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Time-series Vegetation Indices (VIs) are usually used for estimating grain yield.
However, multi-temporal VIs may be affected by different background, illumination, and
atmospheric conditions, so the absolute differences among time-series VIs may include
the effects induced from external conditions in addition to vegetation changes, which will
pose a negative effect on the accuracy of crop yield estimation. Therefore, in this study,
the parcel-based relative vegetation index (1VI) and the parcel-based relative yield are
proposed and further used to estimate rice yield. Hyperspectral images at key growth
stages, including tillering stage, jointing stage, booting stage, heading stage, filling
stage, and ripening stage, as well as rice yield, were obtained with Rikola hyperspectral
imager mounted on Unmanned Aerial Vehicle (UAV) in 2017 growing season. Three
types of parcel-level relative vegetation indices, including Relative Normalized Difference
Vegetation Index (RNDVI), Relative Ratio Vegetation Index (RRVI), and Relative Difference
Vegetation Index (RDVI) are created by using all possible two-band combinations of
discrete channels from 500 to 900 nm. The optimal VI type and its band combinations
at different growth stages are identified for rice yield estimation. Furthermore, the
optimal combinations of different growth stages for yield estimation are determined
by F-test and validated using leave-one-out cross validation (LOOCV) method. The
comparison results show that, for the single-growth-stage model, RNDVI[880,712] at
booting stage has the best correlation with rice yield with a R2-value of 0.75. For the
multiple-growth-stage model, RNDVI[808,744] at jointing stage, RNDVI[880,712] at booting
stage and RNDVI[808,744] at filling stage gain a higher R2-value of 0.83 with the mean
absolute percentage error of estimated rice yield of 3%. The study demonstrates that
the proposed method with parcel-level relative vegetation indices and relative yield can
achieve higher yield estimation accuracy because it can make full use of the advantage
that remote sensing can monitor relative changes accurately. The new method will
further enrich the technology system for crop yield estimation based on remotely
sensed data.

Keywords: hyperspectral image, unmanned aerial vehicles, relative spectral variables, growth stages, rice
yield estimation
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INTRODUCTION

Remote sensing technology is an important measure for
collecting data on the Earth and its changes, and it has been
widely used in all kinds of subjects such as water resources
(Schneider et al., 2018), geology (Govil et al., 2017), ecology
(Echappé et al., 2018), and agriculture (Guo et al., 2018).
Remote sensing for agriculture has the advantages of non-
destructive, non-invasive, fast, and cost-efficient monitoring,
well-correlated with agronomical and important physiological
crop traits (Reynolds et al., 2015). It has usually been applied
to monitor crop growth status (Poenaru et al., 2017), to map
vegetation area (Xiao et al., 2005), to estimate crop yield (Peng
et al., 2014), etc. In recent years, those issues such as the
environmental degradation and water pollution have caused the
reduction of arable land and grain production, grain security has
become a tremendous challenge in many countries and regions.
So accurate grain yield estimation is a significant means to ensure
grain security and agriculture production.

Although satellite images have been widely used in crop yield
estimation, there are still many problems that we need to address.
For example, high spatial and temporal resolution satellite
images usually cannot be obtained at same time, sometimes it is
impossible to obtain valid data at the key growth stage due to poor
weather conditions. Unmanned aerial vehicles (UAV) equipped
with sensors can remedy those defects mentioned above (Zhou
et al., 2017). UAV remote sensing is a low altitude remote sensing
system, which can acquire high spatial-temporal resolution
remotely sensed data on demand. It has been used for agriculture
monitoring in sugarcane (Luna and Lobo, 2016), sunflower (Vega
et al., 2015), soybean (Yu et al., 2016), and triticale (Noack,
2016), yield prediction in rice (Zhou et al., 2017), wheat (Du and
Noguchi, 2017) and barley (Honkavaara et al., 2013). At present,
remote sensing sensors mounted on UAV include RGB digital
camera (Luna and Lobo, 2016; Du and Noguchi, 2017; Zhou
et al., 2017), NIR camera (Nebiker et al., 2016) and multispectral
camera (Vega et al., 2015; Yu et al., 2016; Noack, 2016; Zhou
et al., 2017). In recent years, with the development of imaging
hyperspectral technology, imaging hyperspectral cameras have
gradually been equipped on UAV to acquire remotely sensed
data combining image with spectra (Honkavaara et al., 2012,
2013; Yue et al., 2017). Imaging hyperspectral technology can
obtain more spectral bands and precise spectral information,
which is expected to further improve the monitoring accuracy.
Hyperspectral images have been used for measuring individual
parcel plots using ultra-high spatial resolution up to 1 cm
per pixel (Turner et al., 2012), mapping high-precision leaf
carotenoid concentration of vine in region scale (Zarcotejada
et al., 2013), monitoring soybean LAI precisely by combining
hyperspectral image with artificial neural network (ANN) (Yuan
et al., 2017), early detection of olive verticillium using airborne
hyperspectral and thermal imagery (Calderón et al., 2013).

