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Abstract 

In this paper, we propose a new unsupervised feature selection algorithm by considering the nonlinear 

and similarity relationships within the data. To achieve this, we apply the kernel method and local 

structure learning to consider the nonlinear relationship between features and the local similarity 

between features. Specifically, we use a kernel function to map each feature of the data into the kernel 

space. In the high-dimensional kernel space, different features correspond to different weights, and 

zero weights are unimportant features (e.g. redundant features). Furthermore, we consider the 

similarity between features through local structure learning, and propose an effective optimization 

method to solve it. The experimental results show that the proposed algorithm achieves better 

performance than the comparison algorithm. 
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1- Introduction 

With the advent of the digital age, a large amount of data has been generated. These data is difficult to deal with in 

terms of human capabilities and efficiency [1]. At this point, data mining and machine learning are born. In many learning 

tasks in machine learning (e.g., classification, clustering et al.), it is often difficult to process high-dimensional [2] data. 

Moreover, in many cases, the processing time and amount of calculation of the model are greatly improved when 

processing high-dimensional data. Therefore, it is necessary to use the feature selection algorithm [3-5] to preprocess 

(i.e., dimensionality reduction) high-dimensional data. 

Feature selection is the selection of a subset of features that represent the overall characteristics of the data [6, 7]. In 

the existing feature selection algorithms, they often apply different weights to different features through a sparse 

regularization factor, thereby selecting relatively important features [26-29]. For example, Zhu proposes Local and 

Global Structure Preservation for Robust Unsupervised Spectral Feature Selection, which maintains the local structure 

of features by feature self-expression and maintains a global representation of features by low rank representation of 

sparse regularization factors. This method also uses local structure learning to maintain the local structure of the sample 

points. However, there are still some limitations to the existing feature selection algorithms that need to be addressed. 

First, there are some feature selection algorithms that take into account the similarity between sample points, although 

it can take into account the local structural information of the data to some extent. But it has not been applied to the 

features, which is a small flaw. After considering the similarity of features, we can find that among some similar features, 

only a part of the features can be selected. Because it is clear that in similar features, the probability of having redundant 

features is large. Secondly, according to the kernel function in SVM, we can know that in low-dimensional space, only 

the linear relationship between features can be mined. When the features are mapped into a high-dimensional space, the 
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nonlinear relationship between the features is linearly separable in the high-dimensional space. In this way, the 

relationship within the feature can be more fully explored, thus making the mining more thorough. 

This paper proposes a new unsupervised feature selection algorithm to deal with the above two problems. Specifically, 

for the nonlinearity of the feature, we use a Gaussian kernel function to map each feature to a kernel matrix and then 

apply a weight to each feature. The important feature pairs have a large weight value, and the relatively unimportant 

feature (i.e., redundant feature) corresponds to a weight value of zero. For the similarity of features, we use local structure 

learning to consider the similarity between features. At the same time, the local structure of the feature can be maintained. 

For our proposed algorithm, we adopt the method of alternating iterative optimization, so that the algorithm is gradually 

decremented in each iteration, and finally reaches convergence. The main contributions we have listed for our approach 

are as follows. 

 The similarity and non-linear relationship between features are considered simultaneously on a framework. The 

relationship between features is more fully explored through kernel sparse learning and local structure learning, 

thus effectively removing redundant features. 

 The global structure of the data is maintained by low rank constraints, and complements the local structure learning. 

At the same time, low rank constraints can also remove noise samples and outliers, which improves the robustness 

of the algorithm to some extent. 

 We propose an algorithm of alternating iterative optimization to solve our objective function. The method 

gradually reduces the value of the objective function in each iteration and finally converges. At the same time, we 

also use theory to prove the convergence of our proposed algorithm. The experimental results also show that 

compared with other comparison algorithms, our proposed algorithm achieves better results on real data sets. 

2- Related Work 

Feature selection is an important way of data pre-processing. It mainly looks for a subset of features that represent 

the original data. Due to the popularity of sparse learning, most of the existing feature selection algorithms use sparse 

learning. However, from the perspective of machine learning, the existing feature selection algorithms are mainly divided 

into unsupervised feature selection algorithm, semi-supervised feature selection algorithm and supervised feature 

selection algorithm. 

