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Tensors.jl is a Julia package that provides efficient computations with symmetric and non-symmetric 
tensors. The focus is on the kind of tensors commonly used in e.g. continuum mechanics and fluid dynamics. 
Exploiting Julia’s ability to overload Unicode infix operators and using Unicode in identifiers, implemented 
tensor expressions commonly look very similar to their mathematical writing. This possibly reduces the 
number of bugs in implementations. Operations on tensors are often compiled into the minimum assembly 
instructions required, and, when beneficial, SIMD-instructions are used. Computations involving symmetric 
tensors take symmetry into account to reduce computational cost. Automatic differentiation is supported, 
which means that most functions written in pure Julia can be efficiently differentiated without having to 
implement the derivative by hand. The package is useful in applications where efficient tensor operations 
are required, e.g. in the Finite Element Method.
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(1) Overview
Introduction
Partial Differential Equations (PDEs) describing natural 
phenomena are modelled using tensors of different order. 
Two commonly studied problems are heat transfer, which 
include temperature and heat flux (rank-0 and rank-1 
tensor, respectively), and continuum mechanics, which 
include stress and strain (rank-2 tensors) and the so-called 
tangent stiffness (rank-4 tensor). These tensors are often 
symmetric but may also be non-symmetric, for example in 
finite deformation continuum mechanics.

In the implementation of numerical solution schemes 
for such PDEs, a large number of expressions involving 
tensors typically have to be computed. As an example, 
in the Finite Element Method (FEM), the weak form of 
the PDE to be solved is evaluated multiple times in every 
element of the mesh. The total number of elements in 
a model can easily exceed millions, and it is therefore 
desirable to have access to a library that can perform these 
tensor operations efficiently. Another aspect to consider is 
the level of difficulty to implement tensor expressions as 
computer source code based on their mathematical form. 
A close correspondence between the source code and the 
mathematical writing will likely lead to a quicker, less 
error prone, implementation process.

The classical way of treating tensors in computational 
mechanics is to use what is commonly called Voigt 
notation or Voigt format, described in many classic FEM 
textbooks [1, 3, 6]. In this format, second-order tensors are 
stored in vectors1 of length 2

dimn  or ndim (ndim + 1)/2 for the 

non-symmetric and symmetric case, respectively, where 
ndim denotes the number of spatial dimensions for which 
the problem is formulated. Examples of second-order 
tensors are the symmetric Cauchy stress σ and the non-
symmetric Kirchoff stress τ

T
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which are here represented in Voigt notation. Similarly, 
fourth-order tensors are stored in square matrices where 
the number of columns equals the length of the vector for 
the second-order tensors in Voigt notation.

The purpose of Voigt notation is that some standard 
linear algebra operators can be used for common tensor 
operations such as open products, dot products and double 
contractions. As an example, the double contraction 
between a fourth-order tensor C and a second-order tensor 
ε can be formulated as a matrix-vector multiplication, and 
the open product between two second-order tensors as a 
column vector times a row vector, viz.

	 ,ij ijkl klCσ ε= ↔ = Cσ ε⎯ ⎯
� (2a)

	
T .ijkl ij klE ν ν ⎯ ⎯= ↔ =E ν ν⎯ � (2b)

https://doi.org/10.5334/jors.182
mailto:kristoffer.carlsson@chalmers.se


Carlsson and Ekre: Tensors.jl — Tensor Computations in JuliaArt. 7, page 2 of 5 

The left column is presented using the Einstein summation 
convention and the right column is presented with the 
corresponding, standard matrix operations.

In order to preserve the relation σijεij = σ–
Tε–, where σ 

and ε are symmetric second-order tensors, it is common 
to define

	
T[ , , , , , ] , 2 ,xx yy zz yz xz xy ij ijε ε ε γ γ γ γ ε= =ε � (3)

where γij is usually denoted “engineering strains”.
While Voigt notation is simple to adopt when using 

programming languages or libraries that provide linear 
algebra functionality, it does, however, suffer from a few 
drawbacks regarding both performance and clarity:

•	 Some operations, such as the scalar product between 
a rank-2 and rank-1 tensor, become difficult since the 
rank-2 tensor is not stored as a matrix.