Unmanned Aerial Vehicle platform equipped with remote
sensing sensors can supply high spatial and temporal resolution
images for precision agriculture, but there are still some
issues that need be further investigated. For example, accurate
radiometric correction for time-series images is a challenge for

UAV remote sensing. The ideal condition for multi-period UAV
data acquisition is that the weather is clear and the angle of
the sun is the same for each flight. Actually, for each flight,
the absorption and scattering of solar radiation by atmospheric
molecules, dust and water vapor are different and the altitude
angle of the sun is not the same due to the different flying
time (Wang et al., 2003), which make the measured values of
the sensor inconsistent with physical quantities, such as spectral
reflectance or spectral radiance of the target (Wang et al., 2003;
Roy et al., 2010). For example, the different compositions of
water vapor, ozone, and aerosol in the atmosphere will affect
the reflection of the Red band and the NIR near-infrared
band (Teillet et al., 2000), which make radiometric corrections
for time-series images more difficult. In addition, different
soil backgrounds may also affect target reflections. Therefore,
eliminating the interference of atmospheric and illumination
conditions on remote sensing images and obtaining accurate
canopy reflection data is the basis for predicting crop yield
accurately. Radiometric calibration is an essential process for
UAV remote sensing, in which the reflectance spectra are
calculated by using reference white or gray board (Hall et al.,
1991; Ding and Elvidge, 1996; Carvalho et al., 2013) and then
vegetation indices at different growth stages are derived for
yield estimation. However, due to the influence of atmospheric
and illumination conditions in different dates, it is difficult to
obtain absolutely accurate reflectance using Pseudo-Invariant
Features (PIF) method (Carvalho et al., 2013) or standard
reference calibration board method (Du et al., 2001), although
these methods can mitigate these effects in some way. In fact,
it is impossible to obtain absolutely accurate reflectance spectra,
but it is easy to characterize the relative change of radiation
variable for remote sensing technology. This is because the two
variables used for calculating the relative changes are obtained
under the same external conditions, such as atmospheric and
illumination conditions, even background conditions, so the
relative variable can eliminate the effects of these external
conditions on target reflectance. Therefore, this study attempts
to construct a parcel-level relative spectral value to weaken
the negative effects from different external conditions, and
estimate rice yield based parcel-level relative spectral values from
multiple-growth-stage hyperspectral images. The purposes of
this study are (1) to propose a crop yield estimation method
based parcel-level relative spectral value, which can eliminate the
effects of atmospheric and illumination conditions and rice field
background on the target reflectance, (2) to make full use of the
strength of hyperspectral image in band numbers to determine
the optimal band combinations for rice yield estimation, (3)
to determine the best combination of growth stages for rice
yield estimation.

MATERIALS AND METHODS

Field Experiment
The field experiment was conducted in May–November 2017
in Deqing County, Zhejiang Province, China (120◦10′49.34′′E,
30◦34′21.21′′N) (Figure 1). The average annual precipitation
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FIGURE 1 | Location of the field experiment.

FIGURE 2 | Distribution of the experiment plot.

and temperature in study area were 1379 mm and 15◦C,
respectively (China Meteorological Data, 2018). Two rice
cultivars Japonica Rice [Jia-58 (V1) and Zhe-99 (V2)] were
sown on 20 May, transplanted on 22 June, and harvested on 24
November. Twenty-two parcel plots (1–22), with five different
nitrogen fertilizer level including no fertilizer (N0), half of
normal fertilization (N1), normal fertilization (N2), 1.5 times
normal fertilization (N3), and two times normal fertilization
(N4), were set (Figure 2). Field data were collected in July–
October in 2017 for six times from tillering stage (28 July),
jointing stage (23 August), booting stage (8 September), heading
stage (19 September), filling stage (3 October), to ripening
stage (24 October).