In the unsupervised feature selection algorithm of the past two years, Almusallam et al. proposed an efficient 

unsupervised feature selection for streaming features [8]. The algorithm uses the K-means algorithm to aggregate 

features that are not known into a feature stream. It uses three independent similarity measures to determine whether to 

add existing features to the subset features by calculating the similarity measure. Wan et al. proposed global and intrinsic 

geometric structure embedding for unsupervised feature selection [11]. This method takes into account the information 

difference between the original feature space and the low-dimensional subspace. The projection matrix is constrained 

by the 𝑙2 or 𝑙2,1 − norm to select more sparse and more discriminative properties. 

At the same time, some new feature selection algorithms have been proposed in the last two years. For example, Xue 

et al. proposed online weighted multi-task feature selection [9]. This paper proposes a weighted multitasking model that 

not only selects important features, but also sparse solutions. At the same time, the convergence speed of the algorithm 

is also guaranteed. Liu et al. proposed global and local structure preservation for feature selection [10]. The article mainly 

states that it is extremely important to maintain the global similar structure and local geometry of the data for supervised 

feature selection algorithms. For the unsupervised feature selection algorithm, it is more important to maintain the local 

geometry of the data. Li et al. proposed a stable feature selection algorithm [12]. The algorithm is a stable feature 

selection algorithm based on energy learning. It uses 𝑙1 or 𝑙2 regularization term to investigate its stability. Tsagris et al. 

proposed feature selection for high-dimensional temporal data [13]. The algorithm extends the constraint based feature 

selection algorithm for high-dimensional temporal data, and finally achieves good results.  

There are some interesting feature selection algorithms. For example, Zhao et al. proposed cost-sensitive feature 

selection based on adaptive neighborhood granularity with multi-level confidence [14]. The algorithm establishes a fast 

backtracking based on the accuracy of the data, and designs an adaptive domain rough set model. A trade-off between 

test cost and misclassification cost to select useful features. Wang et al. proposed category specific dictionary learning 

for attribute specific feature selection [15]. This article proposes a method of combining label learning with dictionary 

learning. Feature selection is implemented at the dictionary level, which can better preserve structural information. At 

the same time, the intra-class noise is suppressed. Sheeja et al. proposed a novel feature selection method using fuzzy 

rough sets [16]. The algorithm studies the properties of fuzzy rough approximations, using the divergence metrics of 

fuzzy sets to define, and using fuzzy measures to express the different fuzzy sets. Zhang et al. proposed a fast feature 

selection algorithm based on swarm intelligence in acoustic defect detection [17]. The algorithm transforms the feature 

selection into a global optimization problem, and proposes a filter-based feature global optimization framework and 

mathematical model. Finally, the algorithm takes the shortest time in the case of equal performance. 
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3- Our Method 

In this section, we first introduce the symbols used in this article and then explain our proposed Unsupervised Feature 

Selection Algorithm via Local Structure Learning and Kernel Function(Abbreviated as: LSK FS) , in Sections 3.1 and 

3.2, respectively, and then optimize the proposed optimization method in Section 3.3. Finally, we analysis the 

convergence of the objective function in Section 3.4. 

3-1- Notations 

For the data matrix n dX R , the i-th row and the j-th column are denoted as i
X and

jX  respectively, and the elements 

of the i-th row and the j-th column are denoted as 
,i jx . The trace of the matrix X is denoted by ( )tr X , T

X denotes the 

transpose of the matrix X, and 1
X represents the inverse of the matrix X. We also denote the norm and norm of X 

respectively as 
2 2

2 2

n di

jF i j
x x  X  and 

1 1

d

jj
X x


 . 

3-2- LSK FS Algorithm 

Suppose a given sample data set n dΧ R , where n and d represent the number of samples and the number of attributes, 

respectively. 