•	 Indexing into a tensor stored in Voigt format is not 
straightforward. Fetching the xy component of a 
rank-2 tensor σ would look like σ [6], or σ[idx[1,2]]] 
where idx is a lookup table matching the “Carte-
sian index” [1,2] to the “linear index” [6] which is the 
location of σxy in the Voigt vector.

•	 Some operations will silently give wrong result when 
naively applied to a tensor in Voigt notation. One 
example is the norm function ij ijσ σ=σ . Using 
the norm function for vectors will give the correct 
answer if the tensor is stored as an non-symmetric ten-
sor. However, it will silently give the wrong result if the 
tensor is stored as a symmetric tensor (since the off-
diagonal components will only be accounted for once).

•	 Since tensors in Voigt format are usually stored in 
arrays that allows arbitrary number of elements, a 
compiler cannot know the size of the array at compile 
time. This prohibits optimal code to be generated.

•	 In order for certain operations to work as “expected” 
for symmetric tensors, e.g. the double contraction 
σijεij ↔ σ–

Tε–, the strain-like tensors are commonly 
stored with a factor two on the off-diagonals. This 
is a frequent source of confusion because the same 
mathematical object is stored differently.

Tensors.jl was created in an attempt to overcome the 
many deficiencies of Voigt notation. It is written in the 
programming language Julia [2].

The main design goals have been:

1.	Performance – Operations should compile to (close 
to) the bare minimum of assembly operations 
needed. Symmetry should be exploited for compu-
tational efficiency. SIMD-instructions should be used 
when computationally beneficial.

2.	Generality – The same code should work regardless 
if the number types are double or single preci-
sion (denoted Float64 and Float32 in Julia) or 
even user defined numerical types, e.g. dual numbers 
used in forward mode automatic differentiation. It 
should also be dimension independent so that the 
same code can be used for one, two and three spatial 
dimensions.

3.	Clarity – Implementation details, such as the particu-
lar way a tensor is stored, should not be visible to the 
user. Symmetric and non-symmetric tensors should 
behave the same, with the difference that opera-
tions on symmetric tensors should, if possible, be 
faster. Operations should be visually similar to math-
ematical writing. This includes using Unicode infix 
operators such as ⊗ for the open product and · for 
the scalar product.

The main purpose of the software is to be used for solving 
PDEs modelling physical phenomena (such as heat 
flux and stress equilibrium). In particular this excludes 
rectangular tensors, and tensors of dimension higher than 
3, which are commonly used in e.g. machine learning. 
Currently only rank-1, rank-2 and rank-4 tensors, in up to 
3 dimensions, are implemented. We note that support for 
rank-3 tensors fall within the scope of the package, but is 
not yet implemented.

The Tensor and SymmetricTensor types
The foundation of the package are the two types 
Tensor and SymmetricTensor. For rank-1 tensors 
(vectors) a typealias called Vec is provided. The types 
are parameterized according to the rank, the dimension 
and the number type stored in the tensor.2 Hence, the 
type Tensor{2,3,Float64} would represent a non-
symmetric second-order tensor in three dimension that 
stores Float64 (64 bit floating point) numbers. A few 
example of creating tensors of different rank, dimension 
and number type is shown below:3

julia> σ = rand(SymmetricTensor{2,2})
2×2 Tensors.SymmetricTensor{2,2,Float64,3}:

0.590845	 0.766797
0.766797	 0.566237

julia> τ = rand(Tensor{2,2})
2×2 Tensors.Tensor{2,2,Float64,4}:

0.460085	 0.854147
0.794026	 0.200586

julia> x = rand(Vec{3,Float32}) # same as 
rand(Tensor{1,3,Float32})
3-element Tensors.Tensor{1,3,Float32,3}:

0.950449
0.49083
0.589914

Operations on these tensors can now be performed. When 
there is a corresponding mathematical symbol for the 
operation, it can often be used directly:
julia> norm(τ)
1.1747430857785317

julia> σ · σ
2×2 Tensors.Tensor{2,2,Float64,4}:

0.0328058	 0.0608441
0.0608441	 0.139497

julia> x ⊗ x
3×3 Tensors.Tensor{2,3,Float32,9}:

0.648977	 0.70272	 0.478066
0.70272	 0.760913	 0.517655
0.478066	 0.517655	 0.352164

We note that these operations all get compiled into 
very efficient machine code, and use SIMD whenever 
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it is beneficial. In Table 1 we show a non-exhaustive 
summary of tensor operations that are currently 
implemented.

Illustrative usage example
As an illustrative example of using the package, we here 
give the mathematical formulation of an energy potential 
and stress in large deformation continuum mechanics and 
its implementation as a function in Julia. 

For a deformation gradient F = I + ∇ ⊗ u, where u is 
the displacement from the reference to the current 
configuration, the right Cauchy-Green deformation tensor 
is defined by C = F T · F. The Second Piola-Kirchoff stress 
tensor S is derived from the Helmholtz free energy ψ by 
the relation 2 C

∂Ψ
∂=S .

The free energy for a hyperelastic material can be 
defined as

	
2ˆ( ) 1/2 (tr( ) 3) ( 1) ,bK JμΨ = − + −C C � (4)

where Ĉ  = det(C)–1/3C and ( ) ( )J det det F C  and the shear 
and bulk modulus are given by μ and Kb, respectively. 
This free energy function can be implemented in Julia 
as:

function ψ(C, μ, Kb)
detC = det(C)
J = sqrt(detC)
Ĉ = detĈ (–1/3)*C
return 1/2*(μ * (trace(Ĉ )– 3) + Kb*(J-1)ˆ2)

end

The analytic expression for the Second Piola-Kirchoff 
tensor is

1/3 1 12 det( ) ( 1/ 3tr( ) ) ( 1) ,bK J Jμ − − −∂Ψ
= = − + −

∂
S C I C C C

C
� (5)

which can be implemented by the following function:
function S(C, μ, Kb)

I = one(C)
detC = det(C)
J = sqrt(detC)
invC = inv(C)
�return μ * detĈ  (-1/3)*(I – 
1/3*trace(C)*invC) + Kb*(J-1)*J*invC

end

These functions work in 1, 2 and 3 dimensions and have 
good performance.

Automatic Differentiation
Automatic differentiation [4] (AD) is a numerical 
method for differentiating functions implemented in a 
programming language. AD has many advantages over 
other numerical methods for differentiation. Comparing 
it to numerical differentiation, where components are 
perturbed to compute a gradient, AD does not suffer from 
cancellation and can compute multiple partial derivatives 
in a single function call. Tensors.jl supports AD 
and as an example of its use, we here recall the function 

2 ∂Ψ
∂= CS , compute it using AD, and compare with the 

analytical result:
julia> H = rand(Tensor{2,3}); F = one(H) + H; C 
= symmetric(F’ · F);

julia> 2 * gradient(C -> ψ (C, μ, Kb), C)
3×3 Tensors.SymmetricTensor{2,3,Float64,6}:

 7.35076	 -2.51778	  0.489453
-2.51778	  6.36214	 -3.21338
 0.489453	-3.21338	  8.21286

julia> S(C, μ, Kb)
3×3 Tensors.SymmetricTensor{2,3,Float64,6}:

 7.35076	 -2.51778	 0.489453
-2.51778	  6.36214	-3.21338
 0.489453	-3.21338	 8.21286

The slowdown from using AD instead of the analytic 
version is about a factor of 3. It is also possible to compute 
second-order derivatives exactly in an analogous manner 
as the example for first order derivatives above.

The AD-functionality is built upon the dual numbers 
defined in ForwardDiff.jl [5].