FIGURE 3 | UAV-based hyperspectral platform.

UAV-Based Hyperspectral Images
Acquisition and Data Processing
Rikola Hyperspectral Imager (Rikola Ltd., Oulu, Finland)
mounted on the DJI Matrice 600 Pro UAV (Figure 3) are
used to obtain hyperspectral images at different growth stages.
The UAV maximum flight altitude is 2.5 km and payload
weight is 6 kg. The Rikola hyperspectral imager can capture
two-dimensional hyperspectral images ranging from 500 to
900 nm with 62 bands in total, and the full width at the
half maximum of the spectral band is 8 nm. Hyperspectral
sensor exposure times were set ranging from 10 to 15 ms
depending on sunlight conditions. Hyperspectral images were
obtained continuously and saved to memory cards when UAV
was flying. For each band, a 1010 by 1010 pixels image with
12 bit (4096 DN) is created. All pixels are true image pixels,
no interpolation is used. Flight altitude was set to 200 m
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and flight route was fixed for each UAV flight campaign with
flying time of 10 min. UAV-based hyperspectral images were
obtained at rice tillering stage, jointing stage, booting stage,
heading stage, filling stage, and ripening stage from 28 July to 24
October (Table 1).

Every hyperspectral images were processed with vignetting
correction, lens distortion correction, black level calibration
and band to band registration. DN values of raw images
were transformed to radiance values. Except for band to band
registration, all data processing was carried out with Rikola
Hyperspectral Imager software (Rikola Ltd., Oulu, Finland).

Parcel-Level Relative VI and Relative
Yield
As mentioned above, the use of relative vegetation index is
expected to diminish the limitation of absolute differences
that contain the uncertain information caused by different
background, illumination and atmospheric conditions at
different growth stages. The idea of parcel-level relative
vegetation index is based on the hypothesis that solar radiation,
solar altitude and atmospheric conditions are the same, and
background are similar at one time of data acquisition. So,

the one parcel of rice field is selected as reference parcel
and others are seen as studied parcels. The parcel-level
relative vegetation index and relative yield is calculated on
the basis of vegetation index and yield of reference parcel.
In our study, a well-grown parcel with normal fertilization is
selected as a reference parcel from all experimental parcels.
Relative vegetation index is calculated by vegetation index of
studied parcel divided by vegetation index of the reference
parcel [Eq. (1)], and relative yield is calculated by yield
of studied parcel divided by yield of reference parcel [Eq.
(2)]. Schematic plot of the calculation method is shown
in Figure 4.

In our study, three types of relative vegetation indices are
tested, including Relative Normalized Difference Vegetation
Index (RNDVI), Relative Ratio Vegetation Index (RRVI),
and Relative Difference Vegetation Index (RDVI). All
possible two-band combinations of discrete channels from
500 to 900 nm are used to create RNDVI, RRVI, RDVI,
as demonstrated by Le Maire et al. (2008) [28], and linear
regressions between those combinations and relative yields
are performed to determine the correlation coefficient (r).
All the r-values are plotted in matrix plots. The advantages
of the matrix plots are that they give a quick overview of

TABLE 1 | Band positions of the optimal band combination of different vegetation types in each growth stage.

Time Growth stage Optimal band combination

RNDVI RRVI RDVI

20170728 Tillering stage 720 nm, 888 nm 720 nm, 888 nm 736 nm, 824 nm

20170823 Jointing stage 744 nm, 808 nm 744 nm, 808 nm 740 nm, 824 nm

20170908 Booting stage 712 nm, 880 nm 744 nm, 776 nm 744 nm, 840 nm

20170919 Heading stage 736 nm, 888 nm 736 nm, 888 nm 744 nm, 840 nm

20171003 Filling stage 744 nm, 808 nm 744 nm, 808 nm 744 nm, 840 nm

20171024 Ripening stage 744 nm, 872 nm 744 nm, 872 nm 744 nm, 864 nm

FIGURE 4 | Schematic plot of relative spectral variables and relative yield calculation (Red square is reference parcel).
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hundreds of wavelength combinations and make it possible
to identify the optimal band combination for further analysis.

1VI= VI
VIR

, (1) (1)

Where 1VI is parcel-level relative vegetation index, VI is the
vegetation index of a study parcel, VIR is the vegetation index of
reference parcel.

