
Carlsson, K and Ekre, F 2019 Tensors.jl — Tensor
Computations in Julia. Journal of Open Research
Software, 7: 7. DOI: https://doi.org/10.5334/jors.182

Journal of
open research software

SOFTWARE METAPAPER

Tensors.jl — Tensor Computations in Julia
Kristoffer Carlsson and Fredrik Ekre
Department of Industrial and Materials Science, Chalmers University of Technology, Gothenburg, SE
Corresponding author: Kristoffer Carlsson (kristoffer.carlsson@chalmers.se)

Tensors.jl is a Julia package that provides efficient computations with symmetric and non-symmetric
tensors. The focus is on the kind of tensors commonly used in e.g. continuum mechanics and fluid dynamics.
Exploiting Julia’s ability to overload Unicode infix operators and using Unicode in identifiers, implemented
tensor expressions commonly look very similar to their mathematical writing. This possibly reduces the
number of bugs in implementations. Operations on tensors are often compiled into the minimum assembly
instructions required, and, when beneficial, SIMD-instructions are used. Computations involving symmetric
tensors take symmetry into account to reduce computational cost. Automatic differentiation is supported,
which means that most functions written in pure Julia can be efficiently differentiated without having to
implement the derivative by hand. The package is useful in applications where efficient tensor operations
are required, e.g. in the Finite Element Method.

Keywords: tensors; continuum mechanics; fluid dynamics; constitutive modeling; finite element method
Funding statement: Support for this research was provided by the Swedish Research Council (VR), grant
no. 621-2013-3901 and grant no. 2015-05422.

(1) Overview
Introduction
Partial Differential Equations (PDEs) describing natural
phenomena are modelled using tensors of different order.
Two commonly studied problems are heat transfer, which
include temperature and heat flux (rank-0 and rank-1
tensor, respectively), and continuum mechanics, which
include stress and strain (rank-2 tensors) and the so-called
tangent stiffness (rank-4 tensor). These tensors are often
symmetric but may also be non-symmetric, for example in
finite deformation continuum mechanics.

In the implementation of numerical solution schemes
for such PDEs, a large number of expressions involving
tensors typically have to be computed. As an example,
in the Finite Element Method (FEM), the weak form of
the PDE to be solved is evaluated multiple times in every
element of the mesh. The total number of elements in
a model can easily exceed millions, and it is therefore
desirable to have access to a library that can perform these
tensor operations efficiently. Another aspect to consider is
the level of difficulty to implement tensor expressions as
computer source code based on their mathematical form.
A close correspondence between the source code and the
mathematical writing will likely lead to a quicker, less
error prone, implementation process.

The classical way of treating tensors in computational
mechanics is to use what is commonly called Voigt
notation or Voigt format, described in many classic FEM
textbooks [1, 3, 6]. In this format, second-order tensors are
stored in vectors1 of length 2

dimn or ndim (ndim + 1)/2 for the

non-symmetric and symmetric case, respectively, where
ndim denotes the number of spatial dimensions for which
the problem is formulated. Examples of second-order
tensors are the symmetric Cauchy stress σ and the non-
symmetric Kirchoff stress τ

T
symmetric,xx yy zz yz xz xyσ σ σ σ σ σ⎯ ⎡ ⎤= ⎣ ⎦σ � (1a)

	

[
T
non-symmetric,

xx yy zz yz xz

xy zy zx yx

τ τ τ τ τ

τ τ τ τ

⎯

⎤⎦

=τ

� (1b)

which are here represented in Voigt notation. Similarly,
fourth-order tensors are stored in square matrices where
the number of columns equals the length of the vector for
the second-order tensors in Voigt notation.

The purpose of Voigt notation is that some standard
linear algebra operators can be used for common tensor
operations such as open products, dot products and double
contractions. As an example, the double contraction
between a fourth-order tensor C and a second-order tensor
ε can be formulated as a matrix-vector multiplication, and
the open product between two second-order tensors as a
column vector times a row vector, viz.

