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Biomolecular networks have already found great utility in characterizing complex

biological systems arising from pairwise interactions amongst biomolecules. Here, we

explore the important and hitherto neglected role of information asymmetry in the

genesis and evolution of such pairwise biomolecular interactions. Information asymmetry

between sender and receiver genes is identified as a key feature distinguishing early

biochemical reactions from abiotic chemistry, and a driver of network topology as

biomolecular systems become more complex. In this context, we review how graph

theoretical approaches can be applied not only for a better understanding of various

proximate (mechanistic) relations, but also, ultimate (evolutionary) structures encoded in

such networks from among all types of variations they induce. Among many possible

variations, we emphasize particularly the essential role of gene duplication in terms of

signaling game theory, whereby sender and receiver gene players accrue benefit from

gene duplication, leading to a preferential attachment mode of network growth. The

study of the resulting dynamics suggests many mathematical/computational problems,

the majority of which are intractable yet yield to efficient approximation algorithms, when

studied through an algebraic graph theoretic lens. We relegate for future work the role

of other possible generalizations, additionally involving horizontal gene transfer, sexual

recombination, endo-symbiosis, etc., which enrich the underlying graph theory even

further.

Keywords: biomolecules, regulation and communication, interaction (binary) relationship, networkmodel, network

analysis, spectral analysis

1. GENESIS OF BIO-MOLECULAR INTERACTIONS

1.1. Introduction and a Road Map
A range of complex phenotypes of biomolecular systems can be inferred from macromolecular
interactions, represented using combinatorial networks. Such biomolecular networks include gene
(regulatory) networks (GRNs) (Thompson et al., 2015), protein-protein interaction (PPI) networks
(Huang et al., 2017), protein and RNA neutral networks (Schuster et al., 1994; Govindarajan
and Goldstein, 1997), metabolic networks (McCloskey et al., 2013), and meta-metabolic networks
(composite metabolic networks of communities) (Yamada et al., 2011). Here, we will focus on the
neglected role of information asymmetry between genes and their gene products, which is identified
as a key factor distinguishing biochemistry from abiotic chemistry in early life, and which has
subsequently influenced biochemical processes. Such pairwise interactions led to the establishment
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of the earliest biomolecular networks, and their nature influenced
subsequent network growth. We will concentrate on GRNs and
PPI networks as illustrative examples, but the principles outlined
are also applicable to the other types of biomolecular networks.
We focus on mathematical and algorithmic techniques that by
analyzing evolutionary dynamics may shed light on possible
approaches to speculate on the very “origin of networks,” and the
challenges they pose. For simplicity, we illustrate the approaches
highlighting “Evolution by Duplication” (EBD); other dynamics
may be handledmutatis mutandis.

The paper will adhere to the following road-map, aimed
at identifying and explaining several challenges for the field
of “evolutionary biology of networks” by first building on a
review of biological and mathematical notions and frameworks,
within which the open questions are formulated. First, a brief
introduction presents biomolecular networks, and biomolecular
signaling games between gene players. Second, it is followed
by a consideration of the role of gene duplication from
the perspective of information asymmetry. Switching to a
mathematical formulation, a compendium of known results
in (algebraic and combinatorial) graph theory are presented,
comprising a toolbox for addressing the topics raised here. Last
but not least, a series of open problems are described. These open
problems focus largely on the following: How to devise efficient
(algebraic) algorithms that can shed important lights on game
theoretic models of the evolution of biomolecular interactions,
given that they are driven by information asymmetry (leading
to duplications, complementation, pseudogenization, etc.). Some
of these important mechanisms have been studied qualitatively
elsewhere, albeit not mathematically rigorously.

1.2. Ohno’s Evolution by Duplication
At the genetic level, the growth of a GRN (gene regulatory)
or PPI (protein-protein interaction) network is driven by
gene mutation, including duplication, translocation, inversion,
deletion, short indels, and point mutations, of which duplication
plays an outsized role, although as we incorporate other
known and unknown mechanisms (e.g., non-orthologous
gene displacement, HGT, sexual recombination, etc.) a more
complete picture may emerge. Susumu Ohno coined the phrase
“evolution by duplication” (EBD) to emphasize duplication
in the evolutionary dynamic (Ohno, 1970). Consequently, we
will mainly consider the process of gene duplication, but the
principles outlined may be regarded as an idealization, which
may be extended to other mutational processes—some yet
to be discovered.

The classic view of molecular evolution is that gene families
may expand and contract over evolutionary time largely due
to gene duplication and deletion (Demuth et al., 2018). Here,
we wish to present a more complex view, by exploring how
biomolecular networks may grow, contract, or alter their
topology over time, from the relative dynamic contributions
and interactions of their constituent genes and gene families,
and we do so through the prism of signaling game theory.
Mechanistically, this evolution is driven in large part by the
process of gene duplication and deletion, which lead to node
and edge addition, or removal, from a biomolecular network,

respectively. Since such variations in the network alter the
phenotypes, over which selection operates, the evolution of
networks and their features ultimately capture the essence of
Darwinian evolution.

Recently, we introduced a signaling games perspective of
biochemistry and molecular evolution (Massey and Mishra,
2018). There, we focused on interactions between biological
macromolecules, which may be described using the framework
of sender-receiver signaling games, where an expressed macro-
molecule such as a protein or RNA, constitutes a signal sent
on behalf of a sender agent (e.g., gene). The signal comprises
the three-dimensional (3D) conformation and physico-chemical
properties of the macromolecule. A receiver agent (e.g., a gene
product, another macromolecule) may then bind to the signal
macro-molecule, which produces an action (such as an enzymatic
reaction). The action produces utility for the participating agents,
sender and receiver, and thereby—albeit indirectly—a change in
overall fitness of the genome (in evolutionary game theory, utility
and fitness are treated as analogous). When there is common
interest, the utility is expected to benefit both sender and receiver
and their selection, thus driving Darwinian evolution.

Replicator dynamics allow the signaling game to be couched in
evolutionary terms (Taylor and Jonker, 1978). These arise from
the increased replication of players with higher utility (fitness).
Thus, if a gene has a strategy that results in increased utility, then
it will increase in frequency in a population. For a sender gene
this would entail sending a signal that results in an increase in
utility, while for a receiver gene this would entail undertaking an
action that likewise results in an increase in utility. As already
suggested, these dynamics represent a process analogous to
Darwinian (adaptive) evolution or positive selection.

Biomolecular signaling games are sustained by information
asymmetry between sender and receiver, and so their interactions
can be represented using directed graphs (as defined in section 2).
Information asymmetry arises because the receiver is uninformed
regarding the identity of the sender gene: it must rely on the
signal macromolecule to determine its identity. But, this strategy
may be open to deception. However, most biomolecular signaling
games in the cell are between sender and receiver genes which
have perfect common interest. This is so, because they are
cellularized, chromosome replication is synchronized and so
the genes replicate in concert. Such games are termed “Lewis
signaling games,” and rely on honest signaling from sender to the
receiver, which constitutes a signaling convention (Lewis, 1969).
A biomolecular signaling game is illustrated in Figure 1, part (1).

On occasion, situations may arise where a sender has a conflict
of interest with the receiver. In the cell, this kind of misalignment
of interests can occur when a sender gene is selfish, and would
prefer to replicate itself at the expense of the rest of the genome.
Such genes are termed “selfish elements,” and come in a variety
of forms, marked by decoupled replication from the rest of the
genome (Burt and Trivers, 2006). In a signaling game, when
there is such a conflict of interest, then the sender is expected to
adopt a degree of deceptive signaling (Crawford and Sobel, 1982).
Consistent with this, there are a range of selfish elements that
utilize molecular deception, which implies that there is a cost to
the host genome (Massey and Mishra, 2018). In addition, cancer
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FIGURE 1 | The influence of information asymmetry on growth of a PPI network. Interactions between macromolecules are envisaged as a biomolecular signaling

game whereby a sender gene expresses a macromolecule, the signal, that then binds specifically to a receiver macromolecule, which then undergoes an action (such

as an enzymatic reaction, or conformational change), which produces utility (fitness). The signal consists of the three-dimensional conformation and physicochemical

properties of the macromolecule (1). The sender gene may undergo duplication, which has a dosage effect on the expressed macromolecule, resulting in signal

amplification (2). This mechanism is expected to lower the Shapley value of the gene players in the genome, as the signal is partially redundant and so inefficient.

Subsequently, the sender gene duplicate may acquire a new function (evolve a new signal) although the majority would be expected to undergo pseudogenization (3).

Both these scenarios represent the re-establishment of a Nash equilibrium. If a new signal macromolecule evolves, it is likely to bind to the same receiver

macromolecule initially. This preferential attachment arises because gene duplicates have a tendency to bind to their original interaction partner initially, and then

subsequently undergo interaction turnover (Zhang et al., 2005), and is illustrated to the right of the figure. A key problem is how a new action by the receiver arises as

the result of the evolution of a new signal; the new action may co-evolve with the new signal, or may be necessary first before a new signal can evolve. The latter

would imply that receiver gene duplication and action genesis facilitates the evolution of new signals and sender genes (an exception would be when there is a conflict

of interest; here the sender is more likely to make the first move in evolving a novel deceptive signal, and then the receiver would respond with a better discriminative

recognition mechanism). This key, and novel aspect of gene duplication might be deciphered via consideration of the topology of directed graph representations of

biomolecular interactions as sender-receiver signaling games. Refinements to the illustrated scheme include situations where the original signal protein binds to a

variety of receiver proteins, or where the gene that codes for the receiver protein undergoes duplication (Figure 2).

and pathogens alsomake widespread use of deceptive strategies at
the molecular level, which is expected given their clearly opposed
interests with the host (Massey and Mishra, 2018).

