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In the last decades, cognitive models of multisensory integration in human beings

have been developed and applied to model human body experience. Recent research

indicates that Bayesian and connectionist models might push developments in various

branches of robotics: assistive robotic devices might adapt to their human users aiming

at increased device embodiment, e.g., in prosthetics, and humanoid robots could be

endowedwith human-like capabilities regarding their surrounding space, e.g., by keeping

safe or socially appropriate distances to other agents. In this perspective paper, we

review cognitive models that aim to approximate the process of human sensorimotor

behavior generation, discuss their challenges and potentials in robotics, and give an

overview of existing approaches. While model accuracy is still subject to improvement,

human-inspired cognitive models support the understanding of how the modulating

factors of human body experience are blended. Implementing the resulting insights in

adaptive and learning control algorithms could help to taylor assistive devices to their

user’s individual body experience. Humanoid robots who develop their own body schema

could consider this body knowledge in control and learn to optimize their physical

interaction with humans and their environment. Cognitive body experience models

should be improved in accuracy and online capabilities to achieve these ambitious goals,

which would foster human-centered directions in various fields of robotics.

Keywords: cognitive models, human body experience, multisensory integration, robotics, assistive devices,

humanoids

1. INTRODUCTION

Multisensory integration is a key cognitive function for human body experience (Giummarra et al.,
2008; Christ and Reiner, 2014) and cognitive modeling research suggests that it is performed in
a Bayesian manner (Deneve and Pouget, 2004; Körding et al., 2007; Orbán and Wolpert, 2011;
Clark, 2013). Sun (2008) defines cognitive models as computational models relating to one or
multiple cognitive domains or functionalities. While this model class is occasionally referred to as
computational models, the authors rely on the term “cognitive models” to reduce ambiguity with
relation to Marr (1982) computational level of analysis, to which cognitive models do not need to
be limited to. Cognitive models of the aforementioned integration processes consider sensorimotor
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precision with respect to the corresponding individual modalities
(Berniker and Körding, 2011) and can determine posterior
estimates based on prior knowledge and sensory information.

From the authors’ perspective, modeling, and simulating
multisensory integration mathematically could potentially
help to endow (humanoid) robots with more human-like
capabilities and improve scenarios with tight physical human-
robot interaction, e.g., in assistive devices. The increased interest
and progress made toward such capabilities has stimulated
research in this direction from which we can draw on a variety
of works on robotic self-perception (Sturm et al., 2009; Ulbrich
et al., 2009; Lanillos et al., 2017; Lanillos and Cheng, 2018),
reviews analyzing connections between human body experience
and robotics (Hoffmann et al., 2010; Schillaci et al., 2016;
Beckerle et al., 2017) as well as recent works that propose
cognitive models of bodily illusions using Bayesian approaches
(Samad et al., 2015). Such illusions rely on targeted modulations
of multisensory stimulation and make participants perceive
artificial limbs as their own (Botvinick and Cohen, 1998;
Giummarra et al., 2008; Christ and Reiner, 2014).

Obviously, such effects are of utmost interest for assistive
robotics since exploiting them by means of control could help
to integrate such devices into their user’s body schema (Ehrsson
et al., 2008; Christ and Reiner, 2014; Beckerle et al., 2017).
Moreover, the body schema is directly connected to the sense of
agency (Longo et al., 2008; Kannape et al., 2010), i.e., the feeling
to have control over the own body. In assistive robotics, it is
important to account for changes in each user’s body schema to
foster their sense of agency. Meanwhile, endowing humanoids
with a body schema is promising for control reasons, e.g., keeping
safe distances or reaching for targets (Roncone et al., 2015,
2016). As a psychological concept, the body schema can be
understood as an adaptable (Somogyi et al., 2018), subconscious
representation of the body’s characteristics (Gallagher and Cole,
1995; Mayer et al., 2008), e.g., its kinematics and dynamics,
which makes it promising for hand/tool-eye coordination in
humanoid robots (Ulbrich et al., 2009). Psychological studies
suggest that the representations of the human body itself
and the representation of the environment in reach, i.e., the
peripersonal space, are closely linked (Serino et al., 2007; Cléry
and Ben Hamed, 2018). This appears to enable a flexible
discrimination between the self and the environment including
adaptation when using tools (Holmes and Spence, 2004;
Hoffmann et al., 2010), a capability that is rather underdeveloped
in contemporary humanoid robots (Hoffmann et al., 2010).
Therefore, cognitive models that go beyond models which
described the kinematic structure or dynamic properties of a
robot as reviewed in Nguyen-Tuong and Peters (2011), seem to
be required.