	 ,ij ijkl klCσ ε= ↔ = Cσ ε⎯ ⎯
� (2a)

	
T .ijkl ij klE ν ν ⎯ ⎯= ↔ =E ν ν⎯ � (2b)

https://doi.org/10.5334/jors.182
mailto:kristoffer.carlsson@chalmers.se

Carlsson and Ekre: Tensors.jl — Tensor Computations in JuliaArt. 7, page 2 of 5

The left column is presented using the Einstein summation
convention and the right column is presented with the
corresponding, standard matrix operations.

In order to preserve the relation σijεij = σ–
Tε–, where σ

and ε are symmetric second-order tensors, it is common
to define

	
T[, , , , ,] , 2 ,xx yy zz yz xz xy ij ijε ε ε γ γ γ γ ε= =ε � (3)

where γij is usually denoted “engineering strains”.
While Voigt notation is simple to adopt when using

programming languages or libraries that provide linear
algebra functionality, it does, however, suffer from a few
drawbacks regarding both performance and clarity:

•	 Some operations, such as the scalar product between
a rank-2 and rank-1 tensor, become difficult since the
rank-2 tensor is not stored as a matrix.

•	 Indexing into a tensor stored in Voigt format is not
straightforward. Fetching the xy component of a
rank-2 tensor σ would look like σ [6], or σ[idx[1,2]]]
where idx is a lookup table matching the “Carte-
sian index” [1,2] to the “linear index” [6] which is the
location of σxy in the Voigt vector.

•	 Some operations will silently give wrong result when
naively applied to a tensor in Voigt notation. One
example is the norm function ij ijσ σ=σ . Using
the norm function for vectors will give the correct
answer if the tensor is stored as an non-symmetric ten-
sor. However, it will silently give the wrong result if the
tensor is stored as a symmetric tensor (since the off-
diagonal components will only be accounted for once).

•	 Since tensors in Voigt format are usually stored in
arrays that allows arbitrary number of elements, a
compiler cannot know the size of the array at compile
time. This prohibits optimal code to be generated.

•	 In order for certain operations to work as “expected”
for symmetric tensors, e.g. the double contraction
σijεij ↔ σ–

Tε–, the strain-like tensors are commonly
stored with a factor two on the off-diagonals. This
is a frequent source of confusion because the same
mathematical object is stored differently.

Tensors.jl was created in an attempt to overcome the
many deficiencies of Voigt notation. It is written in the
programming language Julia [2].

The main design goals have been:

1.	Performance – Operations should compile to (close
to) the bare minimum of assembly operations
needed. Symmetry should be exploited for compu-
tational efficiency. SIMD-instructions should be used
when computationally beneficial.

2.	Generality – The same code should work regardless
if the number types are double or single preci-
sion (denoted Float64 and Float32 in Julia) or
even user defined numerical types, e.g. dual numbers
used in forward mode automatic differentiation. It
should also be dimension independent so that the
same code can be used for one, two and three spatial
dimensions.

3.	Clarity – Implementation details, such as the particu-
lar way a tensor is stored, should not be visible to the
user. Symmetric and non-symmetric tensors should
behave the same, with the difference that opera-
tions on symmetric tensors should, if possible, be
faster. Operations should be visually similar to math-
ematical writing. This includes using Unicode infix
operators such as ⊗ for the open product and · for
the scalar product.

The main purpose of the software is to be used for solving
PDEs modelling physical phenomena (such as heat
flux and stress equilibrium). In particular this excludes
rectangular tensors, and tensors of dimension higher than
3, which are commonly used in e.g. machine learning.
Currently only rank-1, rank-2 and rank-4 tensors, in up to
3 dimensions, are implemented. We note that support for
rank-3 tensors fall within the scope of the package, but is
not yet implemented.