This paper first breaks the data set n dΧ R  into d column vectors, each vector 1, 1,...,n

ix R i d  . Then it treats each 

element in each
ix  as an independent feature value ijx R, j = 1,...,n . And projects them into the kernel space to get the 

kernel matrix ( )i n nK R , namely: 

1 1 1 2 1

2 1 2 2 2( )

1 2

( , ) ( , ) ( , )

( , ) ( , ) ( , )

( , ) ( , ) ( , )

i i i i i in

i i i i i ini

in i in i in in

k x x k x x k x x

k x x k x x k x x

k x x k x x k x x

 
 
 
 
 
 

K

…

…

… … … …

…
                                                                                                                                              

(1) 

Thus the original n dX R  becomes d kernel matrices. 

The unsupervised feature selection algorithm mainly mines more representative features in the data. In the absence 

of the class label Y, using the data matrix X as a response matrix, the internal structure of the original features of the 

data can be better preserved [18, 19]. In order to fully exploit the nonlinear relationship of data features. Get the 

following expression: 

( )

1

d
i

i

i

α


Χ K W

                                                                                                                                                                                      
(2) 

Where n dW R  represents the kernel coefficient matrix, 1dα R is used to perform feature selection, which is equivalent 

to the weight vector of the feature, iα  is an element of the vector α ,  i n nΚ R  is the kernel matrix. 

Predecessors have proved that the local structure between data can be used to reduce the dimension [20], so this paper 

makes local structure learning by establishing a similarity matrix between data features in low-dimensional space. The 

following formula is obtained through local structure learning: 

2

,, 2
min

d T T

i j i ji j
x x s

Z
W W                                                                                                                                                                      (3) 

Where 1n

ix R   represents i-th feature. n dW R  is the conversion matrix of high-dimensional data in low-dimensional 

space, ,i js  is an element of matrix S, indicating the similarity between feature ix and feature jx . If the feature ix  is the k-

th nearest neighbor of the feature jx , then the value ,i js is obtained by the Gaussian kernel function; otherwise =0. In order 

to make X get a better fitting effect, and consider the structural relationship between data features in low-dimensional 

space, we get the following formula: 
2

2
( )

1 ,, 2, ,
1

min
d

di T T

i i j i ji j
i F

α λ x x s


   
S W α

X K W W W                                                                                                                                     (4) 

Since the similarity matrix S is particularly affected by the influence of parameters σ . In order to reduce the number 

of adjustment parameters, a more efficient similarity matrix is learned. In this paper, structural learning and low-

dimensional space learning are alternated to achieve their optimal results. Specifically get the following formula: 

2
2 2( )

1 , 2 2, 2, ,
1

, ,

min

. ., , =1,s 0, 0,if  Ν( ),  0

d
di T T

i i j i j ii j
i F

T

i i i i j

α λ x x s λ s

s t i s s j i otherwise



   

   

 
S W α

X K W W W

1

                                                                                                                        (5) 

Where 1λ , 2λ  is the tuning parameter, is  is the i-th column of the similar matrix S, and 2

2is  is used to avoid 

unimportant results. 1 represents a vector with all elements of 1. Ν( )i represents a set of neighbors the i-th feature. In 
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order to maintain rotation invariance, we set =1T

is 1 . Therefore, the above formula can make the similarity corresponding 

to the feature having a relatively close distance large, and the feature having a relatively long distance has a small 

corresponding value. 

In order to eliminate the interference of the outliers, the noise samples are removed at the same time [21]. This paper 

adds a low rank constraint [22] to the matrix W, namely: 

W AB                                                                                                                                                                                                 (6) 

Where n rA R , r dB R , min( , )r n d , we added an orthogonal limit to A, in order to fully consider the correlation 

between the output variables. We add a 1l  norm of α  for sparse learning and feature selection [23]. Finally we get our 

final objective function as follows: 

2
2

( )

1 ,, 2, , ,
1

2

2 32 1

,

,

min

. ., , = 1,s 0,

0,if  Ν( ),  0,

d
di T T

i i j i ji j
i F

i

T

i i i

T

i j

α λ x x s

λ s λ

s t i s

s j i otherwise



  

 

 

  

 

1

S A B α
X K AB AB AB

α

A A I

                                                                                                                              (7) 

Where T r r A A I R , 
1λ , 

2λ  and 
3λ  are the tuning parameter. The kernel matrix K is calculated by the Gaussian kernel 

function, and its main function is to map the data to the kernel space, thereby mining the nonlinear relationship between 

the data features. The 1l  norm of the last item α  is used to sparse the features for feature selection. If the value of the 

element corresponding to the vector α  is zero, it means that the feature is not selected. 

