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Regional climate models (RCMs) are able to simulate small-scale processes that are

missing in their coarser resolution driving data and thereby provide valuable climate

information for climate impact assessments. Less attention has been paid to the ability

of RCMs to capture large-scale weather types (WTs). An inaccurate representation of

WTs can result in biases and uncertainties in current and future climate simulations

that cannot be easily detected by standard model evaluation metrics. Here we define

12 hydrologically important WTs in the contiguous United States (CONUS). We test if

RCMs from the North American CORDEX (NA-CORDEX) and the Weather Research and

Forecasting (WRF) model large physics ensembles (WRF36) can capture those WTs in

the current climate and how they simulate changes in the future. Our results show that

the NA-CORDEX RCMs are able to simulate WTs more accurately than members of the

WRF36 ensemble. The much larger WRF36 domain in combination with not constraining

large-scale conditions by spectral nudging results in lower WT skill. The selection of

the driving global climate model (GCM) has a large effect on the skill of NA-CORDEX

simulations but a smaller impact on the WRF36 runs. The formulation of the RCM is of

minor importance except for capturing the variability within WTs. Changing the model

physics or increasing the RCM horizontal grid spacing has little effect. These results

highlight the importance of selecting GCMs with accurate synoptic-scale variability for

downscaling and to find a balance between large domains that can result in biased WT

representations and small domains that inhibit the realistic development of mesoscale

processes. At the end of the century, monsoonal flow conditions increase systematically

by up to 30% and a WT that is a significant source of moisture for the Northern Plains

during the growing seasons decreases systematically up to –30%.

Keywords: regional climate models, uncertainties, weather types, North America, CORDEX, domain size, driving

data, model quality

1. INTRODUCTION

Regional climate models (RCMs) are designed to dynamically downscale larger-scale climate data
over a region of interest to capture regional-scale processes that are not present in the drivingmodel
(Giorgi, 1990; Denis et al., 2002; Rummukainen, 2010). Many studies address the added value of
RCM downscaling, which are mainly found on local to regional-scales (Feser et al., 2011; Di Luca
et al., 2012; Prein et al., 2016a) in regions with complex orography, areas with strong land-surface
heterogeneities, and in atmospheric situations with strong spatial gradients that are often related
to extreme events (Rummukainen, 2016). It is more unclear if RCMs can also add value to
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the large-scale patterns of their driving model by upscale growth
of mesoscale processes. However, there are a few examples in the
published literature such as improvements of rain shadow effects
due to the better representation of orography (Leung et al., 2003),
or downstream effects of mesoscale convective vortices in the US
(Clark et al., 2010).

The evaluation of RCMs is typically performed on a seasonal
basis using standard atmospheric variables such as near-surface
temperature and precipitation (Christensen et al., 2007a; Mearns
et al., 2012; Kotlarski et al., 2014; Prein et al., 2016a). While
this can provide a broad assessment of model skill it typically
does not allow in-depth insights to understand errors in specific
modeled processes. This is partly due to combining local-
and large-scale errors in the analysis. Addor et al. (2016); for
example, showing that a general wet bias of RCM simulated
wintertime precipitation in the European Alps can be related to
an overestimation of westerly flow regimes.

Weather typing (WTing) was initially developed for weather
forecasting (e.g., van Bebber, 1891). In more recent decades,
studies used WTing to downscale large scale circulation patterns
to local scales (Goodess and Palutikof, 1998; Wood et al., 2016),
evaluate global climate model performance (Radić and Clarke,
2011; Gibson et al., 2016), to understand changes in observed
climate trends (Paredes et al., 2006; Prein et al., 2016b), and to
assess future climate projections in terms of changing large-scale
dynamics (Santos et al., 2016).

Here we use hydrologically important WTs to investigate
the ability of two ensembles of RCM simulations to capture
large-scale atmospheric patterns over the contiguous United
States (CONUS). The two ensembles are the North American
contributions to the Coordinated Regional Climate Downscaling
Experiment (NA-CORDEX; Mearns et al., 2017) and the
National Center for Atmospheric Research’s (NCAR’s) 36 km grid
spacingWeather Research and Forecasting (WRF) model physics
ensemble (WRF36; Bruyère et al., 2017).

Using WT for model evaluation has two main advantages:
(1) We focus solely on the RCM’s ability to represent synoptic-
scale patterns, which allows separatingmodel biases in large-scale
dynamics and thermodynamics and mesoscale components, and
(2) RCM errors are typically process-dependent and, therefore,
RCMs have different bias characteristics in different seasons (e.g.,
Mearns et al., 2012; Kotlarski et al., 2014). However, seasons
consist of a mix of various weather regimes and atmospheric
processes. Seasonally based analyses can be viewed as a zero
order approximation of a weather regime-dependent analysis.
Performing model evaluation based on WTs helps to separate
atmospheric processes more accurately and allows insights into
regime-specific model performance.

The goal of this study is 2-fold. (1) We aim to understand
which components of an RCM setup affects its capability to
simulate WTs over the CONUS. The analyzed components are
the driving GCM, the formulation of the RCM, sensitivities to
RCM model physics, RCM horizontal grid spacing, and RCM
domain size. The goal is to provide guidance for future RCM
downscaling studies. (2) We want to understand if there are
systematic changes in future climate WT frequencies. Enhancing
our understanding of climate impacts on large-scale dynamics

FIGURE 1 | Model (colors) and weather typing domains (black rectangle). The

WRF36 domain is shown in red and the NA-CORDEX domains are shown

in blue.

is important since almost all confidence that we have regarding
future climate projections is based on thermodynamic processes
(Shepherd, 2014).