The importance of information asymmetry at the molecular
level is manifold. Given that information asymmetry leads
to the possibility of molecular deception, this means that in
a biomolecular network, in principle honest and deceptive
signals could be mapped as honest or deceptive biomolecular
interactions, respectively. This viewpoint may have importance
in better understanding of processes such as cancer, in which
molecular deception plays a central role in its progression
(section 4.3) where we also formulate open problem 4.H),
as well as of the dynamics of persistent infections. Given
the harmful effects of molecular deception, it is necessary to

reduce information asymmetry, in order to promote cooperation
between gene players, in the normal functioning of the genome.
For instance, in the theory of incomplete contracts, a topic linked
with the economics of information, reduction in information
asymmetry reduces the likelihood of deception between parties,
which consequently promotes trust (Devos et al., 2012) and
so cooperation (Lorenz, 1999). Given this framework, one may
suggest a form of “molecular trust” that is promoted when the
information asymmetry between two gene players is reduced
(effectively increasing transparency), with the effect of promoting
utility (fitness) for both players, since deception is less likely
to occur. One means to achieve this effect is by the use of
costly signals, which are costly to produce and so are more
likely to be honest (Veblen, 1899; Spence, 1973; Zahavi, 1975);
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such signaling establishes “molecular trust” because mimicking
the signals is expensive. In biomolecular terms, a costly signal
is represented by the unique 3D conformation and physico-
chemical properties of a macromolecule, which are difficult to
imitate given its complexity.

When biomolecules are expressed from sender genes of
an unknown type, identity signals are necessary, and so
information asymmetry provides additional explanatory power
for understanding the dynamics of molecular recognition.
Biomolecules may be considered as belonging to two groups,
namely, self and non-self, corresponding to cooperative members
of the genome, or not, respectively. Self or non-self biomolecules
might be equivalated to an in-group and out-group respectively,
in sociological terms, and this view then might then imply
some loose parallels between the dynamics of bio-molecular
and social networks. In this context, it is of interest to
consider how non-self gene players may become integrated
into the cell and its biomolecular networks. This process may
result from the endosymbiosis of a microbial genome, or the
acquisition of plasmids. As the non-self genes evolve increasing
cooperativity with the host genome over time, the occurrence
of molecular deception is expected to reduce. This is because
the level of deception is correlated with the level of conflict
of interest (Martinez and Godfrey-Smith, 2016) with the host
genome; the greater the misalignment of interests, the greater
the level of deception that is expected from the non-self
genes (Massey and Mishra, 2018).

Under the scenarios supported by a game theoretic
framework, one may speculate how biomolecular networks
may have originated. The very first biomolecular interactions in
early life would have been characterized by molecular specificity,
a distinguishing feature of biochemistry (Konnyu and Czaran,
2011). Molecular specificity arises when organic molecules reach
a certain size, additional size being necessary to bind a smaller
ligand. Molecular specificity is a form of recognition, which
effectively allows verification of a ligand. Considering the ligand
as a signal, then the macromolecule is the receiver, and the gene
that produces the ligand can be considered the sender agent.
The very first biomolecular network would have consisted of
two nodes, sender and receiver, with the edge connecting the
two representing the signal. As more biomolecular interactions
evolved, the network increased in numbers of nodes and edges.
Increases in organismal complexity may be viewed as an increase
in the numbers of genes in the genome, but the numbers of
biomolecular interactions has more explanatory power. Thus
fully understanding the nature of these interactions and how
they evolve is necessary for better understanding the emergent
phenotype of an organism. In the genome of the ancestral life
form, once a number of genes with separate function had evolved,
it then would have become beneficial to evolve gene regulation.
Therefore, genes with the dedicated function of regulating other
genes in the genome would have arisen (transcription factors).
The combination of regulatory and functional genes would have
comprised the first GRN. Increases in organismal complexity
have been facilitated by an increase in the complexity of the
GRN (Burton, 2014).

Gene duplication, accompanied by the establishment of
new biomolecular interactions, therefore is a fundamental

evolutionary driver of organismal complexity (Lespinet et al.,
2002), from the first life forms onward. Although the precise
mechanism(s) of gene duplication remains to be established
(Reams and Roth, 2015), some generalities may be made
in terms of signaling games. The first step in the process
of duplication of a sender gene may be viewed as one of
signal enhancement. Because gene duplication results in gene
dosage effects, it also results in amplification of the signal, the
expressed gene product (resulting in weighted graphs—discussed
in section 2). This strategy can be viewed as lowering the overall
utility of the genome, given that there is a cost involved in
producing excessive signal. It is, thus, expected to lower the
Shapley value (Shapley, 1969) of the gene players that cooperate
within the genome. This conflict is usually resolved when the
duplicated gene becomes pseudogenized, the usual fate of gene
duplicates (Innan and Kondrashov, 2010).

Subsequent to duplication, the gene duplicates will sometimes
diverge in function, although the exact mechanism remains
to be elucidated (Innan and Kondrashov, 2010). This process
represents signal divergence if the gene is a sender gene, and
action divergence if the gene codes for a receiver macromolecule.
The genesis of a new sender gene with a new signal may
then promote evolution of a novel action by the receiver
macromolecule, potentially facilitating duplication of the receiver
gene itself. Likewise, the duplication of a receiver gene may
facilitate the diversification of macromolecular signals that
interact with the two duplicated receiver macromolecules. The
process modifies the GRN or PPI network in a non-obvious
manner and it deviates considerably from the way evolution of
random graphs is usually treated, following Erdös and Rényi,
discussed in more detail in section 3 (Erdös and Rényi, 1959).
These entail more complex randomnetwork evolutionarymodels
(several of which are discussed in further detail in section 3).

Signal and action genesis via gene duplication may have
features in common with a Pólya’s urn model of signal genesis
(Alexander et al., 2012) (Pólya’s urn models are statistical
models that involve sampling with replacement influenced by
the identity of the sampled element. These models can lead
to a “rich get richer” effect, of which “preferential attachment”
is an example, discussed in more detail in subsection 3.2). In
this model, reinforcement of signals (similar to reinforcement
learning) may promote the invention of new synonyms. These
considerations may provide parallels for how signals originate
elsewhere, not dissimilar to how new words in a language can
arise from existing words by a process of derivation (Cotterell
et al., 2017). Mechanistic commonalities in the process of
signal genesis in these diverse systems as exhibited in GRNs
remain to be explored. These models hint at a possibly new,
but universal form of “preferential attachment” that drives the
variations in biomolecular networks as well as the selectivity in
Darwinian evolution.

1.3. Network Topology, Evolution by
Duplication, and Preferential Attachments
Consequently, the topology of gene networks is non-
deterministic and yet not memoryless, since it must encode
layers of ripples produced earlier via the dynamics of gene
duplication (paralogs and orthologs), as amplified during the
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network’s history. Just as physicists infer the theories of origin of
the universe from the cosmic background radiation, we expect to
enrich our understanding of the origin of machinery of life (e.g.,
codon evolution, evolution of multicellularity, evolution of sex
etc.) from a rigorous analysis of the signaling games and their
equilibria, which has rippled through the extant biomolecular
networks. Taking this analogy further, we observe that the ripples
in gravitational waves have been proposed to reflect the existence
of parallel universes, whose presence created asymmetries in the
initial conditions, giving rise to filamentary structures in the
visible universe (Hawking and Hertog, 2018) This comparison is
inspired by the notion of a “protein big bang” from a single (or
handful of) ur-protein(s) in the first complex life forms, evolving
by gene duplication into the extant “protein universe,” hinting
at the information asymmetries fossilized in the GRN and PPI
networks (Dokholyan et al., 2002).

Likewise, we point out that information asymmetry in
macromolecular sender-receiver interactions may point to
evolutionary paths that might have been abandoned unexplored;
which may suggest new engineering approaches needed by
synthetic biology, or in drug discovery, or immuno-therapy.
Note that during the process of evolution of signaling, gene
duplication and deletion contribute to a certain degree of
non-determinism and “conventionality” to the Nash equilibria
that stabilize and manifest as non-trivial anisotropies in gene
network topology.

In summary, the process of gene duplication, tempered
by signal and action genesis can be thought of as a driver
of preferential attachment in shaping the topology of gene
networks, in which information asymmetry between senders
and receivers is expected to play an indelible role. Figure 1
illustrates a basic mechanism whereby signal genesis may
lead to preferential attachment during the growth of a PPI
network. Topological features expected to hint at this process
include: (i) the degree distribution, (ii) hierarchicity, (iii)
assortativity and many others; they require powerful statistical
and algebraic tools—covered in the later sections, where it is
assumed that genome evolution is a complex process involving
diverse groups of mutations such as insertions, deletions,
conversions, duplications, transpositions, translocations, and
recombinations, and that it is further affected by selective
constraints and effective population size and other factors
such as the environment. With recent understanding of large
scale cellular networks (regulatory, metabolic, protein-protein
interactions) one must now aim at investigation between the
evolutionary rates of a gene mutations and its effects on the
network topology using mathematical models and analytics
(see Wagner, 1994). For instance, combining sequence analysis
in a single genome and its close relatives, one can infer the
rate and tempo of the evolutionary dynamics acting on the
genome, and the resulting effects on the network’s algebraic
structures. We provide an example of how evolution by
duplication leads to a preferential attachment mode of gene
network growth in Figure 2, using the duplication of the
p53 gene, and its paralogs p63 and p73—all transcription
factors regulating pathways involved in related phenotypes
of somatic or developmental surveillance and interacting

with similar family of genes (e.g., MDM2 or MDMX), as
illustration1.