2. COGNITIVE MODELS

Among the existing cognitive models, we assume Bayesian and
connectionist approaches to be most suitable for achieving
human-like body representations in robots. In this section, we
detail howwe arrive at this assumption by considering conceptual

foundations and empirical applications of the modeling
approaches. An interesting example for their application are
bodily illusion experiments, where the distance between the
perceived position of the real limb and its indicated position,
i.e., the proprioceptive drift, is understood as an objective, but
also debated, measure of embodiment (Giummarra et al., 2008;
Pazzaglia and Molinari, 2016). The assumption that participants
could fuse multisensory information in a Bayesian process
(Berniker and Körding, 2011) motivated the development of
computational models that aim to estimate the proprioceptive
drift from empirical input data (Samad et al., 2015). Accordingly,
these Bayesian cognitive models compute estimations of the
proprioceptive drift (Samad et al., 2015) and thereby propose
quantitative approximations to the generative process of human
sensorimotor integration. However, these models exhibit limited
estimation accuracy and are constrained to offline application to
the experimental population as a whole (Samad et al., 2015).

Marr (1982) defines three general levels of analysis for
cognitive models: the computational, algorithmic, and
implementational levels. The aforementioned research
describing Bayesian cognitive models of multisensory
information (Berniker and Körding, 2011; Samad et al.,
2015) tends to define these inferential problems on the
computational level. Here, modelers define the logic and
structure of a computational problem. Yet, cognitive models
of human body experience might also benefit from extension
to deeper modeling levels (Griffiths et al., 2012), e.g., the
algorithmic level, defining the processes and representations
involved in solving the computational problem. Combined
model specifications on the computational and algorithmic
level can foster the prediction and explanation of seemingly
error-prone or paradoxical behavior, as observed in research on
causal reasoning (Tenenbaum et al., 2007) or decision making
(Srivastava and Vul, 2015).

As a separate school of thought, connectionism commonly
employs artificial neural networks to represent information
in patterns of activation. While artificial neural networks do
not need to be implemented in a neurally plausibile way
by human standards, connectionism is historically inspired
by the idea of creating “brain-like” systems (Thomas and
McClelland, 2008). This aspect ties connectionist models to the
implementational level of analysis (Marr, 1982), which concerns
the physical realization of a model’s computation in biological
or technological hardware. Similarly to Bayesian approaches,
multisensory integration can be approached in a connectionist
fashion (Quinlan, 2003; Zhong, 2015). In fact, interpreting the
weights of an artificial neural network as conditional probability
relations creates a strong similarity between connectionist and
Bayesian models of cognition (Thomas and McClelland, 2008).
If a connectionist implementation mimics the close-to-optimal
sensorimotor integration that humans seem to perform (Körding
andWolpert, 2006), its prediction of body experience should thus
be alike Bayesian estimations.

While there are other schools of cognitive modeling (Sun,
2008), we focus on Bayesian approaches due to their relation
to human sensorimotor behavior (Körding and Wolpert, 2006;
Franklin and Wolpert, 2011) and connectionism because of its

Frontiers in Neurorobotics | www.frontiersin.org 2 April 2019 | Volume 13 | Article 14

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Schürmann et al. Cognitive Body Models Push Robotics

relation to developmental psychology (Shultz and Sirois, 2008)
and developmental robotics (Lungarella et al., 2003). Being
conceptually similar, both approaches can either be used to
investigate the generative process behind human sensorimotor
behavior or to control sensorimotor capacities in artificial
systems. Yet, connectionism appears to be employed mostly
without a direct relation to human performance (Katić and
Vukobratović, 2003; Metta et al., 2010, 2017; Pasquale et al.,
2015; Lakomkin et al., 2018), although some examples draw
commendable design references from human neurobiology
(Morse et al., 2010).

3. APPLICATIONS IN ROBOTICS

We expect that cognitive models of human body experience
will improve the capabilities of robotic systems and discuss
potentials and challenges of their implementation and utilization.
Specifically, assistive robotic devices and humanoid robots are
taken as examples that highlight the possibilities and their
prospective effects.