The paper is structured as follows. Section 2 summarizes the
used RCM simulations and the WT method. Section 3 describes
the main characteristics of the derived WTs, presents the results
from the RCM evaluation, an assessment of the sources of
performance variability, and WT changes in climate projections.
Section 4, 5 summarize the findings and conclude the study.

2. DATA AND METHODS

2.1. Regional Climate Models
We use RCM simulations from the NA-CORDEX and the
WRF36 ensemble datasets. RCMs participating in the NA-
CORDEX ensemble downscale ERA-Interim (Dee et al., 2011)
and global climate models (GCMs) from the CMIP5 archive
(Taylor et al., 2012) over a common region that covers most of
North America (see blue domains in Figure 1). The domain sizes
vary slightly between the participating RCMs. The ERA-Interim
driven simulations cover a common period from 1989 to 2010,
while the GCMdriven runs at least cover 1951–2099.Most RCMs
have a horizontal grid spacing of 0.44◦/50 km and the WRF
simulations are also available at 0.22◦/25 km grid spacing. We
only use a subset of the full NA-CORDEX simulations for which
the necessary WTing variables are available. We use simulations
performed with WRF (Skamarock and Klemp, 2008), the Danish
Meteorological Institute’s HIRHAM5 model (Christensen et al.,
2007b), the UK Met Office’s HadRM3P model (Jones et al., 1995;
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TABLE 1 | NA-CORDEX simulations used in this manuscript.

Case GCM RCM Institude Resolution Time Period

Reanalysis ERA-Interim WRF NCAR 0.44◦ 1980–2010

Reanalysis ERA-Interim WRF NCAR 0.22◦ 1980–2010

Reanalysis ERA-Interim HIRHAM5 DMI 0.44◦ 1989–2011

Reanalysis ERA-Interim HadRM3P MOHC 0.44◦ 1990–2011

Reanalysis ERA-Interim CRCM5 UQAM 0.44◦ 1979–2012

Historical GFDL-ESM2M WRF NCAR 0.44◦ 1950–2005

Historical GFDL-ESM2M WRF NCAR 0.22◦ 1950–2005

Historical MPI-ESM-LR WRF NCAR 0.44◦ 1950–2005

Historical MPI-ESM-LR WRF NCAR 0.22◦ 1950–2005

Historical HadGEM2-ES WRF NCAR 0.44◦ 1950–2005

Historical HadGEM2-ES WRF NCAR 0.22◦ 1950–2005

Historical CCCma-CanESM2 CRCM5 UQAM 0.44◦ 1950–2005

Historical MPI-ESM-LR CRCM5 UQAM 0.44◦ 1949–2005

Historical ICHEC-EC-EARTH HIRHAM DMI 0.44◦ 1951–2005

RCP8.5 GFDL-ESM2M WRF NCAR 0.44◦ 2006–2099

RCP8.5 GFDL-ESM2M WRF NCAR 0.22◦ 2006–2099

RCP8.5 MPI-ESM-LR WRF NCAR 0.44◦ 2006–2099

RCP8.5 MPI-ESM-LR WRF NCAR 0.22◦ 2006–2099

RCP8.5 HadGEM2-ES WRF NCAR 0.44◦ 2006–2099

RCP8.5 HadGEM2-ES WRF NCAR 0.22◦ 2006–2099

RCP4.5 CCCma-CanESM2 CRCM5 UQAM 0.44◦ 2006–2100

RCP4.5 MPI-ESM-LR CRCM5 UQAM 0.44◦ 2006–2100

RCP8.5 MPI-ESM-MR CRCM5 UQAM 0.44◦ 2006–2100

RCP4.5 ICHEC-EC-EARTH HIRHAM DMI 0.44◦ 2006–2100

RCP8.5 ICHEC-EC-EARTH HIRHAM DMI 0.44◦ 2006–2100

TABLE 2 | Major characteristics of the NA-CORDEX RCMs.

RCM Cumulus Microphysics Radiation LW–SW Boundary layer Land surface model

WRF Kain-Fritsch (Kain and

Fritsch, 1990)

WSM3 (Hong et al.,

2004)

RRTM Mlawer et al. (1997) -

Goddard

MYJ Janjić (1994) NOAH (Tewari et al.,

2004)

CRCM5 Kain-Fritsch (Kain and

Fritsch, 1990)

Sundqvist (Sundqvist,

1978)

Li and Barker - Li and Barker (Li

and Barker, 2005)

Delage (Delage, 1997) CLASS3.5+ (Verseghy,

1991, 2009)

HIRHAM5 Tiedke (Tiedtke, 1989),

Nordeng (Nordeng, 1994)

Prognostic liquid water

and ice

Morcrette (Morcrette, 1984) -

Fouquart and Bonnel (1980)

ECHAM5 ECHAM5

HadRM3P - - - - MOSES 2 (Essery and

Clark, 2003)

Buonomo et al., 2007), and the Canadian Regional ClimateModel
version 5 (Caya and Laprise, 1999; Zadra et al., 2008; Martynov
et al., 2013; Šeparović et al., 2013, CRCM5; ). These RCMs
downscale five different GCMs with historical and RCP4.5 and
RCP8.5 concentration scenarios (Van Vuuren et al., 2011). The
WRF simulations used spectral nudging to constrain synoptic
scales according to those of the driving model in the domain
interior. This is important since with this setting WTs should not
be able to deviate significantly from those in the driving model.
No spectral nudging was used in the other RCM simulations. A
list of all NA-CORDEX simulations is shown inTable 1 andmore
details on the model setup can be found in Table 2 and online
under https://na-cordex.org/rcm-characteristics.