Performance
In this section we compare the performance of a selected 
number of operations when using the Tensor types to 
the Voigt format, implemented with standard Array 
types.4 The results are shown in Table 2, where u denotes 
a vector, A, Asym denote second-order non-symmetric 
and symmetric tensors and C, Csym denote fourth-order 
non-symmetric and symmetric tensors, respectively. 
All tensors presented are in three dimensions. The 

Table 1: Summary of implemented tensor operations. u, 
v denotes vectors, A, B denotes second-order symmetric 
or non-symmetric tensors, and C, D denotes fourth-
order symmetric or non-symmetric tensors. We note 
that instead of using : for infix double contraction we 
use � (written as \boxdot). This is because : does not 
have the same operator precedence as multiplication in 
Julia.

Operation Julia code infix

Single contraction  

u · v (uivi) 
dot(u, v) u · v

A · v  (Aijvj) 
dot(A, v) A · v

A · B (AijBjk) 
dot(A, B) A · B

Double contraction 

A : B (AijBij) 
dcontract(A, B)  A � B

C : B (CijklBkl) 
dcontract(C, B)  C � B

C : D (CijklDklmn) 
dcontract(A, D)  C � D

Outer product  

u ⊗ v (uivj) 
otimes(u, v)  u ⊗ v

A ⊗ B (AijBkl) 
otimes(A, B)  A ⊗ B

Other operations 

det(A) det(A)

inv(A) inv(A)

norm(A) norm(A)

AT transpose(A)

T1
2 ( )+A A symmetric(A)

T1
2 ( ) −A A skew(A)



Carlsson and Ekre: Tensors.jl — Tensor Computations in JuliaArt. 7, page 4 of 5 

benchmarks were performed using the benchmarking 
tool BenchmarkTools.jl.5

Correctness and performance testing
The package is tested for correctness using Continuous 
Integration (CI) on macOS, Linux and Windows versions 
of Julia. An extensive test suite based on unit testing is 
used. The testing includes tensor identities, and tests of 
different tensor operations. The results are compared with 
the matrix/vector representation of the tensors using 
standard Julia Arrays. Code coverage for the package 
is currently at 95%. The examples in the documentation 
are written as “doctests” which means that the code in 
the examples are running as part of CI. This is to prevent 
examples in the documentation from becoming stale. A 
comprehensive set of benchmarks are implemented and 
used to check that regressions in performance are not 
introduced.

Implementation details
The elements of a tensor are stored internally in a Tuple. 
In Julia, a Tuple is an immutable container, where the 
length is part of the type. Consequently, when compiling 
a function, the Julia compiler can statically know the 
length of the tuple-container and use that information for 
optimizations. Furthermore, tuples can be stored on the 
stack which removes any use of expensive heap allocations, 
alleviating the need to preallocate output buffers.

For symmetric tensors only the “lower half” of the 
tensor is stored. A non-symmetric fourth-order tensors 
in 3 dimensions has 81 elements, while the symmetric 
version only need to store 36 elements.

Operations on tensors are frequently implemented 
using, what in Julia are called, “generated functions”. This 
allows the programmer to hook into the compilation 
process, at the time where the types of the arguments 
in the called function are known. Based on these types, 
the programmer can generate arbitrary Julia code which 
get compiled just like a normal function. This is, for 
example, used to generate the SIMD code for different 
tensor sizes.

Julia will also generate specialized code even when 
a user defined numeric type is used as the elements 
of the tensors. This is the case when doing automatic 
differentiation where a dual-number is used as the 
element type. This means that well performing code is 
generated even for automatic differentiation.

Since the number of dimensions and ranks for the 
tensors that this package support is limited, excessive 
compilation and code generation is prevented.

Conclusion
We have presented the Julia package Tensors.jl. It 
provides a framework for doing computations with non-
symmetric and symmetric tensors of rank-1, rank-2 and 
rank-4 with arbitrary number types. The implementation 
has many advantages over using the common Voigt format, 
such as, higher performance, dimension generality, and 
allows for a more direct mapping between the source code 
and the mathematical notation. Automatic differentiation 
for first and second-order derivatives is supported and is 
implemented efficiently.