Note that these abstract models generate refutable
hypotheses that need experimental verification and support
from mechanistic explanations. However, unfortunately, the
biochemical processes involved in the hypothesized preferential
attachment dynamics are not fully understood. For example, the
duplication processes are often driven by Non-Homologous End
Joining (NHEJ), a pathway that repairs double-strand breaks in
DNA. To guide repair, NHEJ typically uses short homologous
DNA sequences called microhomologies, which are often present
in single-stranded overhangs on the ends of double-strand
breaks (Chang et al., 2017). When the overhangs are perfectly
compatible, NHEJ usually repairs the break accurately. However,
imprecise repair can lead to inappropriate NHEJ resulting
in translocations, duplications, and rearrangements (Rodgers
and McVey, 2016), which add to variational processes that are
random but not memoryless. Perhaps some of such hypotheses
may need to be carefully examined using cancer genome data
such as The Cancer Genome Atlas (TCGA), andmodels of tumor
progression. This analysis may also explain efficacy of certain
therapeutic interventions in cancer as well as their failures via
drug and immuno resistance.

2. NETWORK ANALYSIS

In this section, in order to address the potential impact of
information asymmetry on network evolution, it is first necessary
to discuss fundamentals of graphs (in particular directed and
weighted graphs), a mathematical formalism used in the study
of biomolecular networks, as well as other related important
topics. Consider a set of entities, denoted V and a set of
binary relations between the entities E ⊆ V × V . When V
denotes biomolecules and E denotes interactions between them
(e.g., regulations, proximity, synteny, etc.), the resulting graph
represents a biomolecular network. One important advantage of
graphs is that they have an intuitive graphical representation.
Such networks evolve over time with additions and deletions
to the sets V and E. In order to create a bridge to algebraic
approaches, we extend the standard combinatorial definition by
endowing it with additional maps.

Formally, a graph is a pair of sets G = (V ,E) where V are
the vertices (nodes, points) and E ⊆ V × V are the edges (arcs),
respectively. When E is a set of unordered pair of vertices the
graph is said to be undirected or simple. In a directed graph
(which could result from information asymmetry, for example)
G = (V ,E, o, t), E consists of an ordered set of vertex pairs,
i.e., for each edge e ∈ E, e → (o (e) , t (e)) where o (e) is called
the origin of the edge e and t (e) is called the terminus of the
edge e (Serre, 1980; Biggs, 1993). A graph is weighted if there is a
map (weighting function, w :E → R+) assigning to each edge a
positive real-valued weight. Weighting can represent the strength
of a signal in a sender-receiver interaction, for example.

1A mutation in MDM affects all p53, p63, and p73 allowing utility tradeoffs

between fecundity (through decreased embryonic lethality) and cancer risks

(through reduced somatic surveillance) in a population.
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FIGURE 2 | Gene duplication of p53, p63, and p73 as a signaling game, and GRN growth. An illustrative example of a signaling games view of network growth is

provided by the paralogs p53, p63, and p73, which code for transcription factors, p53 being of critical importance in many cancers (Joerger and Fersht, 2006). Here,

p53 and the common ancestor of p63/p73 duplicated (2), followed by the duplication and divergence of p63 and p73 (Lu et al., 2009; Belyi et al., 2010) (3). The signal

is the DNA binding site, while the receivers are the p53, p63, and p73 proteins (here the sender is the protein coding gene downstream of the DNA binding site). The

receiver protein undergoes an action upon binding to the DNA binding site (the signal), which consists of the recruitment of additional transcription factors, and

contribution to the assembly of the transcription initiation complex (Nogales et al., 2017). The gene products of p53, p63, and p73 mostly bind to the same DNA

binding sites (Smeenk et al., 2008), thus each signal (and ultimately sender gene) has acquired two new binding partners, in addition to the original interaction with the

gene product of the common ancestor of p53/p63/p73. This is a form of preferential attachment, which should influence network topology as the number of genes

increase by duplication, as illustrated to the right of the figure. The signaling games perspective allows us to better understand scenarios where there is a conflict of

interest between the genome, and a selfish entity such as a selfish element, a cancer or a virus. When there is a conflict of interest, a deceptive signal is expected to

be emitted by the sender (Crawford and Sobel, 1982) (the selfish entity). Here, the DNA binding site of the selfish entity will mimic that of canonical DNA binding sites

associated with normal cellular function, “tricking” a transcription factor to bind to it, and altering the transcription of the sender gene (or alternatively abolishing

transcription factor binding). Examples include cis-regulatory mutations in cancer (Poulos et al., 2015).

If G = (V ,E, ·, ·) and G′ = (V ′,E′, ·, ·) are two graphs such
that V ′ ⊆ V and E′ ⊆ E ∩ (V ′ × V ′), then G′ ⊆ G, G′ is a
subgraph of G. If E′ = E ∩ (V ′ × V ′) (E′ contains every edge in
e ∈ E with o(e), t(e) ∈ V ′) then G′ is an induced subgraph of G. G′

and G are isomorphic (G′ ≡ G) if there is a bijection f :V ′ → V
with (u, v) ∈ E′ ⇐⇒ (f (u), f (v)) ∈ E, ∀u, v ∈ V ′.

2.1. Topological Properties
A network’s properties are governed by its topology, such as the
degree distribution, clustering coefficients, motifs, assortativity,
etc. Comprehensive treatments for general networks can
be found in Thulasiraman et al. (2015) and Loscalzo and
Barabási (2016), and for more in-depth treatment regarding
biomedical networks in Loscalzo et al. (2017). Here we discuss
these properties in the context of biomolecuar networks,
more specifically with respect to information asymmetry.
The Supplementary Material contains a more complex
combinatorial and algebraic graph theoretic approach.

Degree Distribution
The degree of a vertex v, deg(v), is the number of edges that
connect the vertex with other vertices. In other words, the degree
is the number of immediate neighbors of a vertex. In directed
graphs the in-degree and out-degree of a vertex can be defined
as the number of incoming and outgoing edges, respectively. Let
nk be the number of vertices of degree k and |V| = N, the total
number of vertices in the graph and |E| = M, the total number
of edges in the graph. Note that

∑

k nk = N and
∑

knk =
∑

v∈V deg(v) = 2|E| = 2M. The degree distribution is the
fraction of vertices of degree k, P(k) = nk/N, and two isomorphic
networks will have the same degree distributions (though not
necessarily the converse). Thus, the degree distributions can tell
a great deal about the structure of a family of networks. For
example, if the degree distribution is singly peaked, following
the Poisson (or its Gaussian approximation) distributions, the
statistical properties of the nodes can be described by the average
degree 〈k〉 =

∑

k kP(k) = 2M/N. The graph is said to be
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sparse, if 〈k〉 = o(logN) (or M = o(N logN)). Biomolecular
networks are usually sparse, which can be fruitfully exploited in
their algorithmic analysis. We can talk of typical nodes of the
networks as being those that have degree distribution as those
within 1 to 2 standard deviations from the average, while, with
probability decreasing exponentially, it is possible to find nodes
with a degree much different from the average. While power-law
degree distributions follow a completely different pattern: they
are fat-tailed; the majority of the nodes have only a few neighbors,
while many nodes have a relatively large number of neighbors.
The highly connected nodes are known as hubs.

Distance Metrics
One of the most fundamental metrics is the distance on a graph.
First we define a walk of length m in a graph G from a vertex
u to v as a finite alternating sequence of vertices and edges
〈v0, e1, v1, e2, . . . , em, vm〉, such that o (ei) = vi−1 and t (ei) = vi,
for 0 < i ≤ m, such that u = v0 and v = vm. Then the number
of edges traversed in the shortest walk joining u to v is called the
distance inG between u and v denoted by d(u, v). If there is a walk
from u to itself, then we say that the set of vertices (respectively
edges) form a cycle. The smallest number of m edges in a walk
from u to itself is called a cycle of lengthm. The girth g(G), is the
shortest cycle in G. A walk whose vertices are distinct is called a
(simple) path.

The concept of a walk allows us to define other properties
of the graph. A graph G = (V ,E, o, e) is said to be connected,
if any two vertices are the extremities of at least one walk.
The maximally connected subgraphs are called the connected
components of G. A giant component is a connected component
containing a significant fraction of the nodes. The maximum
value of the distance function in a connected graph is called the
diameter of the graph. Frequently real life networks have a small
diameter and are said to exhibit the small world phenomenon.
For many biomolecular networks the average distance between
two nodes depends logarithmically on the number of vertices in
the graph.

Additionally, a complete graph G is the undirected graph, in
which each vertex is a neighbor of all other vertices; deg(v) =

N − 1, ∀v ∈ V ; or equivalently, each distinct pair of vertices
are connected (or are adjacent) by a unique edge. G is then
denoted as KN . A clique in an undirected graph is a subset of
vertices such that its induced subgraph is complete. Additional
combinatorial invariants of graphs useful in the analysis
of networks can be defined (see Supplementary Material

for details).