NCAR’s WRF36 RCM ensemble (Bruyère et al., 2017) is
targeted toward understanding uncertainties frommodel physics
and consists of 24 members of WRF simulations that downscale
ERA-Interim within the period from 1990 to 2000 with 36 km
horizontal grid spacing. The model domain is substantially larger
than the domains used in the NA-CORDEX simulations and
covers most of the North and Central Atlantic, the east Pacific,
most of North America, central America, and northern South
America (Figure 1). The motivation for this large domain was
to decouple the RCM simulations from their lateral boundary
conditions to improve the representation of mesoscale processes.
In theory, such improvements should be possible due to the
better representation of mesoscale forcing such as orography in
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TABLE 3 | The physics combination of the WRF36 ensemble that used

ERA-Interim between 1990–2000 as driving data.

MYJ YSU MYJ YSU

KF WSM6 CK6M CK6Y RK6M RK6Y

Thompson CKTM CKTY RKTM RKTY

NSAS WSM6 CN6M CN6Y RN6M RN6Y

Thompson CNTM CNTY RNTM RNTY

Tiedke WSM6 CT6M CT6Y RT6M RT6Y

Thompson CTTM CTTY RTTM RTTY

The naming convention of individual members follows the rule Radiation—Cumulus—

Microphysics—PBL scheme. For example, RNTY uses RRTMG radiation, NSAS cumulus,

Thompson microphysics, and YSU PBL schemes. The simulations highlighted with bold

font are used for downscaling CESM under current and future conditions. All simulations

were produced by NCAR.

addition to atmospheric processes, e.g., tropical cyclones, and
teleconnections in the higher resolution RCM (e.g., Erfanian and
Wang, 2018).

Table 3 shows the 24 ensemble members that downscale ERA-
Interim by systematically varying four physics parameterizations:
(1) cumulus [KF: (Kain and Fritsch, 1990); NSAS: (Han and
Pan, 2011); and Tiedtke: (Tiedtke, 1989)], (2) radiation [CAM:
(Collins et al., 2006) and RRTMG: (Mlawer et al., 1997)], (3)
microphysics [WSM6: (Han and Lim, 2006) and Thompson:
(Thompson et al., 2004)], and (4) planetary boundary layer [MYJ:
(Janjić, 1994) and YSU: (Hong et al., 2006)]. In this study, we
abbreviate members of this ensemble by four characters. The
first character denotes the radiation scheme, the second the
cumulus scheme, the third the microphysics, and the fourth
the planetary boundary layer parameterization. For example,
the RNTY member uses the RRTMG radiation, NSAS cumulus,
Thompson microphysics, and YSU boundary layer scheme. The
selected physics are well tested and widely used.

After evaluating the 24-member ensemble, three members
were selected to perform additional current and future climate
downscaling experiments. These three members are the RKTM,
RNTY, and RTTY simulations. They downscale a free running
GCM simulation performed by the Community Earth System
Model (CESM; Hurrell et al., 2013), which is part of the
CMIP5 experiments (Taylor et al., 2012). CESM is one of the
best performing models in the CMIP5 ensemble based on its
ability to simulate global temperature and precipitation patterns
(Knutti et al., 2013). This simulation uses the business as
usual RCP8.5 emission scenario for future climate projections
(Van Vuuren et al., 2011). To reduce biases in CESM’s lateral
boundary conditions, a bias correction method described in
Bruyère et al. (2014, 2015) was applied prior to the downscaling.
This method only bias corrected the mean base state, leaving
the synoptic variability, interannual variability, and any climate
trend unchanged. The CESM driven WRF36 simulations cover
the periods 1990 to 2000, 2020 to 2030, 2030 to 2040, 2050
to 2060, and 2080 to 2090. Additional information about the
WRF36 simulations can be found in Bruyère et al. (2017).

The most notable differences between theWRF36 simulations
and WRF experiments from the NA-CORDEX are the

computational domain size and the use of spectral nudging
in the latter (von Storch et al., 2000). The physics in the RK6M
simulation are very similar to those used in NA-CORDEX except
for the microphysics, which are more simplistic in the latter.
The NOAH land surface model (Tewari et al., 2004) is used in
both ensembles.

2.2. Reference Data
The variables used for the WTing are derived from daily ERA-
Interim data at 12 UTC (Dee et al., 2011). ERA-Interim is a third
generation reanalysis, which has very high skill in representing
atmospheric processes compared to other reanalysis products
(e.g., Decker et al., 2012; Lin et al., 2014).

For precipitation analyses we use the Parameter-elevation
Relationships on Independent Slopes Model (PRISM) daily
gridded precipitation data within the period from 1980 to 2014
(Daly et al., 1994). PRISM is based on∼13 000 surface stations for
precipitation including USDANRCS Snow Telemetry (SNOTEL)
and snowcourses data (http://www.wcc.nrcs.usda.gov/snow/) to
capture mountain snow pack.