The Tensor and SymmetricTensor types
The foundation of the package are the two types
Tensor and SymmetricTensor. For rank-1 tensors
(vectors) a typealias called Vec is provided. The types
are parameterized according to the rank, the dimension
and the number type stored in the tensor.2 Hence, the
type Tensor{2,3,Float64} would represent a non-
symmetric second-order tensor in three dimension that
stores Float64 (64 bit floating point) numbers. A few
example of creating tensors of different rank, dimension
and number type is shown below:3

julia> σ = rand(SymmetricTensor{2,2})
2×2 Tensors.SymmetricTensor{2,2,Float64,3}:

0.590845	 0.766797
0.766797	 0.566237

julia> τ = rand(Tensor{2,2})
2×2 Tensors.Tensor{2,2,Float64,4}:

0.460085	 0.854147
0.794026	 0.200586

julia> x = rand(Vec{3,Float32}) # same as
rand(Tensor{1,3,Float32})
3-element Tensors.Tensor{1,3,Float32,3}:

0.950449
0.49083
0.589914

Operations on these tensors can now be performed. When
there is a corresponding mathematical symbol for the
operation, it can often be used directly:
julia> norm(τ)
1.1747430857785317

julia> σ · σ
2×2 Tensors.Tensor{2,2,Float64,4}:

0.0328058	 0.0608441
0.0608441	 0.139497

julia> x ⊗ x
3×3 Tensors.Tensor{2,3,Float32,9}:

0.648977	 0.70272	 0.478066
0.70272	 0.760913	 0.517655
0.478066	 0.517655	 0.352164

We note that these operations all get compiled into
very efficient machine code, and use SIMD whenever

Carlsson and Ekre: Tensors.jl — Tensor Computations in Julia Art. 7, page 3 of 5

it is beneficial. In Table 1 we show a non-exhaustive
summary of tensor operations that are currently
implemented.

Illustrative usage example
As an illustrative example of using the package, we here
give the mathematical formulation of an energy potential
and stress in large deformation continuum mechanics and
its implementation as a function in Julia.

For a deformation gradient F = I + ∇ ⊗ u, where u is
the displacement from the reference to the current
configuration, the right Cauchy-Green deformation tensor
is defined by C = F T · F. The Second Piola-Kirchoff stress
tensor S is derived from the Helmholtz free energy ψ by
the relation 2 C

∂Ψ
∂=S .

The free energy for a hyperelastic material can be
defined as

	
2ˆ() 1/2 (tr() 3) (1) ,bK JμΨ = − + −C C � (4)

where Ĉ = det(C)–1/3C and () ()J det det F C and the shear
and bulk modulus are given by μ and Kb, respectively.
This free energy function can be implemented in Julia
as:

function ψ(C, μ, Kb)
detC = det(C)
J = sqrt(detC)
Ĉ = detĈ (–1/3)*C
return 1/2*(μ * (trace(Ĉ)– 3) + Kb*(J-1)ˆ2)

end

The analytic expression for the Second Piola-Kirchoff
tensor is

1/3 1 12 det() (1/ 3tr()) (1) ,bK J Jμ − − −∂Ψ
= = − + −

∂
S C I C C C

C
� (5)

which can be implemented by the following function:
function S(C, μ, Kb)

I = one(C)
detC = det(C)
J = sqrt(detC)
invC = inv(C)
�return μ * detĈ (-1/3)*(I –
1/3*trace(C)*invC) + Kb*(J-1)*J*invC

end

These functions work in 1, 2 and 3 dimensions and have
good performance.

Automatic Differentiation
Automatic differentiation [4] (AD) is a numerical
method for differentiating functions implemented in a
programming language. AD has many advantages over
other numerical methods for differentiation. Comparing
it to numerical differentiation, where components are
perturbed to compute a gradient, AD does not suffer from
cancellation and can compute multiple partial derivatives
in a single function call. Tensors.jl supports AD
and as an example of its use, we here recall the function

2 ∂Ψ
∂= CS , compute it using AD, and compare with the

analytical result:
julia> H = rand(Tensor{2,3}); F = one(H) + H; C
= symmetric(F’ · F);

julia> 2 * gradient(C -> ψ (C, μ, Kb), C)
3×3 Tensors.SymmetricTensor{2,3,Float64,6}:

 7.35076	 -2.51778	  0.489453
-2.51778	  6.36214	 -3.21338
 0.489453	-3.21338	  8.21286

julia> S(C, μ, Kb)
3×3 Tensors.SymmetricTensor{2,3,Float64,6}:

 7.35076	 -2.51778	 0.489453
-2.51778	  6.36214	-3.21338
 0.489453	-3.21338	 8.21286

The slowdown from using AD instead of the analytic
version is about a factor of 3. It is also possible to compute
second-order derivatives exactly in an analogous manner
as the example for first order derivatives above.