Expanding Constants
Let G = (V ,E, ·, ·) be an undirected graph. Then for all F ⊂ V ,
the boundary ∂F is the set of edges connecting F to V \ F. The
expanding constant, or isoperimetric constant of X is defined as,

h(X) = min
∅6=F⊂V

|∂F|

min{|F|, |V \ F|}
.

For a biomolecular network, then, the invariant h(X) measures
the quality of the network with respect to the flow of information
within it, (e.g., via chemical reactions, or signaling). A larger
h(X) implies better expansion, faster mixing, faster partitioning,

and many other related properties that may give the network a
selective advantage.

Using various combinatorial algorithms devised for the study
and analysis of biomolecular networks, one may compute h(X) to
determine their complexity. However, a precise characterization
of h(X) itself is an intractable (i.e., NP-complete) problem.
Isoperimetric inequalities give bounds on h(X) in terms of
a related algebraic invariant, γ (X) – called its spectral gap,
determination of which has complexity O(|V|)c, where c is at
most 3; furthermore, c = 1 for many sparse graphs. We
give isoperimetric bounds and results applicable to biomolecular
networks in the Supplementary Material, where we also
introduce a local Cheeger constant. We also introduce algebraic
invariants in section 2.2.

Clustering and Clustering Coefficients
Biomolecular networks are modular, forming communities and
hierarchies, likely to have been sculpted by EBD (Evolution by
Duplication). To study these local structures in network science,
one may perform community analysis, which aims to identify
a group of nodes that have a higher probability of connecting
to each other than to nodes from other communities [see for
example (Pellegrini, 2019)]. These can be explained by our
game theoretic formalism, and local Nash equilibria (see Massey
and Mishra, 2018). Various notions such as k-cliques, k-clubs,
and k-clans have been developed to detect communities, but
they are ultimately closely connected to the problem of finding
cliques and consequently, do not generally lend themselves to
any reasonable algorithm other than brute-force enumeration.
However, even detecting communities approximately may
prove valuable for general evolutionary studies, since these

FIGURE 3 | Topological alignment of networks. Similar biomolecular networks

could be topologically aligned and compared in order to express an

evolutionary distance, which may then augment the traditional approaches of

phylogenetic study. In order to account for the evolution by gene duplications,

genes (or gene families) are to be identified and connected to their roles in

biochemical pathways. Such an approach would lead to a program to

understand the critical role of information asymmetries in driving evolution.

Network alignment, a core problem in this program, is computationally

intractable. To sharpen our intuition, we illustrate the problem using the social

networks of the Gospels of Matthew and Luke. These networks represent

social interactions between characters in the gospels of Matthew (A) and Luke

(B). These were chosen as a basic test for topological alignment procedures,

given that they share a similar number of nodes, and the highly connected

node of Jesus. A straightforward test for the efficacy of a topological alignment

algorithm therefore constitutes aligning both networks and verifying that the

Jesus node from both networks is matched. Edge lists for the two social

networks may be found in the Supplementary Materials.
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FIGURE 4 | Interactome networks used in the study of diseases. Undesirable

interactions within a biomolecular network result in various disease states.

Disease neighborhoods within the interactome can then be mapped to

understand the progression of the disease [details can be found in Loscalzo

et al. (2017)]. The progression of cancer has been studied using analysis of

functionalization of oncogenes and dysfunctionalization of tumor suppressor

genes via copy number fluctuations, but much more can be learned from the

topological features of these genes in their interaction neighborhood. This

illustration is from Figure 2.3 (A–D) of Menche and Barabási (2017). (A) Global

map of the interactome, illustrating its heterogeneity. Node sizes are

proportional to their degree, that is, the number of links each node has to

other nodes. (B) Basic characteristics of the interactome. (C) Distribution of

the shortest paths within the interactome. The average shortest path is

〈d〉 = 3.6. (D) The degree distribution of the interactome is approximately

scale-free (reproduced with permission from the publisher and authors of

Menche and Barabási, 2017).

biomolecular network communities determine how specific
biological functions are encoded in cellular networks—and are
thus subjected to Darwinian selective pressure, since these players
are likely to have formed communities in the first place to
carry out specific cellular functions (see Hartwell et al., 1999),
maximizing the utility of the cell. Figure 4 highlights significant
evidence that communities play an important role in human
disease networks (see Loscalzo et al., 2017).

Usually a simpler approach is commonly employed and
deals with the problem of clustering in a graph, which seeks
to partition the graph into disjoint subgraphs such that nodes
in each such subgraph are “closer” to the other nodes in
the same subgraph, while they are “farther” from the nodes
of other subgraphs. Hierarchical clustering algorithms have
been developed to uncover communities (approximately) in
polynomial time and depend upon the similarity matrix (xij),
where the entry xij equals the distance between node i and node
j. Among the classical algorithms are included those by Girvan
and Newman (2002). Other related algorithms include those for
random-walk betweenness and network centrality.

The local clustering coefficient captures the degree to which
the neighbors of a given node link to each other. In general, for
undirected graphs, the local clustering coefficient Ci of node iwith
degree ki is defined as

Ci : =
Li

ki(ki − 1)/2

where the numerator Li is the actual number of connections
between ki immediate neighbors of i, and the denominator is the
number of connections if the neighbors formed a complete graph
(i.e. a clique). Note that an undirected complete graph Kki of ki
nodes has ki(ki−1)/2 edges. Thus, a fully clustered node will have
Ci = 1 and for completely isolated node Ci = 0. We can define
the (average) clustering coefficient of the whole network with N
nodes as

〈C〉 =
1

N

∑

Ci.

The clustering coefficients can be used to characterize a network’s
modularity, as discussed later (in section 3) in detail. For
weighted graphs and directed graphs (as in the context of
information asymmetry), a similar formalism is discussed in the
Supplementary Material.

Subgraphs and Motifs
Biomolecular networks have been found to contain network
motifs, representing elementary interaction patterns between
small subgraphs that occur substantially more often than as
predicted by a completely random network of similar size
and connectivity. The presence of such motifs is usually
explained by an evolutionary process that can quickly create
(usually by a variation involving duplication) or eliminate
(usually by a selection process that favors pseudogenization and
complementation) regulatory interactions in a fast evolutionary
time scale—relative to the rate at which individual genes mutate.
It is usually hypothesized that the underlying evolutionary
processes are convergent. Thus efficient algorithms to detect such
motifs are important in the analysis of biomolecular networks.
These algorithms focus on estimating howmuchmore frequently
a subgraph isomorphic to a motif graph (with n vertices and m
edges) occurs relative to what would be expected by pure chance.

The number Nmn of subgraphs with n nodes and m
interactions expected of a network of N nodes can be estimated
from the two key topological parameters of a complex network—
namely the power-law exponent β and the hierarchical exponent
α as we discuss in Equations (1 and 2) below. In general the
subgraph motifs can be classified in two types: Type I motifs
are those where (m − n + 1)α − (n − β) < 0, and type II
subgraph motifs are those that satisfy the reverse inequality. One
can determine their numbers NI and NII approximately as a
function of (m−n+1)α−(n−β) and nmax, the degree of themost
connected node in the network. One can show that NI >> NII .
One can also show that the relative number of Type II subgraphs
is vanishingly small compared to Type I.

2.2. Algebraic Invariants and Spectrum
The intuitive pictorial/combinatorial representation of graphs
is an extremely useful aid to their understanding. However,
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computing the topological properties of graphs combinatorially
is computationally challenging especially when the size of
the graph becomes large. As noted earlier, indeed, most
combinatorial algorithms on biomolecular networks such as on
PPI networks and GRNs are computationally complex problems
(most of them fall in the NP-complete complexity class) (Karp,
2011). Therefore, in order to carry out any quantitative and
computational analysis, graphs are better represented as algebraic
objects. This representation allows us to use linear algebra and
mathematical analysis techniques. The key to this representation
is the adjacency matrix A(G). It is defined as {0, 1}n×n matrix in
which,Aij = 1 if the vertices i and j are connected [∃e ∈ E, o(e) =
i, t(e) = j] and 0 otherwise. The matrix is symmetric if the
graph is undirected. For weighted graphs we can assign weights
wij for existing edges. Networks that incorporate information
asymmetry are directed, and the analysis becomes more complex.
We refer to the Supplementary Material for this treatment.

Algebraic properties provide us with tools to deduce various
properties of the biomolecular networks. In particular, the
spectral representation of the graph is of importance for a
number of applications such as graph classification, diffusion,
expansion and mixing (see the Supplementary Material). We
can think of the adjacency matrix A as operating on the space
V = Cn of complex n-tuples written as column vectors x,y as
follows Ax → y. It can be shown that there are directions left
invariant in this space. That is to say, Axi = λixi where λi are
the eigenvalues and corresponding xi the eigenvectors (spanning
invariant directions) of the adjacency matrix for 1 ≤ i ≤ n.
The spectrum of the graph G is defined as the collection of
eigenvalues of the adjacency matrix Spec(G) = Spec(A) =

λ1, .., λn. Naturally, if A is a real symmetric matrix, then the
eigenvalues of A are real.

In particular, one algebraic invariant of the graph is the
spectral gap γ (G). It can be shown that the spectral gap
gives excellent bounds on a combinatorial invariant, the
Cheeger constant h(G). Since information asymmetry leads
to directed, weighted graphs, some of which are bipartite
networks, we discuss these deeper algebraic analytics in the
Supplementary Material.