2.3. Defining Hydrologically Important
Weather Types
The performed WTing is similar to the algorithm used in Prein
et al. (2016b) and (Prein, under review). It is a combination
of two clustering methods: a hierarchical cluster analysis and
a k-means cluster analysis that uses the outcome of the
hierarchical clustering as the starting partition (Romesburg,
2004). This approach showed very high skill in classifying WTs
in a WT method comparison study over the European Alps
(Schiemann and Frei, 2010) and was successfully applied in
many weather typing analyses (e.g., García-Valero et al., 2012;
Lorente-Plazas et al., 2015). Daily ERA-Interim data from 1979–
2014 is used over the CONUS (see black rectangle in Figure 1)
to define representative WTs capturing the main variability of
precipitation in this region. We use a moving average Gaussian
high-pass filter of 31-day length to remove variability longer
than those of typical synoptic-scale patterns, e.g., the seasonal
cycle. This does not affect the spatial patterns of the daily
input variables. Afterward, we normalize each input variable to
generate fields with equal weights as input for the WT analysis.

We used two metrics to test the skill of the derived
WTs. (1) We aim to minimize the intracluster to intercluster
variance (Straus and Molteni, 2004) of the daily CONUS wide
precipitation patterns in eachWT. The goal is to cluster days with
similar precipitation patterns within one WT and to obtain WTs
having different precipitation patterns when compared to each
other. (2) In addition, we want to maximize the average absolute
precipitation anomalies of eachWT centroid. TheWT centroid is
the average over each cluster element, e.g., average precipitation
anomaly of each day within a WT. This metric ensures that
WTs are as different as possible from the climatological average
precipitation in the CONUS.

Figure 2 summarizes the results for the WT skill analysis,
which is dependent on the number of used WTs and
the input variables. We tested a variety of input variable
combinations. Horizontal wind speed at 500 hPa (UV500), sea
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FIGURE 2 | Assessment of the clustering strength of WTs. (A) Inter- vs. intra-cluster variance and (B) absolute precipitation anomalies averaged over all WTs. Different

colors show different WT settings. The tested input variables are sea level pressure (SLP), precipitable water (PW), wind speed at 850 hPa/500 hPa (UV850/UV500),

and 500 hPa geopotential height (ZG500). We also test the impacts of using a principal component analysis (PCA) before the WT clustering and the length of the

clustering period, which is 1979–2014 unless otherwise denoted. The red circle shows the final WT setup using 12 WTs and SLP, PW, and UV500 as input variables.

level pressure (SLP), and precipitable water (PW) are available
on a daily basis for most RCM simulations. These are important
variables for many dynamic and thermodynamic processes
related to precipitation (Doswell III et al., 1996; Lin et al.,
2001). Using 12 WTs with these variables lead to a skillful
representation of hydrologically important weather patterns in
the CONUS. Twelve WTs seem to be sufficient since adding
more WTs only leads to marginal improvements in clustering
skill (Figure 2). These results are similar to work by Prein
et al. (2016b) except that we used 500 hPa instead of 700 hPa
wind speed since the latter was not available for many NA-
CORDEX simulations.

The WTing on ERA-Interim data results in a WT time series
that assigns a WT to each day within the period of 1979–
2014. This time series allows us to calculate WT centroids
(Figure 3), which are used to assign WTs to each day in the
RCM output.

2.4. Assigning Weather Types to Climate
Model Data
To assign WTs to the RCM output we first conservatively remap
daily simulated SLP, UV500, and PW fields to the ERA-Interim
grid. Then we apply a 31-day moving average Gaussian high-pass
filter to the remapped data and normalize the variables similarly
to what we have done to the ERA-Interim data. Thereafter, we
calculate the average Euclidean distances of each input variable
for each day in the RCM simulations to the 12 ERA-Interim WT
centroids that are described above. Each day is assigned to the
centroid with the minimum average Euclidean distance.

3. RESULTS

3.1. Description of Observed WTs
The resulting WTs show distinct differences in SLP anomalies,
500 hPa wind speed and direction, and PW values within the
CONUS (Figure 3). We sorted the WTs from predominantly

winter patterns (WT1–4) to shoulder seasonWTs (WT5–10) and
summer WTs (WT11 and WT12). The different flow regimes
result in distinct precipitation anomaly patterns (Figure 4).
WT1 is most frequent in December and January and it is
characterized by a strong high-pressure anomaly with dry air
advection from the northwest into the central US (Figure 3A).
This results in anomalous dry conditions in most of the US
(Figure 4A). In WT2 the high-pressure anomaly is shifted
toward the Midwest favoring moisture transport to the west
coast (Figure 3B), resulting in wetter than average conditions
in this region (Figure 4B). WT3 has a January maximum
and high/low-pressure anomalies in the western/eastern half
of the CONUS (Figure 3C), which lead to predominantly dry
conditions (Figure 4C). Very wet conditions in the eastern
CONUS occur in WT4 (Figure 4D), which has an early winter
peak. This is due to strong moist air advection from the
Pacific and Gulf of Mexico into the continent (Figure 3D).
Similar precipitation anomalies are caused by WT5 (Figure 4E)
as a result of a strong low-pressure anomaly over the Great
Lakes region. WT6, WT7, and WT8 occur predominantly
in spring and are the main sources of precipitation in the
US Southwest (Figures 4F–H). They are associated with low-
pressure anomalies over the western half of the CONUS and
moist air advection from the Pacific (Figures 3F–H). WT7 results
in anomalously wet conditions in the upper Plains, the Midwest,
and the Deep South due to its strong low-pressure anomaly in
the central US. Weak flows and predominantly dry conditions
are present during the spring WT9 except for parts of Texas and
New Mexico (Figures 3I, 4I). Very wet conditions are present in
the upper Plains during WT10 conditions due to a low-pressure
anomaly and moisture advection into this region (Figures 3J,
4J). WT11 is a typical summer WT with high PW values in the
eastern CONUS and wetter than average conditions in this area
(Figures 3K, 4K). Monsoonal flow conditions are present in the
late summerWT12 with high precipitation anomalies in Arizona
and New Mexico (Figures 3L, 4L).
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FIGURE 3 | Centroids of the 12 ERA-Interim based WTs (A–L) for the period 1979–2014. Filled contours show sea level pressure anomalies, green contour