The AD-functionality is built upon the dual numbers
defined in ForwardDiff.jl [5].

Performance
In this section we compare the performance of a selected
number of operations when using the Tensor types to
the Voigt format, implemented with standard Array
types.4 The results are shown in Table 2, where u denotes
a vector, A, Asym denote second-order non-symmetric
and symmetric tensors and C, Csym denote fourth-order
non-symmetric and symmetric tensors, respectively.
All tensors presented are in three dimensions. The

Table 1: Summary of implemented tensor operations. u,
v denotes vectors, A, B denotes second-order symmetric
or non-symmetric tensors, and C, D denotes fourth-
order symmetric or non-symmetric tensors. We note
that instead of using : for infix double contraction we
use � (written as \boxdot). This is because : does not
have the same operator precedence as multiplication in
Julia.

Operation Julia code infix

Single contraction

u · v (uivi)
dot(u, v) u · v

A · v (Aijvj)
dot(A, v) A · v

A · B (AijBjk)
dot(A, B) A · B

Double contraction

A : B (AijBij)
dcontract(A, B) A � B

C : B (CijklBkl)
dcontract(C, B) C � B

C : D (CijklDklmn)
dcontract(A, D) C � D

Outer product

u ⊗ v (uivj)
otimes(u, v) u ⊗ v

A ⊗ B (AijBkl)
otimes(A, B) A ⊗ B

Other operations

det(A) det(A)

inv(A) inv(A)

norm(A) norm(A)

AT transpose(A)

T1
2 ()+A A symmetric(A)

T1
2 () −A A skew(A)

Carlsson and Ekre: Tensors.jl — Tensor Computations in JuliaArt. 7, page 4 of 5

benchmarks were performed using the benchmarking
tool BenchmarkTools.jl.5

Correctness and performance testing
The package is tested for correctness using Continuous
Integration (CI) on macOS, Linux and Windows versions
of Julia. An extensive test suite based on unit testing is
used. The testing includes tensor identities, and tests of
different tensor operations. The results are compared with
the matrix/vector representation of the tensors using
standard Julia Arrays. Code coverage for the package
is currently at 95%. The examples in the documentation
are written as “doctests” which means that the code in
the examples are running as part of CI. This is to prevent
examples in the documentation from becoming stale. A
comprehensive set of benchmarks are implemented and
used to check that regressions in performance are not
introduced.

Implementation details
The elements of a tensor are stored internally in a Tuple.
In Julia, a Tuple is an immutable container, where the
length is part of the type. Consequently, when compiling
a function, the Julia compiler can statically know the
length of the tuple-container and use that information for
optimizations. Furthermore, tuples can be stored on the
stack which removes any use of expensive heap allocations,
alleviating the need to preallocate output buffers.

For symmetric tensors only the “lower half” of the
tensor is stored. A non-symmetric fourth-order tensors
in 3 dimensions has 81 elements, while the symmetric
version only need to store 36 elements.

Operations on tensors are frequently implemented
using, what in Julia are called, “generated functions”. This
allows the programmer to hook into the compilation
process, at the time where the types of the arguments
in the called function are known. Based on these types,
the programmer can generate arbitrary Julia code which
get compiled just like a normal function. This is, for
example, used to generate the SIMD code for different
tensor sizes.

Julia will also generate specialized code even when
a user defined numeric type is used as the elements
of the tensors. This is the case when doing automatic
differentiation where a dual-number is used as the
element type. This means that well performing code is
generated even for automatic differentiation.