RY= Y
YR

, (2) (2)

Where RY is parcel-level relative yield, Y is the measured yield
of a study parcel, and YR is the measured yield of reference parcel.

Yield Estimation Model
Since the good linear relationship between VI and crop yield, like
rice and wheat, have been found in the previous studies (Tucker
et al., 1980; Siyal et al., 2015), multiple linear regression method
will be used to construct the rice yield estimation models in this
study. The independent variables are depended on analysis results
of the optimal band combinations above, and dependent variable
is relative yield.

The relative VIs at different growth stages are all related with
relative yield, but which single growth stage and growth stage
combinations that can more accurately estimate rice yield will
be determined through this study. Therefore, firstly, the optimal
single-growth-stage model can be directly obtained by comparing
the fitted model with different single growth stage. Secondly, the
multiple-growth-stage model can be acquired by comparing the
fitted model with two, three, four, five, and all combinations of
growth stages. Coefficient of determination (R2) and root mean
square error (RMSE) between estimated and measured yield are
calculated to quantify the performance of estimation models.

RESULTS

Band Selection for Relative VI and
Determine the Optimal Relative VI Type
The illustrations of r between the vegetation indices of different
growth stages and relative yield are shown in Figure 5. As seen
for all growth stages, band combinations provided by wavelength
1 at red edge spectral region combined with wavelength 2 in near-
infrared area almost occupy high r-values areas. The locations of
wavelength 1 and wavelength 2 of the optimal band combinations
with the highest r-value for three types index and for every growth
stage are shown in Table 1. It can be seen that the red edge bands
from 712 to 744 nm and the near-infrared regions from 808 to
888 nm occur in all three vegetation types. These results indicate
the great potential of red edge band and near-infrared regions for
the estimation of rice yield.

The comparison of the optimal band combinations at every
growth stage for all three types index, i.e., RNDVI type index,
RRVI type index, and RDVI type index, are shown in Figure 5. As
illustrated, compared with RRVI and RDVI type index, RNDVI
type index is the most efficient type (Figure 6). The optimal

relative vegetation indices of every growth stage are all RNDVI
type index. In addition, the correlation coefficients show an
increased tendency from tillering stage to booting stage and then
decrease to ripening stage. The highest correlation coefficients
between optimal relative vegetation index and relative yield for
all three type index are always obtained at booting stage, with r
of 0.87 for RNDVI[880,712], 0.85 for RRVI[776,744], and 0.84 for
RDVI[840,744]. It can be concluded that booting stage is the most
efficient growth stage for rice yield estimation.

Yield Estimation Model With Different
Growth Stages Involved
Rice yield is related to the relative spectral variables at every
growth stages. As concluded from above results, the estimation
efficiency of RNDVI type index is the most effective compared
with RRVI type index and RDVI type index, so in the
process of model construction, only RNDVIs are considered.
In order to identify the number of involved RNDVIs and the
involved growth stages in the optimal yield estimation model,
the univariate models with one single growth stage and the
multivariate models including two, three, four, five, and all
growth stages are tested using R2 and RMSE.

Yield Estimation Model With One Single Growth
Stage Involved
Yield estimation model with one single growth stage involved is
the simplest yield estimation model, which has the advantages
of simplicity and easy to calculate. The R2 and RMSE of all
estimation models with one single RNDVI at each growth stages
are shown in Table 2.

As seen, compared with models using RNDVIs at other
growth stages, the model using RNDVI at booting stage gains the
highest R2 of 0.75 and the lowest RMSE of 228.04 kg/ha. So the
booting stage is regarded as the optimal growth stage for rice yield
estimation. The model can be expressed as:

YE = (−0.60 + 1.55 × RNDVI[880,712] (Booting)) × YR, (3)

where YE is estimated Yield, YR is reference yield.

Yield Estimation Model With Two Growth Stage
Involved
The models including two RNDVIs of any two growth stages are
shown in Table 3.

As seen, the best estimation model with R2 of 0.80 and RMSE
of 205.74 kg/ha, include booting stage (RNDVI[880,712]) and
filling stage (RNDVI[808,744]). The expression of model is:

YE = (−1.45 + 2.65 × RNDVI[880,712](Booting)

− 0.26 × RNDVI[808,744](Filling)) × YR, (4)

Yield Estimation Model With Three Growth Stages
Involved
The model expressions and R2 and RMSE of all three-variate
models are shown in Table 4. As seen, the highest R2 of 0.83
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FIGURE 5 | Correlation coefficients between relative VIs from all band combinations and relative yields: (A–C), (D–F), (G–I), (J–L), (M–O), and (P–R) are
corresponding to tillering stage, jointing stage, booting stage, heading stage, filling stage, and ripening stage for RNDVI, RRVI, and RDVI, respectively.
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FIGURE 6 | The comparison among three types of relative VI for yield estimation.