3-3- Optimization 

Since the objective function is not co-convex, the closed solution cannot be directly obtained. Therefore, this paper 

proposes an alternate iterative optimization method to solve the problem, which is divided into the following four steps: 

Update A by fixing S, α  and B: 

When S, α  and B are fixed, the optimization (7) problem becomes:  

2
2

( )

1 ,, 2
1

min  

                                  . .,

d
di T T

i i j i ji j
i F

T

α λ x x s

s t



  



 
A

X K AB AB AB

A A I

                                                                                                                               (8) 

We make ( )

1

=
d

i

i

i

α


Ρ K , then the (8) formula can be transformed into:  

22

1 ,, 2
min  

                                  . .,

d T T

i j i jF i j

T

λ x x s

s t

  




A

X PAB AB AB

A A I

                                                                                                                                         (9) 

We simplify the (9), we have:  

1

min ( )

( ), . .,

T T T T T T T T

T T T T

tr

λ tr s t

  

 

A
X X X PAB B A P X B A P PAB

B A XLX AB A A I
                                                                                                                               (10) 

Where tr( )  represents the trace of  matrix, = - d dL Q S R  is a Laplace matrix, Q is a diagonal matrix, and the elements 

of each column are , ,1

d

i i i jj
q s


 . Deriving for A, we have: 

12 2 2T T T T T Tλ  XLX ABB P XB P PABB                                                                                                                                                 (11) 

Due to the orthogonality of A, we can optimize it by the method in [24]. 

Update B by fixing S, α  and A  

By fixing S, α  and A, the objective function (7) can be simplified as follows:  

2
2

( )

1 ,, 2
1

min  
d

di T T

i i j i ji j
i F

α λ x x s


   
B

X K AB AB AB                                                                                                                              (12) 

It is easy to get (12) is equivalent to the following formula: 

1

min ( )

( )

T T T T T T T T

T T T

tr

λ tr

  



B
X X X PAB B A P X B A P PAB

B A XLX AB
                                                                                                                               (13) 

When we ask for B and let its derivative be zero, we can get: 

1

1( )T T T T T Tλ  B A P PA A XLX A A P X                                                                                                                                                  (14) 
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Update S by fixing A, α  and B  

After fixing A, α  and B, the objective function (7) becomes:  

2 2

1 , 2 2, 2

,

,

min

. ., , = 1,s 0,

0,if  Ν( ),  0

d T T

i j i j ii j

T

i i i

i j

λ x x s λ s

s t i s

s j i otherwise

 

 

 


S

AB AB

1                                                                                                                                                  (15) 

We first calculate the Euclidean distance between every two data features to construct the neighbours of all the 

features. If the j-th feature does not belong to the nearest neighbour of the i-th feature, then the value of 
,i js  is zero; 

otherwise, the value of ,i js  is solved by equation (18). 

At the same time, optimizing S is equivalent to optimizing each ( 1,..., )is i d  individually, so we further translate the 

optimization problem into the following equation: 

, ,

2
2

1 , 2 ,, 21 1, 0, 0
min ( )

T
i i i i j

d T T

i j i j i ji js s s
λ x x s λ s

  
  AB AB                                                                                                                                       (16) 

Here, d dZ R , in which 
2

, 1 2

T T

i j i jλ x x Z AB AB , such (16) further becomes: 

, ,

2

1

1 1, 0, 0
2 2

min
2T

i i i i j

i i
s s s

λ
s

λ  
 Z                                                                                                                                                                         (17) 

Under KKT conditions, we can get the following: 

1
, ,

2

( )
2

i j i j

λ
s Z τ

λ
                                                                                                                                                                                (18) 

Since each data feature has a neighbour, we sort each ( 1,... )iZ i d in descending order, that is ˆ ˆ ˆ{ ,..., }i i,1 i,dZ Z Z , we know: 

, 1 0i ks   ,
, 0i ks  . We have: 

