limit fall risk (102). The
converse is also true, in that low levels of physical activity are
associated with bone loss and >2-fold risk of fracture (219, 220).
However, robust data is still lacking on whether there are any
beneficial effects of long-term exercise on fracture susceptibility.

It is well-established that regular exercise can improve mental
health. Participation in exercise programs has been shown
to improve symptoms in patients with anxiety-, stress-, and
trauma-related disorders, with positive effects lasting beyond
the scope of the training program (221–224). In some cases,
exercise therapy was more effective in reducing anxiety than
traditional forms of therapy, including psychotherapy and
pharmacotherapy (222, 225, 226). The benefits of short- and
long-term aerobic exercise on overall mental health and function
are multifold. On a biochemical level, exercise has been shown to
reverse some of the neurological changes induced by exposure
to psychosocial and/or physical stressors, including release
of hippocampal corticosterone, decreased neurogenesis, and
impaired hippocampal-dependent behaviors, such as learning
and memory (227–230). In animal models of stress, both
forced and voluntary exercise interventions have been shown
to restore neuronal differentiation in the hippocampus (231,
232), increase levels of hippocampal brain-derived neurotrophic
factor (BDNF) (233–235), and restore cognitive function (233,
236). There is also evidence that exercise-induced neurochemical
changes, including increased production of hippocampal BDNF
and altered hippocampal glucocorticoid receptor levels, may
be protective against the stress response (237–239). On a
psychological level, exercise may act as an interoceptive exposure
(240, 241), in which patients with PTSD and anxiety-related
disorders are sensitized to feared somatic sensations (242, 243).
Alternatively, exercise may produce its anxiolytic effect by
offering a distraction from distressing thoughts (244, 245) and/or
inducing neurochemical changes, such as increased endorphin
production (246). The biochemical mechanisms by which
exercise alleviates symptoms in patients with anxiety and PTSD
have not been fully elucidated and require further investigation.

Calcium and Vitamin D
Nutrition and intake of appropriate levels of vitamins and
minerals play a key role in maintenance of a healthy skeleton. In
regard to osteoporosis, calcium and vitamin D supplementation
have been the most studied to date. The Women’s Health
Initiative conducted a large randomized trial involving more
than 36,000 postmenopausal women to determine the efficacy
of 1,000mg of calcium combined with 400 IU of vitamin D
supplementation daily. It was found that this combination did
not significantly impact risk of hip fracture, although post-
hoc analysis demonstrated benefits for women age 60 years
of age or older and those who adhered most strictly to the
treatment schedule (247). In contrast, a 2016 meta-analysis of
randomized controlled trials found a significant 15% reduced risk
of total fractures and a 30% reduced risk of hip fractures with
calcium and vitamin D supplementation (248). However, there
has been no evidence, to date, that vitamin D supplementation
alone reduces fracture risk, although it may reduce fall risk
(249). Effects of supplemental calcium alone on fracture risk
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are still unknown, as no large-scale, randomized trials have
been conducted (102). In addition, vitamin D and calcium
supplementation were, not surprisingly, shown to increase risk
of kidney stone development by 17% (247). Thus, at this
time, vitamin D and/or calcium supplementation alone is not
considered an appropriate treatment for osteoporosis.

In regard to mental health, several studies have examined
the effects of vitamin D and calcium. Vitamin D is known to
play a role in depression (250–252), and vitamin D receptors
are present in multiple brain regions (253). Further, recent
studies have begun to demonstrate a relationship between anxiety
and serum levels of vitamin D (254). This may impact quality
of life, particularly in postmenopausal women at increased
risk of osteoporosis (255, 256). Vitamin D has also been
shown to increase synthesis of neurotransmitters, including
dopamine and norepinephrine, in rats (257). However, in a
large-scale randomized, double-blinded US trial, no relationship
was found between vitamin D/calcium supplementation and
depression in over 36,000 postmenopausal women (258). In
contrast, a Norwegian randomized, double-blind controlled
trial found that weekly administration of vitamin D for 1
year in normal, healthy adults resulted in improved scores
for depression compared to placebo (259). In a Korean
study, low-dietary calcium was found to be associated with
increased depression in middle-aged women (260). In women
with premenstrual syndrome, supplementation with 500mg
of calcium carbonate twice daily for 3 months resulted in
improvements in parameters assessing early tiredness, appetite
changes, and depressive symptoms (261). There are also studies
to suggest that calcium supplementation can be used to mitigate
symptoms of postpartum depression (262). Thus, there is
accumulating evidence of the beneficial effects of vitamin D
and/or calcium supplementation on depression.