lines show precipitable water (PW), and arrows show 500hPa wind direction and speed. A histogram of the relative frequency of each WT is shown in the bottom left

and the domain used for the WTing is shown in the gray dashed box.

3.2. RCM Evaluation
The following analysis is based on data that cover the common
evaluation period of 1990–2000. Due to this rather short period,
the results might be affected by internal climate variability.
Therefore, we focus our analysis on systematic differences
between the two ensembles and their members rather than the
performance of individual simulations.

There is a large spread in how well RCMs capture
observed WT frequencies (Figure 5). The frequencies of
WT5 and WT9 are well captured by most simulations
whereas other WTs, such as WT4, show systematic low
biases. It is important to mention that a high-frequency
bias in one WT has to be counteracted in low biases in
other WTs. Simulated WT frequency biases will result
in precipitation biases since the WTs are associated with
pronounced precipitation anomalies. For example, most
simulations have a low-frequency bias for WT4 patterns,
which results in cold season conditions that are too dry in
the Deep South and Appalachian region, since WT4 is one of
the main contributors of precipitation in those regions (see

Figure 4D). Such a bias is frequently found in recent RCM
simulations (Mearns et al., 2012).

A more systematic analysis of WT frequency biases is
shown in Figure 6. The most striking feature is that NA-
CORDEX simulations better capture WT frequencies than
WRF36 simulations. This is likely related to the much larger
domain size and not applying spectral nudging in the WRF36
simulations which allows them to deviate from the large-scale
conditions provided by the driving data.

From the WRF36 simulations, we can see that model physics
settings only have a small impact onWT frequencies. Simulations
that use the NSAS convection scheme and RRTMG radiation
scheme have a slightly better performance than the simulations
using Tiedtke and CAM. The best ERA-Interim driven WRF36
simulation is the RNTM run, which has an average absolute WT
frequency bias of ∼21%. Changing the driving data to CESM
results in a slight skill improvement, which is surprising since
using CESM should introduce biases that are not present in ERA-
Interim. The WRF36 simulations have the largest WT frequency
biases during the cold season. WT1 andWT4 frequencies are too
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FIGURE 4 | Precipitation anomalies for each WT (A–L) based on the PRISM daily gridded observational data between 1981 and 2014 (Daly et al., 1994).

rare, which is counteracted by a too frequent simulation of WT2
and WT3 conditions.

In contrast to the WRF36 simulations, ERA-Interim driven
NA-CORDEX runs have generally higher skill than GCM driven
NA-CORDEX simulations. The NA-CORDEX ERA-Interim
WRF runs have the highest skill of all simulations with average
absolute biases lower than 10%. This has to be expected since
spectral nudging was only used for the WRF simulations but not
for the others. Spectral nudging has been shown to have a positive
effect on simulating precipitation in previous North American
scale RCM simulations (Mearns et al., 2012). Most NA-CORDEX
simulations overestimate the frequency of WT2 and WT3 and
underestimate the frequency of WT4 and WT5.

Another way tomeasure RCMs’ quality is to assess their ability
in capturing observed intra-WT variability, expressed as the
average standard deviation (STDDEV) of normalized SLP, PW,
and UV500 patterns from all days within a WT. Figure 7 shows
normalized (modeled divided by ERA-Interim) STDDEVs. A
perfect model would have a score of zero, i.e., the same STDDEV
as ERA-Interim. Negative values mean that differences between
days within a WT are too small whereas positive values mean
that they are too large. Very large values could indicate that the
RCM simulates WTs that are not observed in ERA-Interim. Such
unobserved WTs are assigned the most similar observed WT,
resulting in large intra-WT STDDEV.

The WRF36 simulations have less skill in simulating intra-
WT STDDEV than the NA-CORDEX runs (Figure 7). However,
in contrast to the WT frequency analysis above, ERA-Interim

driven WRF36 simulations have clearly higher skill than CESM
driven simulations. The sensitivity to the used physics options
is small. The transition season WT5–8 shows significant and
systematically too high STDDEVs whereas too low STDDEVs
seldom occur. The largest biases are found for WT8 with some
simulations overestimating the observed STDDEV by more than
60%. The same WTs also show too high STDDEVs in the NA-
CORDEX simulations, especially for the GCM driven runs, but
the biases are smaller and less systematic than in WRF36. The
best performance is again found for NA-CORDEX ERA-Interim
driven WRF simulations with absolute average biases of <5%.