3. NETWORK EVOLUTION

Starting with the seminal work of Erdös and Rényi (1959),
a number of mathematical frameworks have been developed
to model the “evolution” of graphs, covering the family
of biomolecular networks. These frameworks may prove
useful in explaining why most biological networks have
certain non-obvious properties: namely, (i) The small world
property; (ii) High clustering coefficients (varying with
degree distribution); (iii) Emergence of “hubs.” Such network
models are ultimately expected to capture various observed
properties of biomolecular networks, and the evolutionary
trajectories leading up to them. The novel factor of information
asymmetry, modeling genes as players, may also be incorporated,
using the basic principles outlined in the Introduction,
and Figures 1, 2.

3.1. Random Network Models
Erdös and Rényi Model
The Erdös and Rényi model of random graphs [ER-graphs,
denoted G(n, p)] is characterized by two parameters, the number
of vertices in the networkN and the fixed probability of choosing
edges p (Erdös and Rényi, 1959). The graph G is generated by
choosing N vertices and connecting each pair of vertices with
probability p. The model yields a network with approximately
p
(N
2

)

= O(pN2) randomly distributed edges. The probability
of choosing a specified graph G with N vertices and e edges is
therefore

(M
e

)

pe(1 − p)M−e, where M =
(N
2

)

= the maximum
number of possible edges connecting N vertices.

It can be shown that in such random graphs the average vertex
degree is 〈k〉 = p(N − 1) = O(pN). The diameter of such a
graph is d = lnN/ ln〈k〉 ≈ lnN/(lnN − ln(1/p)) which is small
compared to the graph size. Thus, random graphs exhibit “the
small world property.” The degree distribution for ER graphs is a

binomial distribution P[deg(u) = k] =
((N−1)

k

)

pk(1 − p)N−k−1,
which for large N (relative to 1/p: where N = λ/p) converges to

the Poisson distribution P[deg(u) = k] = e−λ λk

k!
. Then the local

clustering coefficient is Ci = p is independent of the degree of
the node and the average clustering coefficient C = p/N scales
with the network size. Therefore, the standard ER randommodel
seems not to capture either the properties of degree distribution
or the clustering coefficient of biomolecular networks.

Typically, an ER random graph model is used as a “null
model” for the evolutionary process. However, while deviations
from randomness are frequently used as evidence for the
direct action of natural selection, often non-randomness may
reflect neutrally generated (non-adaptive) emergent phenomena
(Massey, 2015). We emphasize here that many topological
features of biomolecular networks are unlikely to be directly
selected for, but instead are a side-product of network growth,
and decay, captured by the dynamics of edge and node addition
and removal.

Small World Model
Biomolecular networks have features that are not captured by the
Erdös and Rényi random graph model. As we have seen, random
graphs have a low clustering coefficient and they do not account
for the formation of hubs. To rectify some of these shortcomings,
the small world model or popularly known as the six degree of
separation model was introduced as the next level of complexity
for a probabilistic model with features that are closer to real
world networks (Watts and Strogatz, 1998; Watts, 1999). The
evolution and dynamics of such networks have been discussed
in detail (Watts, 2003), in particular in the diseases propagation
literature (Dodds and Watts, 2005).

In this model, the graph G of N nodes is constructed as a ring
lattice, in which, (i) first, wire: that is, connect every node to K/2
neighbors on each side and (ii) second, rewire: that is, for every
edge connecting a particular node, with probability p reconnect
it to a randomly selected node.

The average number of such edges is pNK/2. The first
step of the algorithm produces local clustering, while the
second dramatically reduces the distance in the network. Unlike
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random graphs, the clustering coefficient of this network
C = 3(K − 2)/4(K − 1) is independent of the system size. Thus,
the small world network model displays the small world property
and the clustering of real networks, however, it does not
capture the emergence of hubby nodes (e.g., p53 in biomolecular
networks)(part of one of the eight open problems that we
formulate in section 4).

3.2. Scale-Free Network Models
Most biomolecular networks are hypothesized to have a degree
distribution, described as scale-free. In a scale free network the
number of nodes nk of degree k is proportional to a power of
the degree, namely, the degree distribution of the nodes follows a
power-law

nk = k−β , (1)

where β > 1 is a coefficient characteristic of the network
(Barabási and Albert, 1999). Unlike in random networks, where
the degree of all nodes is centered around a single value – with
the probability of finding nodes with much larger (or smaller)
degree decaying exponentially, in scale-free networks there are
nodes of large degree with relatively higher probability (fat tail).
In other words, since the power low distribution decreases much
more slowly than exponential, for large k (heavy or fat tails),
scale-free networks support nodes with extremely high number
of connections called “hubs.” Power law distribution has been
observed inmany large networks, such as the Internet, phone-call
maps, collaboration networks, etc. (Képès, 2007; Barabási, 2009;
Loscalzo and Barabási, 2016). A caveat to these reports is that
inappropriate statistical techniques have often been used to infer
power law distributions, and alternative heavy tailed distributions
may fit the data better (Clauset et al., 2009). However, the
power law is a useful approximation that allows mechanisms of
network growth to be explored, such as preferential attachment,
discussed next, while the examination of alternative heavy tailed
distributions is set as an Open Problem.

Preferential Attachment
The original model of preferential attachment was proposed by
Barabási and Albert (1999). The scheme consists of a local growth
rule that leads to a global consequence, namely a power law
distribution. The network grows through the addition of new
nodes linking to nodes already present in the system. There is
higher probability to preferentially link to a node with a large
number of connections. Thus, this rule gives more preferences
to those vertices that have larger degrees. For this reason it is
often referred to as the “rich-get-richer” or “Matthew” effect.
This can be formulated as a game theoretic problem originating
from information asymmetry and associated Nash equilibrium,
discussed in the Open Problems.

With an initial graph G0 and a fixed probability parameter p,
the preferential attachment random graph model G(p,G0) can
be described as follows: at each step the graph Gt is formed by
modifying the earlier graph Gt−1 in two steps – with probability
p take a vertex-step; otherwise, take an edge-step:

(i) Vertex step: Add a new vertex v and an edge {u, v} from v to
u by randomly and independently choosing u proportional its
degree;

(ii) Edge step: Add a new edge {r, s} by independently choosing
vertices r and s with probability proportional to their degrees.

That is, at each step, we add a vertex with probability p, while
for sure, we add an additional edge. If we denote by nt and et the
number of vertices and edges respectively at step t, then et = t+1
and nt = 1 +

∑t
i=1 zi, where zi’s are Bernoulli random variables

with probability of success = p. Hence the expected value of
nodes is 〈nt〉 = 1+ pt.

It can be shown that exponentially (as t asymptotically
approaches infinity) this process leads to a scale-free network.
The degree distribution of G(p) satisfies a power law with the
parameter for exponent being β = 2 +

p
2−p . Scale-free networks

also exhibit hierarchicity. The local clustering coefficient is
proportional to a power of the node degree

C(k) ≈ k−α (2)

where α is called the hierarchy coefficient.
This distribution implies that the low-degree nodes belong to

very dense sub-graphs and those sub-graphs are connected to
each other through hubs. In other words, it means that the level
of clustering is much larger than that in random networks.

Consequently, many of the network properties in a scale-
free network are determined by local structures—namely, by
a relatively small number of highly connected nodes (hubs).
A consequence of this structure of the scale-free network is
its extreme robustness to failure, a property also displayed
by biomolecular networks and their modular structures. Such
networks are highly tolerant of random failures (perturbations);
however, they remain extremely sensitive to targeted attacks.

Assortativity Network Model
Assortative mixing refers to the property exhibited by a preference
of nodes to attach to similar (respectively, dissimilar) nodes;
for example, high-degree vertices exhibit preference to attach
to high-degree (resp. low-degree) vertices. Network models,
discussed earlier and including the preferential attachment
model, do not capture such important properties exhibited
by real biomolecular networks (Girvan and Newman, 2002).
Assortativity can be measured by the Pearson correlation
coefficient r of degrees of linked nodes (Girvan and Newman,
2002). A positive correlation means connections between nodes
of similar degree (assortativity) and a negative correlation
means connections between nodes with different degree
(disassortativity). Unlike technological networks and social
networks (that show assortative mixing), biological networks
appear to evolve in a disassortative manner.

GRNs are represented by directed graphs, and all biomolecular
networks may be represented as directed graphs when the
factor of information asymmetry is introduced (Figures 1, 2).
Assortative mixing can be generalized to directed biological
graphs (Piraveenan et al., 2012). For directed networks two
new measures, in-assortativity and the out-assortativity , can
be defined measuring the correlation between the in-degree
rin and out-degree rout of the nodes respectively. Biological
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networks, which have been previously classified as disassortative,
have been shown to be assortative with respect to these
new measures. Also it has been shown that in directed
biological networks, out-degree mixing patterns contain the
highest amount of Shannon information, suggesting that
nodes with high local out-assortativity (regulators) dominate
the connectivity of the network (Piraveenan et al., 2012).
The occurrence of assortativity in social networks has been
attributed to a process of homophily [that is people tend to
associate with others on the basis of ethnicity, religion, sports
preferences etc. (McPherson et al., 2001; Newman, 2003a)].
The mechanisms that give rise to assortativity in biomolecular
networks likely arises by a similar proximate mechanism of like
nodes forming edges with like nodes, but the ultimate cause(s)
remain unclear.