Magnesium
Magnesium is the fourth most abundant cation in the body
and is involved in cardiovascular, bone, and brain health, as
well as maintenance of homeostasis (263, 264). Supplementation
with magnesium is generally well-tolerated with limited side
effects. For bone, magnesium supplementation has been less
well studied than calcium and/or vitamin D. However, bones
store approximately 60% of total body magnesium, and its
release is dependent upon bone resorption (265). In rats, it
has been shown that decreased dietary magnesium leads to
a reduction in vitamin D, ALP, and OCN levels, as well as
decreased bone volume and trabecular thickness (266). Tucker
et al. demonstrated that magnesium intake was associated with
increased BMD at one hip site for men and women and in the
forearms of men (267). In a 2014 Women’s Health Initiative
study, it was found that postmenopausal women who consumed
>422.5mg of magnesium had slightly higher (2–3%) BMD
than women who consumed <206.5mg of magnesium daily.
In addition, magnesium consumption correlated with increased
physical activity, but also increased fall risk (268). A 2017
study demonstrated that dietary magnesium intake led to a 27%
decrease in fracture risk (269). Thus, maintaining appropriate

levels of magnesium appears to be beneficial in the maintenance
of bone integrity.

Magnesium supplementation has been suggested for its
anxiolytic effects and has shown promising results in clinical
studies. However, additional examination is required to develop
appropriate treatment recommendations [reviewed in Boyle et al.
(270)]. Low magnesium intake (271) and low serum levels of
magnesium have been associated with depression [reviewed in
You et al. (272)]. Several studies have also demonstrated positive
effects of magnesium supplementation for depression (273, 274).
Magnesium has also been used to improve sleep, especially
among those with magnesium deficiency. Mechanistic studies of
magnesium supplementation on depression have been limited.
However, in a model of chronic mild stress, it was demonstrated
that magnesium may exert its anxiolytic and anti-depressive
effects in part by acting as a GABA agonist and as an inhibitor of
N-methy-D-aspartate receptor (NMDAR) (275). Based on these
positive effects on mental health and bone integrity, as well as
limited negative side effects, magnesium supplementation may
serve as a beneficial supplement for osteoporotic patients with a
history of mental health disorder.

Omega-3 Fatty Acids
Polyunsaturated fatty acids, including eicosapantaenoic acid
(EPA) and docosahexaenoic acid (DHA), are commonly
contained in fish oil supplements and fatty fish, such as salmon,
tuna, mackerel, and sardines. The ratio of these fatty acids varies
across fish oil supplements and can have significant impact
on effect and balance of these omega-3 and omega-6 fatty
acids in the body. This balance is critical toward the beneficial
anti-inflammatory effects of fatty acid supplementation. Due to
these anti-inflammatory effects, there have been a handful of
studies examining the impacts of fatty acids on bone health
[reviewed in El-Sayed and Ibrahim (276)]. Using bone marrow-
derived macrophages, Kim et al. demonstrated that DHA led
to suppression of macrophage colony-stimulating factor (M-
CSF)-induced proliferation of osteoclast precursors. This effect
was likely mediated through decreased Akt activation and
downregulated cyclin D1 and D2 expression. In addition, DHA
led to increased apoptosis in mature osteoclasts (277). In rats,
a diet supplemented with chia seeds, which are fatty acid-
rich, was shown to increase BMD in the tibia (278). Lavado-
Garcia et al. observed a similar effect, with long-chain omega-3
polyunsaturated fatty acid intake contributing to an increase in
BMDs in the hips and lumbar spine of normal and osteopenic,
but not osteoporotic, Spanish women (279). In a randomized,
double-blind, placebo-controlled trial, Dong et al. reported that
omega-3 polyunsaturated fatty acid supplementation led to
decreased bone turnover by decreasing serum levels of bone-
specific ALP and OCN over time (280). However, it was stated
that higher doses and a longer duration needed to be tested
before a definitive statement could be made as to the effects of
fatty acids on bone metabolism. In a systemic review and meta-
analysis, Shen et al. suggest that the primary impact of omega-3
fatty acids on bone is a reduction in serum OCN (281). However,
there is still a lack in mechanistic understanding of how omega-3
fatty acids may be mediating these effects on bone, particularly
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since even just one fatty acid can trigger multiple independent
pathways (282).