The third and last skill score that we consider is the WT
centroid correlation coefficient, which allows one to assess how
well the spatial pattern of each WT variable is reproduced by
the RCMs. Values close to one indicate a skillful simulation of
observed WT centroid patterns. Also here, the NA-CORDEX
simulations outperform theWRF36 runs and the selected physics
only have a minor impact on the performance of WRF36
simulations (Figure 8). In the WRF36 simulations, the lowest
skills are found for simulating PW patterns, which becomes
emphasized by changing from ERA-Interim to CESM boundary
conditions. Particularly low PW pattern correlations are seen for
WT3 and WT8. WT10 has very low correlation coefficients for
UV500 when ERA-Interim is downscaled. SLP patterns generally
show the highest correlation coefficients.

This is different in the NA-CORDEX simulations where PW
patterns are simulated best. Again, ERA-Interim downscaled
WRF simulations show the highest skills with average absolute
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FIGURE 5 | Annual cycle of WT frequencies smoothed by a Gaussian low-pass filter with 10-day standard deviation for each of the 12 WTs (A–L). The thick black line

shows ERA-Interim WT frequencies for the period 1990–2000 and the gray contour shows the spread in all possible 11-year contiguous ERA-Interim periods within

1979–2014 as an estimate of climate variability. The blue contour shows the spread in the 24-member WRF36 ensemble that uses ERA-Interim as driving data. The

red contour shows the spread within the 3-member CESM driven WRF36 hindcast simulations. Colored solid/dashed lines show WT frequencies in NA-CORDEX

hindcast/historical simulations. The RCM results are based on the period 1990–2000. Vertical dashed lines show the end of February, May, August, and November

respectively from left to right.

values larger than 0.96. Simulated WT8 patterns have overall
the lowest skill but most correlation coefficients are still
larger than 0.88.

3.3. Sources of Variability
Here we summarize the origin of different performances
in simulating WT characteristics with RCMs. The presented
numbers are first-order estimates since a full variance analysis
would demand many more simulations than are available,
especially for the NA-CORDEX ensemble. Figure 9 shows the
spread in the three assessed skill scores averaged over specific
dimensions of the RCM ensembles.

WT frequencies in WRF36 simulations are fairly similar
for all ensemble members and only weakly depend on the
model physics and driving data (only the RKTM, RNTY,
and RTTY are compared for the latter; Figure 9A). The

NA-CORDEX simulations show higher skill in simulating
WT frequencies. The 0.22 horizontal grid spacing WRF NA-
CORDEX simulations show 1.9% lower absolute average WT
frequency biases compared to their 0.44 counterparts. There is
moderate variability (4.4%) concerning the RCM formulation,
with CRCM5 showing the highest biases and WRF the lowest. A
large variability of 11.1% occurs due to the selected driving data
with ERA-Interim clearly resulting in the lowest biases. WRF36
and WRF-NA-CORDEX simulations show substantial variability
of 12.7%, which is likely caused by differences in domain size and
the application of spectral nudging in the WRF NA-CORDEX,
resulting in a more realistic representation of WTs in the latter.

The WRF36 intra-WT STDDEV shows small sensitivity to
the model physics but large sensitivity (10.1%) to the driving
data with ERA-Interim driven simulations showing clearly
higher skill (Figure 9B). In the NA-CORDEX ensemble, the
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FIGURE 6 | Heatmap showing average WT frequency biases (smaller is better) for simulations (rows) and WTs (columns), and the absolute bias averaged over all WT

biases in the rightmost column (lower color bar). The top block shows biases for WRF36 ERA-Interim simulations that use the same physics parameterization, e.g.,

the biases of all simulations that use the YSU PBL scheme are averaged. The second block from the top shows biases in the WRF36 simulations, and the central

block shows biases in the CESM driven WRF36 hindcast runs. The second lowest block shows biases in ERA-Interim driven NA-CORDEX simulation while the lowest

block shows NA-CORDEX hindcast driven biases for the period 1990–2000. Hatched rectangles show biases that are within the interannual variability of ERA-Interim

WT frequencies.
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FIGURE 7 | Similar to Figure 6 but showing the simulated divided by ERA-Interim intra-WT pattern standard deviations. A perfect score is zero and denotes that the

model has the same variability than ERA-Interim.

Frontiers in Environmental Science | www.frontiersin.org 10 April 2019 | Volume 7 | Article 36

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Prein et al. Weather Types in Regional Climate Models

FIGURE 8 | Similar to Figure 6 but showing correlation coefficients between ERA-Interim and simulated centroids (higher is better). Each column consists of three

sub-columns showing correlation coefficients for SLP, PW, and 500 UV from left to right.

Frontiers in Environmental Science | www.frontiersin.org 11 April 2019 | Volume 7 | Article 36

https://www.frontiersin.org/journals/environmental-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/environmental-science#articles


Prein et al. Weather Types in Regional Climate Models

FIGURE 9 | Estimates of WT skill variability for different drivers using three

metrics: (A) absolute WT frequency biases, (B) normalized intra-WT standard

deviations, and (C) mean centroid pattern correlation coefficients. The impact

of model physics and driving data is investigated in the WRF36 simulations

(black symbols). The effect of horizontal grid spacing, RCM, and driving data is

assessed for the NA-CORDEX simulations (red symbols). The impact of the

domain size is estimated comparing WRF simulations in the NA-CORDEX

ensemble with WRF36 runs. The maximum minus minimum spread is shown

on the bottom of each panel.