Hoffmann et al. state that robots, which could include
humanoids and assistive devices, need two things to perform a
goal-directed action: a certain knowledge about their physical self
and the mapping between their sensory and motor modalities
(Hoffmann et al., 2010). In their review, they distinguish
different kinds of kinematic body representations that are
either fixed, self-calibrate to geometry changes, or are generated
automatically, while only specific body representation models
comprise dynamics (Hoffmann et al., 2010). In contrast to these
explicit models, they describe implicit ones that represent the
sensorimotor mappings, self-recognition, and temporal effects
(Hoffmann et al., 2010). A more recent review by Schillaci
et al. (2016) describes how explorative behaviors could drive
motor and cognitive developments. Schillaci et al. describe such
behaviors as a very ingenious method to acquire and maintain
internal body representations in artificial agents, e.g., through
MOdular Selection And Identification for Control (MOSAIC)
models (Haruno et al., 2001).

3.1. Assistive Devices
Achieving a seamless integration of assistive robotic devices in
supporting users’ movements requires a better understanding
of both human body schema integration and knowledge
representation about the users’ motor capabilities. A crucial point
is to avoid excessive device activity, which might hinder body
schema integration due to being perceived as external activity. By
establishing the underlying processes of multisensory integration
as elements of cognitivemodels, we propose that effects of robotic
assistance can be predicted in multiple movement scenarios.
These predictions can be used to adjust sensory feedback to the
user by comparing estimated and required forces and torques
to solve motor tasks over time. In case of a mismatch between
actual and desired value, the need for changing motor behavior
might be communicated to the user through (modulated) sensory
feedback, which could also be used to foster co-adaptation of user
and device (Beckerle et al., 2017, 2018).

Hence, such models could facilitate user- and application-
specific assistance to assist-as-needed by the individual and in
different situations. We argue that online models of required
users’ motor activities could help to complement and adjust
assistance, easing both habituating to and weaning from it.

While assistance-as-needed might also be implemented
through inverse dynamics models, cognitive models could help
to tune factors that modulate the user’s body experience. Human-
in-the-loop experiments, e.g., robot-aided bodily illusions,
could help to reveal those factors and how they influence
embodiment (Beckerle et al., 2018). With this knowledge, not
only force/torque or motion control, but also human-machine
interfaces could be optimized with respect to embodiment of
the assistive device, e.g., providing appropriate tactile feedback
to shape the representation of the artificial limb (Giummarra
et al., 2008; Beckerle et al., 2017). Through in-depth knowledge
of the human cognitive body representation and a corresponding
model-based control of the assistive device, co-adaptation
might be systemized to achieve a congruent representation.
Additionally, improper operation of the device by the user might
be anticipated automatically and compensated for by means
of control. While representing a great potential, the vision of
assistive devices that understand their user’s body experience
and adapt to it—individually and online—also outlines the
requirement for radical improvements of contemporary models.

3.2. Humanoid Robots
While assistive devices should interact seamlessly with their
users, humanoid robots are intended to autonomously behave
in a human-like manner. We expect that endowing humanoid
robots with their own body schema and peripersonal space could
tackle various recent issues. For instance, humanoids that have
an understanding of their physical properties and environment
could adapt their behavior to humans and the environment
during physical, cognitive, and social interaction. Consider the
example of standing in a crowded elevator: humans would adapt
their relative positions, i.e., keep certain distances to others, while
contemporary humanoid robots might not. The relation between
knowledge about one’s own body, obstacle avoidance, and social
norms in interacting with humans highlights the potential of
providing humanoid robots with a sense of their body and
its environment.

While humanoid robots might be expected to produce
human-like behavior regardless of the behavior generation
process, this process itself might be required to be human-
like. Developmental robotics research draws its appeal at the
edges of engineering, developmental psychology, and cognitive
science by potentially improving the capabilities and autonomy
of robots. Moreover, it promises to simultaneously reveal how
developmental models may perform when implemented in a
robotic body (Lungarella et al., 2003; Asada et al., 2009). Recent
research enables humanoid robots to develop several forms of
body representation (Martinez-Cantin et al., 2009; Lara et al.,
2016; Hoffmann et al., 2018) or learn movement generation
(Metta et al., 2017). While achieving flexible, autonomous
behaviors, most contemporary studies do communicate about
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the human-likeness of the behavior generation, but lack a formal
evaluation method comparing it to human behavior.