1
, 1

2

ˆ 0
2

i k

λ
Z τ

λ
                                                                                                                                                                                    (19) 

Under the conditions =1T

is 1 , we can get: 

1 1
, ,1 1

2 2

1ˆ ˆ( ) 1
2 2

k k

i k i kj j

λ λ
Z τ τ Z

λ k kλ 
                                                                                                                                              (20) 

Update α  by fixing A, B and S  

After fixing A, B and S, the objective function (7) becomes:  

2

( )

3 1
1

min
d

i

i

i F

α λ


 
α

X K AB α                                                                                                                                                              (21) 

In order to optimize the next step, here is the simplification of the above formula, namely: 

( ) ( )

(1) ( )

2
(1) ( )

1 3 1

2
(1) ( )

1 3 1

2

1 ,. ,. 3 12
1

min  ( ... )

min  ( ... )
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i i n d

d
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n
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i
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 



      

      

      

α

Q K ΑΒ R

α

α

Χ K ΑΒ K ΑΒ α

Χ Q Q α

Χ α

                                                                                                                             (22) 

We set 

(1) (1)

( ) ( )

,1 ,

( )

,1 ,

d d

i i d

i d d

i i d

q q

q q



 
 

  
 
 
 

M R  and have:  

2
( )

3 12
1

2
( )
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1

( )

1 1
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n
T i T
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n n
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i i
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n
T i i T
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

   
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                                                                                                                                                      (23) 

The above simplification is only for the convenience of the following gradient descent [25]. We make: 
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2

( )

1

3 1

( )

( ) ( )

d
i

i

i F

f α

F f λ



 

 

α X K AB

α α α

                                                                                                                                                                    (24) 

Note that
1

α  is convex but not smooth. So using approximate gradient to optimize α , we can update iterations α  by 

the following rules. 

1 argmin ( , )t ηt tG 
α

α α α
                                                                                                                                                                          

(25) 

     
2

3 1
, ,

2

t
ηt t t t t t

η
G f f λ       α α α α α α α α α

                                                                                                                     
(26) 

In the above formula, ( ) ( ) ( )

1 1

( )=2 ( ( ) ) 2 ( )
n n

T i i T i T

t t i

i i

f
 

  α α M M X M , tη  is a tuning parameter, tα  is the value of α in the t-th 

iteration. 

By ignoring the independence in equation (26), we can get: 

2 3
1 1

1
( ) arg min

2tt η t t Fα
t

λ
π

η
    α α α U α

                                                                                                                                              

(27) 

Where 
1

( )t t t

t

f
η

  U α α , ( )
tη tπ α is the Euclidean projection on the convex set tη , because 

1
α  has a separable form, the 

formula (27) can be written as follows: 

2
3

1 2

1
arg min

2i

i i i i

t t
α

t

λ
α α U α

η
   

                                                                                                                                                            

(28) 

Where iα  and 1

i

tα   are the i-th elements of α  and 1tα  respectively, then according to formula (28), 1

i

tα  can obtain the 

following closed solution: 

3 3

*
( ), if

0, otherwise.

i i i

t t ti
t t

λ λ
u sign u u

η ηα


  

 

                                                                                                                                                        

(29) 

To speed up the approximate gradient algorithm in equation (26), we have added auxiliary variables: 

+1 1

+1

1
( )t

t t t t

t

β

β



  V α α α

                                                                                                                                                                      (30)

 

Where 
2

1

1 1 4

2

t

t

β
β 

 


.  

Algorithm 1. Pseudo code for solving (7) 

Input: n dX R , 1 , 2 , 
3 , r, 0η , 1β =1, γ ; 

Output: A, B, S, α ; 

1. Initialize t=1; 

2. Randomly initialize (0)
A , (0)

B , and 0α ;  

3. Compute (i)K  by formula (1); 

4. Repeat 

5. Update A via formula (8); 

6. Update B via formula (12); 

7. Update S via formula (15); 

8. Update α  according to the following rules 

9. while  1 1( ) ( ),t ηt ηt t tF G π α α α ; 

10. Set 1 1t tη γη  ; 

11. end while 

12. Set 1t tη γη  ; 

13. Compute 1 argmin ( , )t ηt tG α α V


; 