Depression and anxiety have been associated with reduced
levels of polyunsaturated fatty acids (283, 284). Accordingly,
several studies have demonstrated a positive effect of fatty
acid supplementation [reviewed in Burhani and Rasenick
(285)]. One study in rats comparing the effects of EPA and
DHA supplementation demonstrated increased anxiolytic effects
of EPA (286). Another study demonstrated anti-depressant
effects of fish oil supplementation in rats subjected to chronic
unpredictable mild stress (287). Fish oil supplementation may
also improve the physiological symptoms of psychological
stress. Fish oil supplementation has been shown to reduce the
effects of mental stress (serial subtraction exercises) on heart
rate, calf vascular conductance, and muscle sympathetic nerve
activity (288). In contrast, a more recent study demonstrated
no benefit of EPA supplementation on perceived psychological
stress (289). Therefore, while studies have been promising
regarding the use of omega-3 supplementation for treatment of
psychological stress, including depression, anxiety, and PTSD,
continued research is needed to determine the appropriate type of
supplementation, dose, and application. Continued mechanistic
studies are needed, but, to date, studies have suggested these
supplements impart anti-inflammatory action and modification
of neurotransmitter signaling through membrane and G-protein
mechanisms [reviewed in Burhani and Rasenick (285)]. Overall,
studies have shown promising benefit to multiple pathologies
without significant negative impact. As such, fatty acid
supplementation may warrant recommendation for concurrent
osteoporosis and psychological stress.

CONCLUSIONS

Together, the studies reviewed above suggest that, while
osteoporosis and psychological stress occur via differing
mechanisms, there are several potential molecular links that exist
between a pathological response to stress and the development
of bone disease. Although not a comprehensive list, these
may include dysregulation of the HPA-axis and SAM pathway,
inflammatory pathways, IGF signaling, estrogen, serotonin,
GABA, and RANKL (Figures 1, 2). Consequently, an in-depth
understanding of the mechanisms that regulate and intersect

stress and bone health is needed to determine risk and
treatment recommendations.

In addition, the pharmacological therapies used for mental
health disorders and osteoporosis may have interacting effects
(Table 1) that should be carefully considered in making
treatment recommendations toward the most beneficial effect.
These interactions are likely highly complex and influenced
by a number of patient-specific risk factors, including lifestyle,
genetics, epigenetics, and diet. Thus, there is a need for further
basic and clinical research to determine the significance of
chronic psychological stress on bone health. The multifactorial
nature of diseases in treatment, lifestyle recommendations, in
terms of making informed personalized medicine decisions
should also be considered. Alternative or adjunctive therapies,
such as lifestyle modification and dietary supplementation,
may represent a novel approach to mitigating the effect of
concurrent chronic psychological stress and osteoporosis,
but further study is needed to examine the potential benefit
of these options in this context. Overall, the interaction
of psychological stress and osteoporosis is an important
example of the need for additional research examining
the broad, whole-health effects of chronic psychological
stress on disease and the need for further study of the
application of lifestyle modifications toward a personalized
medicine approach.
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