WRF model resolution has only minor effects on the skill
but the RCM formulation plays a major role (15.9%). The
HIRHAM simulations overestimate the STDDEV substantially
while HadGEM3P and CRCM5 show high skill. Additionally,
the driving GCM has a major impact (15.1%) with ERA-Interim
and HadGEM2, resulting in very small biases and GFDL-ESM2M
driven simulations resulting in large overestimations of intra-
WT STDDEVs. Comparing the WRF simulations from the two
ensembles results in similar skills. However, this is mainly due to
the larger fraction of ERA-Interim drivenmembers in theWRF36
ensemble (24 out of 27 runs) compared to the NA-CORDEX
ensemble (two out of ten).

The average centroid correlation coefficients show very small
sensitivities to the WRF36 model physics and driving data
(Figure 9C). The different sources of variability in the NA-
CORDEX simulations lead to only minor sensitivities, with the
WRF grid spacing having the smallest impact and the driving
GCM having the largest. The major mode of variability in this
metric is the RCM domain size and the application of spectral
nudging as shown by the difference in correlation coefficients
between the WRF36 and WRF-NA-CORDEX simulations.

3.4. Changes in Future WT Frequencies
All GCM driven NA-CORDEX and WRF36 runs also provide
future climate data that we use to assess if WT frequencies are
projected to change due to climate change. The GCM driven
NA-CORDEX simulations are transient climate runs that cover
a common period from 1950 to 2099 (see Table 1) whereas
the GCM driven WRF36 runs are time slice experiments that
cover the periods 1990–2000, 2020–2030, 2030–2040, 2050–2060,
and 2080–2090.

Most NA-CORDEX simulations show systematic increases in
WT7 and WT8 frequencies by mid-century, which, however,
are not statistically significant (Figure 10). WT2 and WT11
predominantly decrease in their frequency. Six out of the eleven
simulations show significant decreases in WT11 frequencies.
Most of the NA-CORDEX models still show increases in WT7
frequencies by the end of the century but more systematic and
significant are the frequency increases in WT12, which were
not obvious at mid-century. WT12 resembles monsoonal flow
patterns and it is projected to increase in frequency in ten of
eleven models. All NA-CORDEX models agree on a decrease
of WT10 patterns by the end of the century, eight of them
show systematic decreases, which would indicate a drying of the
northern Great Plains during summer (Figure 4K). Furthermore,
all models show decreases for WT4 frequencies, which are
smaller in magnitude and only significant in three models. These
systematic changes are likely a result of anthropogenic forcings
such as increasing greenhouse gas emissions and changes in
aerosol loads. Climate natural variability should have a minor
impact because the NA-CORDEX ensemble is forced by various
GCMs that each simulate differing phases of, e.g., ENSO or Pacific
Decadal Oscillation.

WT frequency changes in the WRF36 ensemble are often
not systematic and strongly vary from period to period. This
is likely a result of the 11-year long time-slice experiments that
are too short to differentiate between climate internal variability
and forces climate change (Deser et al., 2012). Differences in the
response of the CESM GCM, which is downscaled in the WRF36
ensemble, to the NA-CORDEX GCMs are unlikely but cannot
be excluded.

4. SUMMARY AND DISCUSSION

In this study, we use two sets of RCM ensembles, the North
American CORDEX (NA-CORDEX) ensemble and a perturbed
WRF physics ensemble with 36 km horizontal grid spacing
(WRF36). We use a weather typing (WTing) algorithm to
investigate if RCM simulations are able to capture hydrologically
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FIGURE 10 | Heatmap showing WT frequency changes in future climate projections. The top panels show results from the NA-CORDEX ensemble using 1979–2000

as the baseline period and 2021–2050 (Left panel) and 2071–2100 (Right panel). The lower panels show results from the WRF36 CESM driven simulations with the

baseline period 1990–2000 and the future periods 2020–2030, 2030–2040, 2050–2060, and 2080–2090 from left to right. Hatched boxes show changes that exceed

the interannual variability in ERA-Interim.

important weather pattern characteristics over the CONUS.
We investigate three metrics: (1) the frequency biases of WT
occurrences; (2) the variability of flow patterns within WTs; and
(3) the accurate representation of WT spatial patterns.

The NA-CORDEX ensemble clearly outperforms the WRF36
simulations in all three metrics but particularly in the first and
third ones. The main source for WRF model skill differences
is the size of the RCM domain and the application of spectral
nudging. The WRF36 simulations have a much larger domain
and do not use spectral nudging, which allows them to
significantly deviate from their lateral boundary conditions
on synoptic scales. The much smaller NA-CORDEX domains
constrain synoptic patterns from the GCM in the RCM domain
and result in a more skillful representation of WT characteristics,
particularly when they are driven by reanalysis data. Previous
research showed that the interior large-scale dynamics can
start to depart from the driving data as domain size increases
(Alexandru et al., 2007). The second metric shows a larger
sensitivity to the driving model and the formulation of the
RCM. Also in this metric, however, ERA-Interim driven NA-
CORDEX simulations have clearly higher skill than the ERA-
Interim driven WRF36 runs. WT characteristics have very little
sensitivity to the model physics, which is a robust result from
the WRF36 ensemble evaluation. Model physics are, however,
very important when it comes to the simulation of mesoscale
processes in the RCMs as shown by Mooney et al. (2017) and
Bruyère et al. (2017).