TABLE 2 | The performances for the models with one single
growth stage involved.

Grow stage Model Expression R2 RMSE(kg/ha)

Tillering stage (TS) y = −0.13+1.06x1 0.60 285.89

Jointing stage (JS) y = 0.45+0.50x2 0.70 250.35

Booting stage (BS) y = −0.60+1.55x3 0.75 228.04

Heading stage (HS) y = 0.19+0.77x4 0.66 270.02

Filling stage (FS) y = 0.67+0.30x5 0.56 304.10

Ripening stage (RS) y = 0.68+0.29x6 0.52 318.39

x1 is RNDVI[720,880] at tillering stage, x2 is RNDVI[744,808] at jointing stage, x3
is RNDVI[712,880] at booting stage, x4 is RNDVI[736,888] at heading stage, x5 is
RNDVI[744,808] at filling stage, x6 is RNDVI[744,872] at ripening stage.

and the lowest RMSE of 189.13 kg/ha are obtained by the
model including jointing stage (RNDVI[808,744]), booting stage
(RNDVI[880,712]) and filling stage (RNDVI[808,744]). The model
expressed as Eq. (5):

YE = (−1.06 + 0.20 × RNDVI[808,744](Jointing)

+ 2.04 × RNDVI[880,712] (Booting)

−0.23 × RNDVI[808,744](Filling)) × YR (5)

Yield Estimation Model With Four Growth Stages
Involved
As shown in Table 5, among the models that include
four RNDVIs, the highest R2 (0.84) and the lowest RMSE
(185.84 kg/ha) is obtained by the model incorporating jointing
stage (RNDVI[808,744]), booting stage (RNDVI[880,712]), filling
stage (RNDVI[808,744]), and ripening stage (RNDVI[872,744]), the

TABLE 3 | Expressions and performance for the model with two
growth stage involved.

Combination
grow stage

Model expression R2 RMSE(kg/ha)

TS, JS y = 0.18+0.39x1 +0.36x2 0.73 239.39

TS, BS y = −0.59+0.06x1 +1.48x3 0.76 227.84

TS, HS y = 0.0026+0.43x1 +0.50x4 0.68 261.48

TS, FS y = 0.087+0.74x1 +0.12x5 0.64 276.90

TS, RS y = −0.0051+0.87x1 +0.073x6 0.62 282.30

JS, BS y = −0.27+0.22x2 +0.99x3 0.79 208.02

JS, HS y = 0.29+0.33x2 +0.34x4 0.74 234.23

JS, FS y = 0.47+0.38x2 +0.10x5 0.73 238.51

JS, RS y = 0.46+0.44x2 +0.053x6 0.71 247.69

BS, HS y = −0.89+2.21x3−0.36x4 0.77 223.15

BS, FS y = −1.45+2.65x3−0.26x5 0.80 205.74

BS, RS y = −0.99+2.06x3−0.12x6 0.77 218.87

HS, HS y = 0.046+1.00x4−0.10x5 0.66 267.60

HS, RS y = −0.020+1.12x4−0.16x6 0.67 263.20

FS, RS y = 0.67+0.25x5 +0.053x6 0.57 303.43

model expression is:

YE = (−1.02 + 0.23 × RNDVI[808,744](Jointing) + 1.97

× RNDVI[880,712](Booting) − 0.14 × RNDVI[808,744](Filling)

−0.10 × RNDVI[872,744](ripening)) × YR
(6)

Yield Estimation Model With Five Growth Stages
Involved
As seen in Table 6, for multivariate models that include five
RNDVIs, the best estimation model is the last one, with R2
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TABLE 4 | Expressions and performance for the model with three growth stage involved.