Since the number of dimensions and ranks for the
tensors that this package support is limited, excessive
compilation and code generation is prevented.

Conclusion
We have presented the Julia package Tensors.jl. It
provides a framework for doing computations with non-
symmetric and symmetric tensors of rank-1, rank-2 and
rank-4 with arbitrary number types. The implementation
has many advantages over using the common Voigt format,
such as, higher performance, dimension generality, and
allows for a more direct mapping between the source code
and the mathematical notation. Automatic differentiation
for first and second-order derivatives is supported and is
implemented efficiently.

(2) Availability
Operating system
Any OS supported by Julia which include FreeBSD,
Windows, macOS, Linux, Raspberry Pi and other ARM
systems.

Programming language
Julia 0.6

Dependencies
The following packages are required to use Tensors.
jl:

•	ForwardDiff.jl (https://github.com/JuliaDiff/
ForwardDiff.jl) – Used for dual numbers which is the
engine behind the automatic differentiation func-
tionality.

•	SIMD.jl (https://github.com/eschnett/SIMD.jl) –
Used for SIMD operations.

These dependencies are automatically installed upon
installing via Pkg.add(“Tensors”).

List of contributors
Kristoffer Carlsson, Fredrik Ekre, Keita Nakamura

Table 2: Comparison of performance for some tensor
operations using Tensors.jl and Voigt format using
Julia Arrays.

Operation Tensor Array Speed-up

Single contraction

u · u 1.241 ns 9.795 ns ×7.9

A · u 2.161 ns 58.769 ns ×27.2

A · A 3.117 ns 44.395 ns ×14.2

Asym · Asym 5.125 ns 44.498 ns ×8.7

Double contraction

A : A 1.927 ns 12.189 ns ×6.3

Asym : Asym 1.927 ns 12.187 ns ×6.3

C : A 6.087 ns 78.554 ns ×12.9

C : C 60.820 ns 280.502 ns ×4.6

Csym : Csym 22.104 ns 281.003 ns ×12.7

Asym : Csym : Asym 9.466 ns 89.747 ns ×9.5

Outer product

u ⊗ u 2.167 ns 32.447 ns ×15.0

A ⊗ A 9.801 ns 6.568 ns ×8.8

Other operations

det(A) 1.924 ns 177.134 ns ×92.1

inv(Asym) 4.587 ns 635.858 ns ×138.6

norm(A) 1.990 ns 16.752 ns ×8.4

https://github.com/JuliaDiff/ForwardDiff.jl
https://github.com/JuliaDiff/ForwardDiff.jl
https://github.com/eschnett/SIMD.jl

Carlsson and Ekre: Tensors.jl — Tensor Computations in Julia Art. 7, page 5 of 5

How to cite this article: Carlsson, K and Ekre, F 2019 Tensors.jl — Tensor Computations in Julia. Journal of Open
Research Software, 7: 7. DOI: https://doi.org/10.5334/jors.182

Submitted: 11 June 2017 Accepted: 06 June 2018 Published: 21 March 2019

Copyright: © 2019 The Author(s). This is an open-access article distributed under the terms of the Creative Commons
Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

Journal of Open Research Software is a peer-reviewed open access journal published by
Ubiquity Press. OPEN ACCESS

Software location
Name: KristofferC/Tensors.jl (https://github.com/

KristofferC/Tensors.jl)
Persistent identifier: https://doi.org/10.5281/

zenodo.802357
Licence: MIT
Publisher: Kristoffer Carlsson
Version published: v0.7.1
Date published: 03/06/17

Code repository GitHub
Name: KristofferC/Tensors.jl (https://github.com/

KristofferC/Tensors.jl)
Licence: MIT
Date published: 25/05/16

Language
English

(3) Reuse potential
Since tensor computations is of such fundamental use
when modeling a large class of physical systems, a high
quality implementation has high reuse potential in
other packages modeling these physical systems, where
Tensors.jl can serve as a “backend” for the tensor
computations. One such example is the Finite Element
toolbox JuAFEM.jl6 where Tensors.jl handles all
the tensor computations. Extensions to the package are
welcome to be submitted as Pull Request to the GitHub
repository of the package. Support is available in terms
of documentation as well as an issue tracker on the
repository, which is open for anyone to post questions.