Duplication Model
Our earlier discussions suggest that biomolecular networks
exhibit power-law degree distribution. However, unlike other
complex networks, such as the Internet, the growth exponent of
biomolecular networks typically falls into a lower range 1 < β <

2, as opposed to β ≥ 2. This difference has been suggested to
have resulted from evolution by gene duplication dominating the
evolutionary mechanism (Chung et al., 2003). We have already
discussed the duplication phenomenon based on information
asymmetry in GRNs in section 1. Various biomolecular networks
have been studied using a partial duplication process, which
proceeds in the following manner: Let the initial graph G0 have
N0 vertices. In each step, Gt is constructed from its previous
graph Gt−1 as follows: A random vertex u is selected. Then a
new vertex v is added in such a way that for each neighbor w of
u, a new edge (u,w) is added with probability p. The process is
then applied repeatedly. The full duplication model is simply the
partial model with p = 1.

It has been shown that as the number N of vertices becomes
infinitely large (as is the case for most biomolecular networks),
the partial duplication model with selection probability p
generates power-law graphs with the exponent satisfying the
transcendental equation (Chung et al., 2003)

p(β − 1) = 1− pβ−1,

whose solution determines the scale-free exponent β as
a function of p. In particular, if 1/2 < p < 1
then β < 2.

For illustrative purposes, we describe below an abstract gene
network growth model incorporating the processes of gene
duplication and deletion, as described above ( Mishra and Zhou,
2004; Zhou, 2005). Using a Markov chain model the following
features were investigated: (i) the origination of the segmental
duplication; (ii) the effect of the duplication on the genome
structure; and (iii) the role of duplication and deletion process
in the genomic evolutionary distance. Unlike standard models of
stationary Markov chain models, most processes in evolutionary
biology belong to the group of non-stationary Markov processes,
in which the transition matrix changes over time, or depends
upon the current state.

This model results in the neutral emergence of scale-
free degree distributions. It shows that the genomes of

different organisms exhibit different network properties, likely
reflecting differences in the rates of gene duplication and
deletion (Mishra and Zhou, 2004). The additional factor of
information asymmetry is likely to affect the nature of gene
duplication in terms of gene identity and rate of duplication,
and may provide additional explanatory power for differences
in network properties. This analysis provides an example of
how network topology can be used to provide insight into
fundamental molecular evolutionary (neutral/Markov) processes
in different species. Note that the model is relatively idealized,
as it does not account for higher order interactions in
a population involving: effective population size and allelic
fixations; sex, diploidy, and sex-chromosomes (e.g., X and
Y in mammals or W and Z in birds, etc.); surveillance
and repair in somatic cells; embryonic lethality; homologous
recombination, etc. The mathematical model explored here is
kept simple to motivate the machinery from graph theory
developed later.

Hierarchical Network Models
Another interesting model, introduced by Ravasz and Barabasi
and dubbed the hierarchical network model, simulates the
characteristics of many real life complex models and may
be relevant. The resulting networks have modularity,
a high degree of clustering, and the scale-free property.
Modularity refers to the network phenomenon where many
sparsely inter-connected dense subgraphs can be identified—
“one can easily identify groups of nodes that are highly
interconnected with each other, but have only a few or no
links to nodes outside of the group to which they belong”
(from Ravasz and Barabási, 2003).

A generative process for a hierarchical network model may be
described as follows: For instance, consider an initial networkH0

of c fully interconnected nodes (e.g., c = 5). As a next step, create
(c − 1) replicas of this cluster H0 and connect the peripheral
nodes of each replica to the central node of the original cluster
to create H1 with c2 (e.g., c2 = 25) nodes. This step can be
repeated recursively and indefinitely, thereby for any k steps the
number of nodes generating the graph Hk with ck+1 nodes. If the
central nodes of H0 is called a hub and other nodes peripheral,
then each recursion replicates additional copies of hubs and
peripheral nodes.

One can carry out a recursive analysis and show that one
obtains a power-law (i.e., scale-free) network with exponent

β = 1 + ln(c)
ln (c−1)

. The local clustering coefficients (for the

hub-nodes) follow C(k) ≈ 2
k
. Also, one can show that

this duplication feature of the evolutionary process leads to
hierarchical behavior of the network. The resulting networks
are expected to be fundamentally modular, in other words, the
network can be seamlessly partitioned into collections ofmodules
where each module performs an identifiable task, separate from
the function(s) of other modules. One can also show that the
average clustering coefficient on N nodes at any given stage is
about C = 0.7419282.. (for c = 4), C = 0.741840 (for c = 5),
and a constant for a fixed c, independent of N (see Ravasz and
Barabási, 2003, and for exact computations Noh, 2003).
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4. OPEN PROBLEMS AND FUTURE
CHALLENGES

The study of biomolecular networks is still a relatively young field
and has thus far focused on a mechanistic perspective. As we
begin to explore biomolecular networks from a more involved
evolutionary view point, we encounter a large array of promising
areas of investigation—most of which focus on how information
asymmetries among the gene players ultimately sculpt the
information flow, as necessary for an organism to navigate in a
complex and fluctuating environment. Molecular evolution has
classically been concerned with the dualism of selection and
neutrality, however here we have highlighted a third important
component, information asymmetry, and suggest a series of
Open Problems that may help to begin to better understand
its impact. The traditional approaches of phylogenetic study
may be applied here, but examining specifically the family of
species-specific biomolecular networks. Thus, mathematically we
would need the networks to be aligned, motifs to be mapped
to each other and network-distances to be correlated to deep
evolutionary time. In order to account for the evolution by
duplications, orthologs and paralogs of a gene (or gene families)
are to be identified and connected to their roles in biochemical
pathways. Ultimately, this analysis could be targeted at extracting
the origin of various information-asymmetric signaling games
and how they are stabilized in their Nash equilibria.

Key questions include whether signaling game characteristics
differ between species. For example, species may differ in
their average sender/receiver ratio, and the average complexity
of signals produced (which may be indicated by protein
size, variability in expression, and degree of post-translational
regulation). Such differences may be linked to organismal
complexity, variability in the environment and multicellularity.
In so doing an overarching picture of how information is
gathered from the environment, and how it is shared and
distributed amongst gene players might be intimated. In
particular, at its core this program requires an explanation
of how features of genome evolution and structure might be
algorithmically inferred from a network science perspective,
as follows.

4.1. Algorithmic Complexity Issues
A key problem central to this program would be in detecting
isomorphism mappings among pairs of graphs or subgraphs, a
problem of infeasible algorithmic complexity (assuming P 6=

NP). We start with a discussion of these issues and cite
heuristics that can tame the problem, albeit computing the
solutions approximately.

Intractability: NP-Completeness
Many combinatorial optimization problems seem impossible
to solve except by brute-force searches evaluating all possible
configurations in the search space. They belong to a complexity
class called NP-complete and include such problems as whether a
graph has a clique of size k. Since finding certain recurrent motifs
in a class of networks shares many computational characteristics
of the clique problem and since it could be central to discovering

important evolutionary signatures (e.g., EBD), it seems unlikely
that it would be possible to characterize the evolutionary
trajectories precisely—especially when the number of genes
involved are in the thousands. See the Supplementary Material

for additional discussions on graph representations and to derive
their algebraic invariants, that provide bounds on complexity of
algorithms possibly leading to excellent approximate results in
the study of sparse complex networks (see Chung, 1997; Chung
and Lu, 2006).

Problem4.AClassify various computational problems involved
in detecting evolutionary trajectories of biomolecular networks and
characterize their algorithmic complexity.

Problem 4.B Explore PTAS (Polynomial Time Approximation
Schemes) for these problems—Especially when the graphs satisfy
certain sparsity, modularity and/or hierarchy properties.

Algebraic Approximation
As described earlier, many interesting topological features
of a graph can be computed efficiently (on both sequential
and parallel computers) from their descriptions in terms of
adjacency matrices. The resulting spectral methods have found
recent applications in complex networks (e.g., communication,
social, Internet) (see Spielman, 1996, 2018; Chung, 1997, 2010;
MacKay, 2003; Spielman and Teng, 2004, 2011, 2013, 2014;
Chung and Lu, 2006). These methods are efficient (linear
time complexity) for sparse graphs, whose number of edges
is roughly of the same order as the number of vertices. Thus,
they are well suited to biomolecular networks (for example for
clustering, community detection, hubs, robustness, assortative
mixing, spreading and mixing, closeness, isomorphism,
among others).

Thus, spectral graph theory may be expected to have
many applications in the analysis of biomolecular networks,
most prominently, in clustering, graph similarity, and graph
approximation, but also in smoothing analysis and sparsification.
One can envisage that many, if not most, classical network
algorithms in biomolecular networks can be made faster by
spectral methods. Indeed, since most biomolecular networks
are sparse—both in terms of sparse connections, and in
precise algebraic sense (see the Supplementary Material), these
algorithms likely lead to linear time algorithms. The smoothing
analysis methods, as well as sparsification approximations are
worth exploring in these contexts.