Combination grow stage Model expression R2 RMSE(kg/ha)

TS, JS, BS y = −0.26−0.15x1 +0.24x2 +1.13x3 0.80 206.86

TS, JS, HS y = 0.21+0.16x1 +0.30x2 +0.27x4 0.74 233.02

TS, JS, FS y = 0.31+0.23x1 +0.34x2 +0.07x5 0.73 236.16

TS, JS, RS y = 0.16+0.42x1 +0.37x2−0.014x6 0.73 239.26

TS, BS, HS y = −0.90+0.13x1 +2.11x3−0.39x4 0.77 222.28

TS, BS, FS y = −1.45+0.13x1 +2.52x3−0.27x5 0.80 204.76

TS, BS, RS y = −1.02+0.21x1 +1.90x3−0.15x6 0.78 216.85

TS, HS, FS y = −0.17+0.46x1 +0.77x4−0.13x5 0.69 257.95

TS, HS, RS y = −0.28+0.51x1 +0.89x4−0.20x6 0.70 251.23

TS, HS, RS y = 0.063+0.77x1 +0.16x5−0.051x6 0.64 276.27

JS, BS, HS y = −0.66+0.26x2 +1.90x3−0.55x4 0.82 195.85

JS, BS, FS y = −1.06+0.20x2 +2.04x3−0.23x5 0.83 189.13

JS, BS, RS y = −0.74+0.27x2 +1.59x3−0.18x6 0.83 189.75

JS, HS, FS y = 0.26+0.32x2 +0.38x4−0.019x5 0.74 234.14

JS, HS, RS y = 0.059+0.33x2 +0.73x4−0.18x6 0.76 224.21

JS, FS, RS y = 0.45+0.43x2 +0.23x5−0.15x6 0.75 232.17

BS, HS, FS y = −1.44+2.61x3 +0.037x4−0.27x5 0.80 205.70

BS, HS, RS y = −1.01+2.14x3−0.06x4−0.12x6 0.77 218.78

BS, FS, RS y = −1.45+2.65x3−0.26x5−0.0028x6 0.80 205.74

HS, FS, RS y = −0.05+1.18x4−0.040x5−0.15x6 0.67 262.91

TABLE 5 | Expressions and performance for the model with four growth stage involved.

Combination grow stage Model expression R2 RMSE(kg/ha)

TS, JS, BS, HS y = −0.65−0.09x1 +0.27x2 +1.96x3−0.54x4 0.82 195.47

TS, JS, BS, FS y = −1.05−0.06x1 +0.20x2 +2.08x3−0.23x5 0.83 188.94

TS, JS, BS, RS y = −0.73−0.01x1 +0.27x2 +1.59x3−0.18x6 0.83 189.74

TS, JS, HS, FS y = 0.16+0.18x1 +0.30x2 +0.34x4−0.03x5 0.74 232.76

TS, JS, HS, RS y = −0.07+0.24x1 +0.30x2 +0.65x4−0.20x6 0.77 221.50

TS, JS, FS, RS y = 0.25+0.28x1 +0.38x2 +0.19x5−0.17x6 0.75 228.47

TS, BS, HS, FS y = −1.45+0.13x1 +2.52x3 +0.006x4−0.27x5 0.80 204.76

TS, BS, HS, RS y = −1.04+0.21x1 +1.98x3−0.07x4−0.13x6 0.78 216.75

TS, BS, FS, RS y = −1.46+0.15x1 +2.52x3−0.25x5−0.02x6 0.80 204.63

TS, HS, FS, RS y = −0.32+0.52x1 +0.96x4−0.05x5−0.18x6 0.70 250.80

JS, BS, HS, FS y = −1.08+0.22x2 +2.23x3−0.25x4−0.19x5 0.83 187.37

JS, BS, HS, RS y = −0.79+0.27x2 +1.81x3−0.21x4−0.14x6 0.83 188.71

JS, BS, FS, RS y = −1.02+0.23x2 +1.97x3−0.14x5−0.10x6 0.84 185.84

JS, HS, FS, RS y = 0.13+0.35x2 +0.583x4 +0.09x5−0.21x6 0.77 222.73

BS, HS, FS, RS y = −1.44+2.60x3 +0.06x4−0.26x5−0.01x6 0.80 205.67

TABLE 6 | Expressions and performance for the model with five growth stage involved.