Although these methods may be sufficient to improve
autonomous behavior, we suspect differences between the robotic
and human behavior generation processes. Specifically, these
differences may show when observed human performance
exhibits a variability that is not strictly required by the kinematic
or dynamic properties of the task at hand. We hypothesize that
complementing established kinematics and dynamics models
through psychologically motivated cognitive models will help
to approach a human-like behavior generation process and
improve the design of behaviors and interactions in robots.
While we believe that both Bayesian and connectionist modeling
approaches could be employed for this, a comparison to actual
human behavior is mandatory for evaluation. An appropriate
example might be the sensorimotor task presented in Körding
and Wolpert (2004): participants were asked to point at a
target in virtual reality while their cursor underwent a lateral
shift relative to the actual location their finger controlling it.
In this human experiment, Krding and Wolpert conclude that
participants internally represented the statistical properties of
the task manipulation in consistency with Bayesian inference.
Exposing a humanoid robot to a comparable task, three stages
might finally lead to human-like performance. Firstly, precise
sensors could measure the lateral shift to enable the robot to
execute a corrected trajectory. Secondly, a more human-like
behavioral variability might be reached by artificially restricting

the corrected trajectory through an arbitrary error term. Finally,
we postulate that control adaptation through cognitive models
could intrinsically yield fully human-like behavior generation
and might result in similar observations as those found by
Körding and Wolpert (2004). Figure 1 sketches how this might
be implemented for the example of multisensory integration
during sensorimotor manipulation, which applies to assistive
devices similarly.

Pioneering work shows how the iCub robot can learn a
peripersonal space model from data acquired via a whole-
body artificial skin and physical contact with the environment
(Roncone et al., 2015, 2016). While this approach is still
rather engineered and does not try to approximate human
behavior generation, it achieves sampling rates that enable online
combination with control and is capable to predict contacts
between the whole body of the robot and its environment.
This information is used to design a controller that can
either implement a safety margin around the body of the
robot or support reaching objects in the robot’s vicinity
(Roncone et al., 2015, 2016).

4. CONCLUSION

Current developments of cognitive body models, Bayesian as
well as connectionist ones, have the potential to push assistive
robotic devices by making them understand their users’ body
experience and humanoid robots by endowing them with own

FIGURE 1 | Control adaptation through cognitive models of human body experience during sensorimotor manipulation: multisensory data from human/robot

perception is processed by a cognitive model. Using it for robot control, a human-like body representation is developed and, finally, human-like behavior generation is

reached. In an iterative process, human cognitive function might be researched fundamentally and, in turn, models could be advanced through behavioral evaluation

based on human data.
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body knowledge. Assistive devices might utilize this knowledge
by adaptive control improving their integration into their users’
body schemes, i.e., devices could foster their embodiment
themselves. Further, we postulate that such models might
give humanoid robots a feeling for their own body and its
surrounding that can be qualitatively comparable to human body
perception, should the situation demand it. In both cases, we
deemmachine learning to be very helpful: assistive devices might
learn how to improve their embodiment user-specifically, while
humanoid robots could not only model their environment, but
also improve their motions based on extensive body knowledge.

Future research should therefore improve models with respect
to accuracy, specifications for individual users, and online
capabilities. Therefore, experiments to determine modulating
factors as well as prior knowledge about sensory precision should
be improved, e.g., by human-in-the-loop approaches. A next
step might be an integration of cognitive models with higher-
level self-perception architectures as proposed by Lanillos et al.
(2017), Asada et al. (2009), and Morse et al. (2010) and their
application for purposes of control (Roncone et al., 2015, 2016) or
hand/tool-eye coordination (Ulbrich et al., 2009). Therefore, the

discussed cognitive models might be combined with established
kinematic or dynamic models, which could be driven by model
learning of an integrated body representation (Haruno et al.,
2001; Nguyen-Tuong and Peters, 2011; Schillaci et al., 2016).
Thereby, humanoids and assistive devicesmight be providedwith
more human-like behavior and improved capabilities to interact
with human partners.
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