Another fruitful direction is in parallelizing these algorithms.
As an illustration, in several studies of biomolecular networks
it would be useful to identify when two networks X1 and
X2 are “close.” We may wish to say that two networks are
close if Spec(X1) and Spec(X2) are close—a computational
problem that is polynomially computable (and efficiently
parallelizable) (see Spielman and Teng, 2013). We can now
give a mathematical formulation of this closeness, which
can also be incorporated into phylogenetic studies. These
biomolecular networks may be annotated with weights
that are linear or quadratic approximation of relations, as
common in these studies. These analyses may identify sub-
networks that have been influenced by EBD, in concert
with selection.
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Problem 4.C Classify various algebraic problems involved in
detecting evolutionary trajectories of biomolecular networks and
characterize their ability to approximate. Explore their practical
implementations on sequential and parallel computers.

4.2. Design Principles via Motif Analysis
The study of Systems Biology postulates that there are important
design principles of biological circuits that provide a great deal
of insight. The connections of gene and protein interaction
networks are assumed to provide the necessary robustness and
control to achieve cellular function in the face of chemical
noise. However, it remains unclear how random variations alone
provide such robustness. A possible explanation may come
from a game-theoretic model that leads to stable equilibria
and is expected to have precipitated from duplication of
genes, interactions, and motifs. In addition, in principle,
the dynamics of biomolecular sender-receiver signaling games
should be reflected in network topologies, and so give rise to
particular motifs. While the specific types of motifs expected
to be observed remains to be developed further, some general
principles can be identified. As discussed in section 1, the
dynamics of signal genesis are driven by gene duplication,
which affects overall network topology, in terms of the degree
distribution. However, subgraphs consist of groups of senders
and receivers, which likely have a related role in the cell,
this may be tested by approaches outlined by Dotan-Cohen
et al. (2009). The topology of these subgraphs contain localized
motifs, which again reflect the addition and deletion of sender
and receiver genes. The impact of information asymmetry is
expected to lie in the Nash equilibria and associated utilities
of sender-receiver interactions, which should be an influence
on whether a new biomolecular interaction is established,
or not.

Machine Learning
The biomolecular networks of interest are derived from highly
noisy data e.g., CHIP-Chip, CHIP-Seq (for GRN), or co-
localization or two-hybrid (for PPI) and consequently, the
inferred edges of the network may miss certain genuine
interactions or include several spurious interactions. Various
machine learning algorithms (with false discovery rates, control,
and regularization techniques) have been devised in order to
improve the accuracy of such models. Biomolecular networks
from related species (with ortholog and paralog analysis) are
often combined to improve the accuracies and cross-validate
results. The accuracies may be further ascertained via various
local properties.

One important local property of networks is determined by
so-called network motifs, which are defined as recurrent and
statistically significant sub-graphs or patterns. Thus, network
motifs are sub-graphs that repeat themselves in a specific network
or even among various networks. Each of these sub-graphs,
defined by a particular pattern of interactions between vertices,
may reflect a framework in which particular functions are
achieved efficiently. Indeed, motifs are of notable importance
largely because they may reflect functional properties. They
have recently gathered much attention as a useful concept

to uncover structural design principles of complex networks.
Although network motifs may provide a deep insight into the
network’s functional abilities, their detection is computationally
challenging. Thus an important challenge for both experimental
and computational scientists would be to study the evolutionary
dynamics starting with the experimental data ab initio, as well as
in improving the accuracy and efficiency of both the experimental
and algorithmic techniques simultaneously.

Problem 4.D Classify the species distributions of the different
forms of heavy tailed distributions (e.g., power law, exponential,
power law with exponential decay, lognormal), in different types
of biomolecular network, and infer the mechanistic causes during
network growth, and ultimate molecular evolutionary origins.

Problem 4.E Characterize the motifs in the biomolecular
networks of closely related species starting with the noisy
experimental data. Explain the structure of the motifs via their
effect on the information flow. For instance, one may focus on DOR
(Dense Overlapping Regulons) motifs and how they might have
evolved from a simpler ancestral regulon (Alon, 2006).

Problem 4.F Study Subgraph Isomorphism Algorithms (and
heuristics) for sparse graphs and identify special cases most suitable
for studying evolutionary trajectories, while relating them to
biomolecular design principles.

Network Alignment
Critical to the evolutionary studies, described above, is the topic
of network alignment and subsequent network tree building,
which may be used for the comparative approach, between
species-specific networks. Networks may be aligned in a pairwise
fashion to calculate similarity, and from this a distance matrix
is calculated, and used for the construction of a network
tree, showing the relationships between multiple networks.
For example, in the case of meta-metabolic networks, such
studies will reveal relationships between the meta-metabolic
networks of different microhabitats. A plausible prediction
is that the network tree should show convergent evolution
in microbial communities from microhabitats with similar
conditions (e.g., anaerobic habitats). Thus this approach could
lead to a tool to study convergent evolution of microbial
community structure in similar habitats (Goldford et al., 2018).
The signaling games perspective promises a more complete
view of the cooperation, and conflict, that is present in all
microbial communities, and is expected to be reflected in the
structure of meta-metabolic networks. In particular, cooperation
will be indicated by honest signals, whereas conflict by the
occurrence of deceptive signals, which are expected to include
molecular mimics.

From an algorithmic point of view, onemay employ any of the
three types of network alignment approaches:

1. where node identity is known;
2. where node similarity can be determined (based on sequence

similarity for example); and
3. where node identity is unknown, here only network topology

is used for alignment.

The first is a straightforward edge alignment. However, a
refined expression is required that incorporates similarities
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in edge widths in addition to the basic edge alignment
(presence/absence of common edges between networks). Most
effort in bioinformatics has gone into the second type network
alignment, where there is partial information regarding node
identity (for example Kalaev et al., 2005; Pinter et al., 2005). There
do exist some first generation heuristics that utilize the third type
of alignment approach (only topology) (Kuchaiev and Przulj,
2011), but the underlying graph isomorphism problem is known
to be #P-complete. But these heuristics, as would be expected, do
not work well—a straightforward test for this problem is applying
them to align the social networks of the Gospels of Luke and
Matthew (Figure 3)—the Jesus node should always align, as it is
rather obvious topologically; but often leads to failure.

Problem 4.G Classify and characterize the graph alignment
algorithms.

4.3. Somatic Evolution and Cancer
Network analysis is used in disease studies, but there have been
more focused studies with applications to disease processes in
cancer. In Figure 4 we show part of an interactome network
useful in deciphering aberrant interactions in diseases (Figure
2.3 from Loscalzo et al., 2017). Cancer is a complex disease,
but governed by somatic genomic evolution, as propelled by
mutation. Thus as a consequence, GRNs may be used to
better understand cancer susceptibility, map its progression,
design better tailored therapies, and better understand the
evolution of endogenous anti-cancer strategies. Cancer genes
are often network hubs (Karimzadeh et al., 2018), as they are
often involved in critical developmental pathways. But a better
network analysis will shed light on many natural questions:
Why is it so? How does this come about from the process of
network growth over evolutionary time? What clues do they
provide to understand the somatic evolution in cancer and
its progression?

During cancer progression, the disease reduces a cell’s healthy
genome into an aberrant mutant, where cancer eventually
leads to metastasis, ultimately resulting in death of the patient.
The healthy cells in the patient may be thought to possess
a normal network, that is a gene network that engenders
health and well-being. Cancer progression is reflected by a
dynamic change of the normal network into an aberrant network.
The aberrant network manifests itself by tumorigenesis, and
finally metastasis. There is a substantial literature enumerating
the identity of oncogenes and tumor suppressor genes, which
aberrantly gain function (e.g., amplification of copy number)
or lose function (e.g., deletion in copy number, hemi- or
homo-zygously), respectively. They modify the cell biology of
cancer progression, effected via the dynamics of GRN and
PPI networks in cancer progression—all remain to be fully
characterized.

Figure 2 shows a simple model for how the evolution
of p53 and its paralogs may affect GRN topology; such
molecular evolutionary information-asymmetric signaling games
approaches may help to better understand the motifs associated
with oncogenes in GRNs. An additional important factor in
cancer is the pervasive occurrence of molecular deception (Bhatia
and Kumar, 2013). From a signaling games perspective, the

use of deception is consistent with cancer’s conflict of interest
with somatic cells. The identity of deceptive macromolecular
signals may be incorporated into the network, potentially
shedding a novel light on the mechanism of carcinogenesis.
The genesis of deceptive signals therefore is expected to
impact and drive carcinogenesis, with the level of deception
increasing as the cancer progresses, and as its conflict with
the soma intensifies. Of interest is the question whether
there is an identifiable phase transition in network topology
associated with metastasis. Taming this deception should
therefore constitute a key counter-strategy in combating cancer,
and is currently represented by the use of immunotherapy
approaches (Zhang and Chen, 2018), although the game
theoretical underpinning of these techniques has not been
appreciated.

An additional factor to understanding this biology are copy
number variants (CNVs)—types of gene mutations where a
number of large sections of genomic DNA may be duplicated
(or deleted), resulting in dosage effects of the resident gene
sequences, which are exactly duplicated (or deleted). The
numbers of CNVs can commonly vary substantially within a
population, and have been shown to have significant roles in the
propensity to develop cancer (Krepischi et al., 2012). An increase
in the number of CNVs would have the effect of enhancing
the weight of an edge, which represents the interaction of the
CNV gene product with its macromolecular binding partner.
Such a network variant represents an increased disposition
to develop cancer, and can be understood as occupying a
position in “network space” (the space of all possible network
topologies) in greater proximity to an aberrant network, than a
normal network.