Combination grow stage Model expression R2 RMSE(kg/ha)

TS, JS, BS, HS, FS y = −1.06−0.05x1 +0.23x2 +2.26x3−0.24x4−0.18x5 0.83 187.25

TS, JS, BS, HS, RS y = −0.79−0.01x1 +0.28x2 +1.82x3−0.21x4−0.14x6 0.83 188.70

TS, JS, BS, FS, RS y = −1.02−0.01x1 +0.23x2 +1.98x3−0.14x5−0.10x6 0.84 185.83

TS, JS, HS, FS, RS y = 0.004+0.22x1 +0.32x2 +0.54x4 +0.07x5−0.22x6 0.77 220.48

TS, BS, HS, FS, RS y = −1.45+0.15x1 +2.45x3 +0.05x4−0.25x5−0.03x6 0.80 204.58

JS, BS, HS, FS, RS y = −1.04+0.24x2 +2.08x3−0.13x4−0.13x5−0.08x6 0.84 185.46
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of 0.84 and RMSE of 185.46. The included growth stages are
jointing stage (RNDVI[808,744]), booting stage (RNDVI[880,712]),
heading stage (RNDVI[888,736]), filling stage (RNDVI[808,744]),
and ripening stage (RNDVI[872,744]). The model is expressed as
Eq. (7):

YE = (−1.04 + 0.24 × RNDVI[808,744](Jointing)

+ 2.08 × RNDVI[880,712](Booting) − 0.13

× RNDVI[888,736](Heading) − 0.13

× RNDVI[808,744](Filling) − 0.08

× RNDVI[872,744](ripening)) × YR, (7)

Yield Estimation With All Grow Stage Combination
Yield estimation model including all optimal RNDVIs of
every growth stage is expressed as Eq. (8), R2 = 0.84,
RMSE = 185.45 kg/ha:

YE = (−0.98− 0.12 × RNDVI[888,720](Tillering) + 0.28

× RNDVI[808,744](Jointing) + 2.18

× RNDVI[880,712](Booting) − 0.23

× RNDVI[888,736](Heading) − 0.11

× RNDVI[808,744](Filling) − 0.06

× RNDVI[872,744](ripening)) × YR, (8)

3.3 F-Test for Optimal Model Selection
As can be seen in Table 7 and Figure 7, with the excessive number
of RNDVIs including in the models, R2-values do not increase
significantly while RMSE values don’t decrease significantly.
Yield estimation model would be complex if too many RNDVIs
are included in the estimation model, but a univariate model
using one RNDVI would decrease the estimation accuracy. In
order to identify the optimal yield estimation model with greatest
simplicity and accuracy simultaneously, all optimal multivariate
models were tested using F-test. The optimal estimation model
would be selected from the models that with F-test reaching
1% significant level and simultaneously with lower RMSE and
less RNDVIs included. As can be seen in Table 7, F-test of all
models reach 1% significant level. Then, taking into consideration
R2 and RMSE, the multivariate model including three RNDVIs,
with R2 of 0.83 and RMSE of 189.13 kg/ha, is identified as the
optimal estimation model. The equation of selected model is
expressed in Eq. (5).

Model Validation
The estimation model Eq. (5) is validated using leave-one-
out cross validation (LOOCV) method. The agreement between
estimated and measured yield is tested using RMSE. The scatter
plot of estimated and measured yield are shown in Figure 8.
Diagonal lines are the 1:1 line. Ideally, when points are located on
the 1:1 line, it should be a perfect match. As can be seen, all the
estimated yields are acceptable and a low average relative error of
3%, and an RMSE of 215.08 kg/ha are obtained.

DISCUSSION

Grain yield estimations with UAV-based remotely sensed data
have been carried out for many types of crops. Stroppiana et al.
(2015) used UAV-derived NDVI at one single growth stage to
construct rice yield estimation in northern Italy and with R2

of 0.5. Zhou et al. (2017) also constructed rice yield estimation
models with UAV-derived NDVI at one single growth stage
and NDVIs at two or more grows stages, with R2 of 0.75 for
univariate model and 0.76 for multivariate model, respectively.
Compared with those researches, our study presents the idea
of relative vegetation index and relative yield to improve the
rice yield estimation accuracy. As the results have shown, the
univariate model using RNDVI at booting stage obtained a R2

of 0.75 and the multivariate model including three RNDVIs,
i.e., RNDVI[808,744] at jointing stage, RNDVI[880,712] at booting
stage and RNDVI[808,744] at filling stage, gained a R2 of 0.83.
The results demonstrated that when using relative vegetation
index and the relative yield, a high accuracy of yield estimation
can be obtained.