Biases that are present in the simulation of WTs directly
translate into biases in the representation of the hydrology in
RCMs (e.g., Addor et al., 2016). For example, in this study
most RCMs underestimate the frequency of WT4 patterns. Days
within this pattern result in high precipitation rates in the Deep

South and Appalachian region during winter. Too infrequent
WT4 conditions result in cold-season conditions that are too dry
in these regions. Besides the biases in WT characteristics, RCMs
also have biases in the representation of smaller-scale processes
such as microphysics or mesoscale dynamics that affect model
quality. The presented WT analysis can help to distinguish these
two sources of biases, which is not possible when RCMs are
evaluated on, for example, a seasonal basis.

WTing applied to climate change projections allows for
understanding changes in the synoptic-scale conditions
that occur in parallel to thermodynamic changes. A better
understanding of changes in the large-scale dynamics is
important since almost all climate change signals that we have
confidence in originate from thermodynamic changes (Shepherd,
2014). The 11-year-long time slice experiments from the WRF36
ensemble do not allow a robust assessment of climate change
in WT frequencies since they are dominated by climate internal
variability. However, eight of eleven transient NA-CORDEX
simulations show statistically significant increases in North
American Monsoonal circulation (WT12) and a statistically
significant decrease in patterns that transport moisture into the
Northern Plains and Rockies (WT10) during the early warm
season. The increase in monsoonal flow is consistent with other
studies (Bukovsky et al., 2015, 2017; Prein, under review), which
used different types of climate model data and show that the
monsoon high strengthens and sets in earlier in the season. The
decrease in WT10 seems to be physically linked to the increase
in monsoonal flow since southwest monsoon precipitation is
anticorrelated with precipitation in the plains. This is due to the
modulation of the low pressure influence in the plains (WT10)
by the stronger and more persistent monsoon circulation in the
future (WT12).
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5. CONCLUSION

This study shows that the RCM domain size and the application
of spectral nudging can have a significant impact on the model’s
ability to capture realistic large-scale dynamics in mid-latitudes.
Previous work showed that at the very least, RCM lateral
boundaries should be sufficiently far removed from the region of
interest to minimize spatial spin-up issues (Leduc and Laprise,
2009; Brisson et al., 2015; Matte et al., 2017). In addition, the
domain should capture any key contributing regional physical
processes missing from the lateral boundary conditions (Giorgi
and Mearns, 1999). For example, a regional study of North
Atlantic tropical cyclones by Done et al. (2015) required a large
domain to capture the development of African easterly waves
within the RCM domain. Erfanian and Wang (2018) came to
a similar conclusion and showed that including teleconnected
oceanic regions in the RCM domain improves its performance.
However, too large domains and/or a lack of spectral nudging can
lead to biased synoptic-scale patterns as shown here. Therefore,
modelers have to find a balance between spinning up mesoscale
processes that are not affected by the lateral boundary conditions
and simulating large-scale dynamics realistically.

The accurate simulation of synoptic-scale variability in the
driving GCM is essential since correcting for such biases in
the RCM is challenging (Diaconescu et al., 2007). In contrast,
correcting thermodynamic biases in the lateral boundary
conditions of the RCM is somewhat easier (Bruyère et al., 2014;
Xu and Yang, 2015), although challenges remain (Rocheta et al.,
2014). Selecting GCMs with well-simulated large-scale dynamics
should be a high priority for RCM downscaling experiments.
WTing algorithms, such as the one used here, can support such a
model selection.

If the large-scale dynamics are accurately captured in the
GCM, spectral nudging can help to constrain synoptic-scale
processes in large-domain RCM simulation (von Storch et al.,
2000). Care has to be taken that the nudging does not disturb
the development of mesoscale structures that are simulated by
the RCM.

Another solution would be to use variable resolution GCMs
such as the ICOsahedral Non-hydrostatic model (ICON; Zängl
et al., 2015) or the Model for Prediction Across Scales (MPAS;
Skamarock et al., 2012) instead of limited area modeling for
downscaling experiments. These models, in theory, should
resolve the domain size dependence of simulating WTs although
they are more expensive since they simulate the entire globe
instead of a limited area.

Generally, RCMs from both ensembles have larger WT
frequency biases for cold season WTs than warm season WTs.
The overestimation of variability within shoulder season WTs is
also systematic. Future studies should focus on understanding the
reason for these systematic biases. Our analyses suggest that these
biases are related to the RCM formulation (e.g., model numerics)
more so than the model physics.

Future work should also investigate the drivers behind the
forced decrease in WT10 and increase in WT12. The consistency
of these changes among model projections is surprising since
climate change impacts on large-scale dynamics are often

uncertain (Shepherd, 2014). Understanding the underlying
processes of these changes is important due to their potential
impacts on the summertime climate of the U.S. Targeted GCM
experiments such as constant soil moisture or constant ice-cover
experiments could help to gain insights on the large-scale drivers
while additional RCM downscaling could help to understand the
regional and local scale impacts.

This study is limited due to the use of existing RCM ensemble
datasets, which were not specifically designed to address the
impacts of domain size or spectral nudging on large scale
circulation patterns. A more systematic analysis that includes the
evaluation of WTs in the driving GCMs, the impact of spectral
nudging on large domains, and a more systematic perturbation
of the RCM domain size would be necessary to fully understand
the sources of differences between the NA-CORDEX andWRF36
ensemble. Such an analysis could also help to understand if RCMs
are able to add value to the driving GCM’s large-scale dynamics
by simulating upscale effects of mesoscale processes, or if their
added value is constrained to regional scales.
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