14. Compute 
2

t

t+1

1 1 4

2

β
β

 
 ; 

15. Compute formula(30) ; 

16. t=t+1; 

17.  until converge; 
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3-4- Convergence Analysis  

According to (18), for all , 1,...,i j n , ( 1)

,

t

i js   has a closed solution. We can get the following formula:  
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
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

 



 



X K A B A B A B

X K A B A B A B

                                                                                                                 (31) 

When α  and ( 1)t
S  are fixed, to update ( 1)t

A  and ( 1)t
B  , we can get:  

2
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                                                                                                      (32) 

From the above two types, we have:  
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                                                                                                      (33) 

Theorem 1 let tα  be the sequence generated by Algorithm 1, then for 1t  , (34) holds:  

2
*

1*

2

2
( ) ( )

( 1)

F
t

γL
F F

t


 



α α
α α

                                                                                                                                                               
(34) 

According to reference [38], γ  is a constant defined in advance, L is the Lipschitz constant of the ( )f α  gradient in 

equation (24), and * arg min ( )F
α

α α . 

Through the above inequality and Theorem 1, we can easily see that our algorithm is convergent.  

4- Experiments 

We compared the classification accuracy of our algorithm and 8 comparison algorithms in 12 data sets (shown in 

Table 1). 

4-1- Experimental Settings 

We tested our proposed unsupervised feature selection algorithm on four binary data sets and eight multi-class data 

sets. They are Yale, Colon, Lung_discrete, Glass, SPECTF, Sonar, Clean, Arrhythmia, Movements, Ecoli, Urban_land 

and Forest, where the first three data sets are from feature selection data, and the last nine data sets are from the UCI 

data set. The details of the data set are shown in Table 1: 

Table1. The information of the data sets 

Datasets Samples Dimensions Classes 

Glass 214 9 6 

Movements 360 90 15 

SPECTF 267 44 2 

Ecoli 336 343 8 

Sonar 208 60 2 

Urban_land 168 147 9 
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Clean 476 167 2 

Forest 325 27 4 

Arrhythmia 452 279 13 

Colon 62 2000 2 

Yale 165 1024 15 

Lungdiscrete 73 325 7 

At the same time, we found eight representative feature selection comparison algorithms to compare with our 

proposed algorithm. The main introduction of the algorithm is as follows: 

EUFS [30]: This paper proposes a new unsupervised feature selection algorithm, which is different from other 

unsupervised feature selection algorithms to generate tags through clustering algorithms. This method directly embeds 

feature selection into the clustering algorithm through sparse learning theory. The most prominent contribution of this 

method is that other unsupervised feature selection algorithms can be applied to this framework. 

FSASL [31]: The intrinsic structure of the data is rarely considered for existing feature selection algorithms. By 

placing structural learning and feature selection in a framework at the same time, the algorithm can effectively select 

representative features while maintaining the structure of the data (i.e., structural learning and feature selection 

complement each other). 

NDFS [32]: The algorithm is a new unsupervised feature selection algorithm that mines discerning information. 

Specifically, it imposes a non-negative constraint on the class indication to learn clustering tags more accurately. At the 

same time, 2,1l  norm is used to remove redundant features. It is an algorithm that performs clustering and feature 

selection simultaneously. 

NetFS [33]: This method is also an unsupervised feature selection algorithm, but the algorithm is mainly for 

Networked Data. Due to the large amount of noise in Networked Data, the algorithm combines latent representation 

learning for feature selection. Through sparse learning and latent representation learning, the algorithm can remove the 

noise interference well and finally achieve good robustness. 

RLSR [34]: This paper proposes a semi-supervised feature selection algorithm by finding the global and sparse 

solutions of the projection matrix. The main contribution of the algorithm is to propose a regular term 2

2,1l  norm, and 

gives a detailed theoretical proof, which proves that the regular term can effectively select features and take into account 

global information. 

RFS [35]: This paper presents a new robust feature selection algorithm through sparse learning. Specifically, it 

applies 2,1l  norm to both the loss function and the regular item. Sparse restriction on the regular term can effectively 

remove the redundant features. The 2,1l  norm of the loss function can effectively remove the noise samples, thus 

achieving a robust effect. 