In this study, the RNDVI at booting stage shows the highest
correlation with rice yield. This conclusion is consistent with
previous studies (Chang et al., 2005; Zhou et al., 2017), in
which booting stage was regarded as the optimal growth stage
for rice yield estimation. Booting stage is a transitional period
from vegetative growth to reproductive growth and can reflect
yield potential (Zhou et al., 2017). Combining booting stage
with other growth stages can further improve model estimation
accuracy. The great potential of booting stage used for rice yield
estimation is also proved in present study. As seen in Table 7, the
optimum univariate model and multivariate models all included
the RNDVIs at booting stage.

The large number of narrow spectral bands results in a
high inter-correlation between them (Darvishzadeh et al., 2008;
Yue et al., 2017). In our study, the correlation between

TABLE 7 | Models performance and F-test.

Model Expression R2 RMSE(kg/ha) F 1% level of significance

y = −0.60+1.55x3 0.75 228.04 58.51 YES

y = −1.45+2.65x3−0.26x5 0.80 205.74 36.11 YES

y = −1.06+0.20x2 +2.04x3−0.23x5 0.83 189.13 27.94 YES

y = −1.02+0.23x2 +1.97x3−0.14x5−0.10x6 0.84 185.84 20.57 YES

y = −1.04+0.24x2 +2.08x3−0.13x4−0.13x5−0.08x6 0.84 185.46 15.50 YES

y = −0.98−0.12x1 +0.28x2 +2.18x3−0.23x4−0.11x5−0.06x6 0.84 185.45 12.06 YES
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FIGURE 7 | Scatter plots of measured yield vs. estimated yield derived from the optimal estimation models with (A) one single growth stage involved; (B) two growth
stages involved; (C) three growth stages involved; (D) four growth stages; (E) five growth stages involved; (F) six growth stages involved.
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FIGURE 8 | Scatter plot of measured yield vs. estimated yield.

relative VI from all possible two-band combinations and relative
yield are used to identify the optimal band combination to
avoid the band autocorrelation and redundancy. The optimum

relative vegetation indices are mostly composed by the bands
located at red edge region (712, 720, 736, and 744 nm)
and near infrared region (808, 872, and 888 nm). These

Frontiers in Plant Science | www.frontiersin.org 10 April 2019 | Volume 10 | Article 453

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-10-00453 April 8, 2019 Time: 12:4 # 11

Wang et al. Rice Yield Estimation Using UAV

results are consistent with the previous study (Ren et al., 2011;
Fu et al., 2014; Verger et al., 2014). The bands in the red edge
region are sensitive to the vegetation changes while the bands in
near infrared region are sensitive to plant grow and can indicate
the health status of leaves.

In this study, we conducted a 1-year rice experiment with two
rice varieties and five nitrogen levels at a specific region. The
results obtained in this study may be limited by rice varieties
and research regions. In addition, due to the limitation of data
volume, no systematic comparison between the models with the
relative spectral index and with the traditional spectral index was
made. So, this method needs to be further validated by using
multi-year, multi-region, and multi-variety data.

CONCLUSION

The study proposed a rice yield estimation method with the
parcel-level relative vegetation index as input variables to
overcome the external effects, such as different background,
illumination and atmospheric conditions, on the absolute
differences of time-series vegetation indices. Three types of
relative vegetation indices were constructed using all possible
two-band combinations of discrete channels from 500 to 900 nm,
including RRVI, RNDVI, and RDVI. The main conclusions
drawn from this study are: (1) RNDVI is the optimal type
of relative vegetation index for rice yield estimation compared
with RRVI and RDVI, and the correlation between RNDVIs
and rice yield are significantly higher than RRVIs vs. yield and
RDVI vs. yield; (2) the optimal RNDVIs at different growth

stages are generally composed by bands in red edge and near
infrared regions; (3) the booting stage is the optimum stage
for yield estimation when estimation model constructed by
RNDVI at one single growth stage; (4) the multiple-growth-stage
model, including three RNDVIs, i.e., RNDVI[808,744] at jointing
stage, RNDVI[880,712] at booting stage and RNDVI[808,744] at
filling stage was determined as the optimum model among the
multivariate models that include RNDVIs at different growth
stages. The promising ability of parcel-level relative vegetation
indices for rice yield estimation is proven in this study, however,
the further applications of relative vegetation indices on rice
or other crop yield estimation are still needed for a solid
conclusion using more measurements. This will be carried out
in our future work.
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