(2) Availability
Operating system
Any OS supported by Julia which include FreeBSD, 
Windows, macOS, Linux, Raspberry Pi and other ARM 
systems.

Programming language
Julia 0.6

Dependencies
The following packages are required to use Tensors.
jl:

•	ForwardDiff.jl (https://github.com/JuliaDiff/
ForwardDiff.jl) – Used for dual numbers which is the 
engine behind the automatic differentiation func-
tionality.

•	SIMD.jl (https://github.com/eschnett/SIMD.jl) – 
Used for SIMD operations.

These dependencies are automatically installed upon 
installing via Pkg.add(“Tensors”).

List of contributors
Kristoffer Carlsson, Fredrik Ekre, Keita Nakamura

Table 2: Comparison of performance for some tensor 
operations using Tensors.jl and Voigt format using 
Julia Arrays.

Operation Tensor Array Speed-up

Single contraction   

u · u  1.241 ns  9.795 ns  ×7.9

A · u   2.161 ns  58.769 ns  ×27.2 

A · A  3.117 ns  44.395 ns  ×14.2 

Asym · Asym  5.125 ns  44.498 ns  ×8.7

Double contraction   

A : A  1.927 ns  12.189 ns  ×6.3

Asym : Asym  1.927 ns  12.187 ns  ×6.3

C : A  6.087 ns  78.554 ns  ×12.9

C : C  60.820 ns  280.502 ns  ×4.6

Csym : Csym  22.104 ns  281.003 ns  ×12.7

Asym : Csym : Asym  9.466 ns  89.747 ns  ×9.5

Outer product   

u ⊗ u  2.167 ns  32.447 ns  ×15.0

A ⊗ A  9.801 ns  6.568 ns  ×8.8

Other operations   

det(A)  1.924 ns  177.134 ns  ×92.1

inv(Asym)  4.587 ns  635.858 ns  ×138.6

norm(A)  1.990 ns  16.752 ns  ×8.4

https://github.com/JuliaDiff/ForwardDiff.jl
https://github.com/JuliaDiff/ForwardDiff.jl
https://github.com/eschnett/SIMD.jl
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Software location
Name: KristofferC/Tensors.jl (https://github.com/

KristofferC/Tensors.jl)
Persistent identifier: https://doi.org/10.5281/

zenodo.802357
Licence: MIT
Publisher: Kristoffer Carlsson
Version published: v0.7.1
Date published: 03/06/17

Code repository GitHub
Name: KristofferC/Tensors.jl (https://github.com/

KristofferC/Tensors.jl)
Licence: MIT
Date published: 25/05/16

Language
English

(3) Reuse potential
Since tensor computations is of such fundamental use 
when modeling a large class of physical systems, a high 
quality implementation has high reuse potential in 
other packages modeling these physical systems, where 
Tensors.jl can serve as a “backend” for the tensor 
computations. One such example is the Finite Element 
toolbox JuAFEM.jl6 where Tensors.jl handles all 
the tensor computations. Extensions to the package are 
welcome to be submitted as Pull Request to the GitHub 
repository of the package. Support is available in terms 
of documentation as well as an issue tracker on the 
repository, which is open for anyone to post questions.

Notes
	 1	 The term vector here refers to an arbitrary length, one 

dimensional array of numbers, in contrast to a rank-1 
tensor which is also commonly called a vector.

	 2	 For technical reasons the total number of elements 
stored is also a parameter of the type, but this is rarely 
of interest to a user of the package.

	 3	 Unicode symbols like σ can be entered in the Julia 
REPL by entering \sigma and pressing TAB.

	 4	 Benchmarks were performed with an Intel(R) Core(TM) 
i5-7600K CPU @ 3.80 GHz CPU.

	 5	 https://github.com/JuliaCI/BenchmarkTools.jl.
	 6	 https://github.com/KristofferC/JuAFEM.jl.
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