RSR [36]: The algorithm is a new unsupervised feature selection algorithm that learns by regularized self-

characterization. Specifically, if a feature is particularly important, it can be represented linearly by most other features 

(i.e., a feature can be represented by a combination of other features). In addition, the algorithm shows good performance 

on both manual and real data sets. 

K_OFSD [37]: The algorithm is an online feature selection algorithm, which mainly selects relevant features through 

neighbor learning. Through this method, the class imbalance problem can be effectively solved. At the same time, the 

dimensionality of the high-dimensional data is effectively reduced by the dependency between the conditional features 

and the decision-making class. 

In our proposed model, we set 2 2

1 2{ , } {10 ,...,10 }λ λ  , the rank of the kernel coefficient matrix {1,...,min( , )}r n d , and the 

parameter of 2, pl  norm {0.1,...,1.9}p . The parameters 5 5{2 ,...,2 }c   and 5 5{2 ,...,2 }g   are used to select the best SVM for 

classification. Through 10-fold cross-validation, we divide the data set into a training set and a test set. In order to 

minimize the experimental error, we perform 10 times experiments, and finally find the average of the classification 

accuracy. 

Since the experiment uses the classification accuracy rate to measure the performance of the algorithm, we define the 

classification accuracy as follows: 

/correctacc X X                                                                                                                                                                                    (31) 

Where X represents the total number of samples and correctX  represents the correct number of samples for classification. 

At the same time, we define the standard deviation to measure the stability of our algorithm, as follows: 
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2

1

1
( )

N

i

i

std acc μ
N 

                                                                                                                                                                          (32) 

Where N represents the number of experiments, 
iacc  represents the classification accuracy of the i-th experiment, μ  

represents the average classification accuracy, and the smaller the std, the more stable the representative algorithm. 

4-2- Experiment Result 

In Figure 1, we can clearly see the classification accuracy of the 10 experiments. The algorithm we proposed is not 

the highest every time, but most of the cases are the highest. In Table 2, we can see the average classification accuracy 

of each algorithm on 12 data sets. The algorithm proposed by us is obviously superior to other comparison algorithms. 

Specifically, it is 4.78% higher than EUFS in average classification accuracy and 5.05% higher than FSASL, which 

indicates that our algorithm is better than the general feature selection algorithm. Compared with K_OFSD, NDFS, 

NetFS, RLSR, RFS, and RSR. LSK_FS increased 13.63%, 8.55%, 6.69%, 7.88%, 6.68%, and 3.59%, respectively. In 

particular, our algorithm is particularly effective on the dataset SPECTF. 
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Figure 1. Average classification accuracy of all methods for all datasets 
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Table 2. Average classification accuracy (acc(%)) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Table 3, we can see the average standard deviation of each algorithm on 12 data sets. The standard deviation of 

the proposed LSK_FS algorithm is the smallest, indicating that our algorithm has the best stability. 

Table 3. Standard deviation of classification accuracy (std(%)) 

 

Datasets EUFS FSASL K_OFSD NDFS NetFS RLSR RFS RSR LSK_FS 

Arrhythmia 0.88 0.85 1.04 0.89 0.02 0.85 1.29 1.09 0.79 

Clean 0.54 0.94 0.03 1.29 1.32 0.03 0.97 0.74 0.49 

Colon 1.88 2.99 0.38 1.31 0.29 0.59 2.08 0.93 1.5 

Ecoli 1.18 0.47 0.30 1.59 1.78 0.55 0.40 0.82 0.69 

Forest 1.05 1.05 0.93 1.05 1.06 1.29 1.16 0.99 0.54 

Glass 1.05 1.02 1.37 2.07 1.15 0.70 1.00 1.29 1.01 

Lungdiscrete 1.92 2.52 4.07 3.03 3.43 1.82 1.67 1.21 1.60 

Movements 1.04 1.31 1.33 1.76 1.06 1.65 1.44 0.80 0.72 

Sonar 1.18 1.81 1.62 1.85 1.45 1.19 1.28 1.28 1.38 

SPECTF 1.01 1.24 0.03 1.20 2.08 1.10 1.11 1.01 0.04 

Urban_land 0.77 1.38 1.01 1.44 0.88 1.69 2.74 0.83 1.41 

Yale 1.44 0.95 1.4 1.71 2.28 3.16 1.74 0.99 1.08 

Average value 1.16 1.38 1.13 1.60 1.40 1.22 1.41 1.00 0.94 

 

The LSK_FS algorithm can achieve such good results, mainly for the following two reasons: 1. Consider the similarity 

between data features. 2. Fully consider the nonlinear relationship between data features. 