Problem 4.H Study Cancer progression models in terms of
GRN’s and identify the role of driver and passenger genes in the
somatically evolving networks, and the number and distribution of
deceptive signals.

4.4. Gene Regulation and 3D Networks
The origin and development of GRNs from a signaling games
perspective is discussed in the Introduction. However, GRNs
typically do not take into account 3D spatial orientation,
and this provides a more complete view of gene regulation.
Recent work has outlined the importance of three-dimensional
proximity of genes to genes on other chromosomes, in addition
to their immediate neighborhood on their own chromosome
(Li et al., 2018). This effect implies that gene proximity and
spatial relationships within the nucleus can be meaningfully
represented as a network. Such a network would be comprised of
two types of edge: (1) linear distance on the same chromosome
(centimorgans), (2) physical distance with genes on other
chromosomes (nanometers). Such networks may be termed “3D
gene orientation networks.”

Gene regulation and co-regulation may be better understood
by the construction and analysis of 3D gene orientation networks.
This is because the proximity of regulatory modules to a
gene has an influence on gene expression. Most genes have a
regulatory region 5′ of the transcription start site, the promoter.
In addition, regulatory enhancers and other regulatory elements
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may be located distant from the gene, generally on the same
chromosome (Gondor and Ohlsson, 2018). It is thought that the
bending and juxtaposition of chromosomes within the nucleus
may bring such elements into physical proximity to the gene
(Gondor and Ohlsson, 2018). Clearly, the physical distance,
and frequency with which the element is brought into contact
with the gene will influence the nature of its regulatory input.
Using 3D gene orientation networks, additional information
may be incorporated into edges, such as whether physical
proximity is static, or has movement. If there is movement,
this may be coordinated (or not) with other regulatory elements
affecting the same gene. Likewise, interactions with regulatory
elements may show some coordination between genes. A
signaling games aspect is incorporated by considering the
regulatory elements as signals, the gene that is regulated as the
sender, and DNA binding proteins that bind to the regulatory
elements as receiver molecules, this scheme is illustrated in
Figure 2.

Problem 4.I Describe the Gene Duplication process and their
signaling game utilities in terms of the genome’s 3D structure.

4.5. Generalization of Genetic Variations
This paper describes an idealized picture: it describes a
canonical gene regulation network and variations affecting the
associated (single) genome, among which gene duplication has
taken a lion’s share of the focus. This picture needs to be
generalized to consider an ensemble of genomes, and variations
to the implied ensemble of genetic networks, which can vary
based on additional intra-genome variations: e.g., horizontal
gene transfer, reverse transcription and recombination, but
also due to effects such as cell-fusion and endosymbiosis
and effect of population sizes (e.g., in allelic fixation, for
instance in sex chromosomes). Mathematically, the implied
models of family of graphs would be significantly complex
and may require theories from large networks and graph
limits to understand the asymptotic properties. We leave
these and associated algorithmic questions as topics of future
research.

Problem 4.J Adding genome duplication and fusion, gene
transfer, gene conversion, endosymbiosis, sexual recombination,
fixation etc. to describe evolution of an ensemble of GRNs.

5. CONCLUSION

Here, we have outlined graph theoretical approaches that
may reveal some novel aspects of the molecular evolutionary
process, incorporating the understudied factor of information
asymmetry, whose effect may become manifest at the level of the
phenome. Further work is required to link the diverse features of
network topology with network evolution and growth. While the
evolutionary aspects shaping individual gene-gene interactions
has been addressed by geneticists and molecular evolutionists,
we believe that a synthesis entailing a multi-disciplinary effort
combining game theory, graph theory, and algebraic/statistical
analysis will provide a more informative omnigenic model of
gene interactions, in contrast to the traditional homogenic view.
Given our view that biomolecular networks may be modeled

using evolutionary game theory, and given that evolutionary
game theoretical approaches have been used in the study of
social networks, we expect that some surprising similarities
and convergences between the topologies of the two might be
observed. Finally, we note that the field of statistics gained
impetus from the consideration of biological problems, from
workers such as Fisher, Haldane, Rao, Wright, Kimura, Crow,
and others, and so we suggest that consideration of the open
problems listed here might also lead to a similar development of
new mathematics.

6. BIBLIOGRAPHIC NOTES

We recommend the following articles for further reading: (Albert
and Barabási, 2002; Barabási et al., 2002, 2003, 2004; Farkas et al.,
2002; Schwartz et al., 2002; Barabási, 2003; Chung and Lu, 2004,
2006; Candia et al., 2008; Goh and Barabási, 2008; Vazquez et al.,
2008; Davis et al., 2010; Song et al., 2010; Liu et al., 2013; Janwa
and Rangachari, 2015). For other important sources (especially
with respect to directed graphs), we refer to Newman and Watts
(1999), Newman (2001, 2003b,c,d, 2004, 2006, 2010), Girvan and
Newman (2002),Meyers et al. (2006),Moore et al. (2006), Clauset
et al. (2009), Karrer and Newman (2010), Newman et al. (2011),
Zhang et al. (2016, 2017). For evolution of networks (see for
example Sharan et al., 2005; Mazurie et al., 2010). For bipartite
networks (Janwa and Lal, 2003; Hø holdt and Janwa, 2012). For
Spectral methods (Cvetković et al., 1980; Lubotzky et al., 1988;
Lubotzky, 1994, 2012; Chung, 1997; Davidoff et al., 2003; Sarnak,
2004; Chung and Lu, 2006; Spielman and Teng, 2011; Janwa and
Rangachari, 2015).
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Barabási, A.-L., Dezső, Z., Ravasz, E., Yook, S.-H., and Oltvai, Z. (2003). “Scale-

free and hierarchical structures in complex networks,” in Modeling of Complex

Systems Vol. 661 of AIP Conference Proceedings (Melville, NY: American

Institute of Physics), 1–16.

Barabási, A.-L., Oltvai, Z. N., and Wuchty, S. (2004). “Characteristics of biological

networks,” in Complex Networks, Vol. 650, Lecture Notes in Physics, eds. E.

Ben-Naim, H. Frauenfelder, Z. Toroczkai (Berlin: Springer), 443–457.

Barabási, A. L., Jeong, H., Néda, Z., Ravasz, E., Schubert, A., and Vicsek, T. (2002).

Evolution of the social network of scientific collaborations. Phys. A 311, 90–614.

doi: 10.1016/S0378-4371(02)00736-7

Belyi, V. A., Ak, P., Markert, E., Wang, H., Hu, W., Puzio-Kuter, A., et al. (2010).

The origins and evolution of the p53 family of genes.Cold Spring Harb. Perspect.

Biol. 2:a001198. doi: 10.1101/cshperspect.a001198

Bhatia, A., and Kumar, Y. (2013). Cellular and molecular mechanisms in cancer

immune escape: a comprehensive review. Expert Rev. Clin. Immunol. 10,

758–762. doi: 10.1586/1744666X.2014.865519

Biggs, N. (1993). Algebraic Graph Theory. Cambridge Mathematical Library.

Cambridge: Cambridge University Press.

Burt, A., and Trivers, R. (2006). Genes in Conflict: The Biology of Selfish Genetic

Elements. Cambridge, MA: Harvard University Press.

Burton, Z. F. (2014). The old and new testaments of gene regulation. Transcription

5:e28674. doi: 10.4161/trns.28674

Candia, J., González, M. C., Wang, P., Schoenharl, T., Madey, G., and Barabási, A.-

L. (2008). Uncovering individual and collective human dynamics from mobile

phone records. J. Phys. A 41:224015. doi: 10.1088/1751-8113/41/22/224015

Chang, H. H. Y., Pannunzio, N. R., Adachi, N., and Lieber, M. R. (2017). Non-

homologous DNA end joining and alternative pathways to double-strand break

repair. Nat. Rev. Mol. Cell. Biol. 18, 495–506. doi: 10.1038/nrm.2017.48

Chung, F. (2010). Graph theory in the information age. Notices Am. Math. Soc. 57,

726–732.

Chung, F., and Lu, L. (2004). “The small world phenomenon in hybrid power

law graphs,” in Complex Networks, Vol. 650, Lecture Notes in Physics, eds E.

Ben-Naim, H. Frauenfelder, and Z. Toroczkai (Berlin: Springer), 89–104.

Chung, F., and Lu, L. (2006). Complex Graphs and Networks. Vol. 107, CBMS

Regional Conference Series in Mathematics. Washington, DC; Providence, RI:

American Mathematical Society.

Chung, F., Lu, L., Dewey, T. G., and Galas, D. J. (2003). Duplication

models for biological networks. J. Comput. Biol. 10, 677–687.

doi: 10.1089/106652703322539024

Chung, F. R. K. (1997). Spectral Graph Theory. Vol. 92, CBMS Regional

Conference Series inMathematics. Washington, DC; Providence, RI: American

Mathematical Society.

Clauset, A., Shalizi, C. R., and Newman, M. E. J. (2009). Power-law distributions in

empirical data. SIAM Rev. 51, 661–703. doi: 10.1137/070710111

Cotterell, R., Vylomova, E., Khayrallah, H., Kirov, C., and Yarowsky, D. (2017).

“Paradigm completion for derivational morphology,” in Proceedings of the

2017 Conference on Empirical Methods in Natural Language Processing

(Copenhagan), 714–720.

Crawford, V. P., and Sobel, J. (1982). Strategic information transmission.

Econometrica 50, 1431–1451. doi: 10.2307/1913390
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