Notes
	 1	 The term vector here refers to an arbitrary length, one

dimensional array of numbers, in contrast to a rank-1
tensor which is also commonly called a vector.

	 2	 For technical reasons the total number of elements
stored is also a parameter of the type, but this is rarely
of interest to a user of the package.

	 3	 Unicode symbols like σ can be entered in the Julia
REPL by entering \sigma and pressing TAB.

	 4	 Benchmarks were performed with an Intel(R) Core(TM)
i5-7600K CPU @ 3.80 GHz CPU.

	 5	 https://github.com/JuliaCI/BenchmarkTools.jl.
	 6	 https://github.com/KristofferC/JuAFEM.jl.

Acknowledgements
We would like to thank the Julia community and,
especially, Jarett Revels for creating ForwardDiff.jl
and Erik Schnetter for creating SIMD.jl.

Competing Interests
The authors have no competing interests to declare.

References
1.	 Bathe, K J 1996 Finite Element Procedures. Prentice-

Hall International Series in. Prentice Hall. ISBN:
9780133014587.

2.	 Bezanson, J, et al. Jan. 2017 “Julia: A Fresh
Approach to Numerical Computing”. In: SIAM Review,
59(1): 65–98. ISSN: 0036-1445. DOI: https://doi.
org/10.1137/141000671

3.	 Hughes, T J R 1987 The finite element method: linear
static and dynamic finite element analysis. Englewood
Cliffs, N.J.: Prentice-Hall International. ISBN: 0-13-
317025-X.

4.	 Naumann, U 2012 The Art of Differentiating
Computer Programs: An Introduction to Algorithmic
Differentiation. Philadelphia, PA, USA: Society
for Industrial and Applied Mathematics. ISBN:
161197206X, 9781611972061.

5.	 Revels, J, Lubin, M and Papamarkou, T 2016
“Forward-Mode Automatic Differentiation in Julia”.
In: arXiv:1607.07892 [cs.MS]. URL: https://arxiv.org/
abs/1607.07892.

6.	 Zienkiewicz, O C, Taylor, R L and Fox, D 2014
“Chapter 1 – General Problems in Solid Mechanics and
Nonlinearity”. In: The Finite Element Method for Solid
and Structural Mechanics (Seventh Edition), Zienkiewicz,
O C, Taylor, R L and Fox, D (eds.), 1–20. Seventh Edition.
Oxford: Butterworth-Heinemann. ISBN: 978-1-85617-
634-7ss. DOI: https://doi.org/10.1016/B978-1-85617-
634-7.00001-6.

https://doi.org/10.5334/jors.182
http://creativecommons.org/licenses/by/4.0/
https://github.com/KristofferC/Tensors.jl
https://github.com/KristofferC/Tensors.jl
https://doi.org/10.5281/zenodo.802357
https://doi.org/10.5281/zenodo.802357
https://github.com/KristofferC/Tensors.jl
https://github.com/KristofferC/Tensors.jl
https://github.com/JuliaCI/BenchmarkTools.jl
https://github.com/KristofferC/JuAFEM.jl
https://doi.org/10.1137/141000671
https://doi.org/10.1137/141000671
https://arxiv.org/abs/1607.07892
https://arxiv.org/abs/1607.07892
https://doi.org/10.1016/B978-1-85617-634-7.00001-6
https://doi.org/10.1016/B978-1-85617-634-7.00001-6

	(1) Overview
	Introduction
	The Tensor and SymmetricTensor types
	Illustrative usage example
	Automatic Differentiation
	Performance
	Correctness and performance testing
	Implementation details
	Conclusion

	(2) Availability
	Operating system
	Programming language
	Dependencies
	List of contributors
	Software location
	Code repository
	Language

	(3) Reuse potential
	Acknowledgements
	Notes
	Acknowledgements
	Competing Interests
	References
	Table 1
	Table 2