4-3- Parameter Sensitivity Analysis 

We set the range of values for 
1  and 

2  to 2 1 2{10 ,10 ,...,10 }  . By adjusting the values of parameters 
1  and 

2 , we 

show the results of our proposed algorithm in Figure 2. 

As shown in Figure 2, the proposed algorithm is sensitive to adjusting parameters. Specifically, it is not very sensitive 

on most data sets, but it also has subtle changes. This is because the algorithm proposed by us has better robustness. 
1  

is used to control the value of 
2

,, 2

d T T

i j i ji j
x x s AB AB , while 

2

,, 2

d T T

i j i ji j
x x s AB AB  takes into account the nonlinear relationship 

of the features. 2  is used to control the value of 
2

2is , and 
2

2is  takes into account the similarity of features. Therefore, 

in our proposed algorithm, it is necessary to adjust the parameters.  

Datasets EUFS FSASL K_OFSD NDFS NetFS RLSR RFS RSR LSK_FS 

Arrhythmia 60.52 66.71 60.74 65.57 54.20 70.53 64..02 66.33 70.96 

Clean 84.61 84.83 86.53 77.82 95.78 91.53 84.64 84.77 96.13 

Colon 82.88 77.07 64.60 64.43 64.38 64.42 82.48 83.17 84.14 

Ecoli 84.97 86.01 69.28 82.81 84.47 78.31 85.74 85.81 86.19 

Forest 85.23 86.06 74.23 76.31 86.43 85.78 83.50 86.55 88.50 

Glass 68.90 70.17 52.09 67.86 70.20 69.36 64.17 70.42 71.38 

Lungdiscrete 86.11 86.07 75.45 82.77 73.41 84.43 85.88 85.55 86.41 

Movements 81.36 81.61 71.19 86.61 81.42 73.58 72.08 88.61 88.92 

Sonar 83.81 78.67 79.11 85.43 86.66 77.26 83.91 83.91 88.48 

SPECTF 79.54 79.70 79.40 78.48 83.95 79.22 78.04 79.54 92.94 

Urban_land 61.78 62.05 53.25 51.27 56.96 60.20 58.82 61.72 63.56 

Yale 75.27 73.69 63.78 71.22 65.04 64.05 69.76 73.81 75.63 

Average value 77.92 77.72 69.14 74.22 76.08 74.89 76.09 79.18 82.77 
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Figure 2. Accuracy of the proposed algorithm under different parameter values 

4-3- Convergence Analysis 

In Figure 3, we show the objective function values for each iteration of the proposed algorithm, on 12 data sets. We 

set the stop criteria of the proposed algorithm to 4( 1) ( ) ( ) 10obj t obj t obj t    , where ( )obj t  represents the value of the 

objective function at the t-th iteration. From Figure 3 we can see that: 1. The proposed optimization algorithm is 

convergent, which makes the value of the objective function gradually decrease in each iteration, and finally converges. 

2. The proposed algorithm converges on most datasets within 20 iterations, which indicates that the proposed algorithm 

converges quickly. 
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Figure 3. The convergence graph of algorithm 1 for all data sets 

5- Conclusion 

This article has proposed a new feature selection algorithm to remove redundant features. Specifically, the local 

structure learning is applied to the features to take into account the local structure and similarity of the features. Moreover, 

the kernel function is applied to map all the features in the high-dimensional space, so that the nonlinear relationship of 

the features is linearly separable in the high-dimensional space. In addition, low rank constraints are used to remove 

noise samples, maintain the global structure of the data and achieve robust results. Finally, the experimental results also 

show the superiority of our proposed algorithm. In future work, we plan to improve our algorithms through robust 

statistical learning. 
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