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3Department of Mathematics, Technische Universität Kaiserslautern, Paul-Ehrlich-Str. 31, 67663 Kaiserslautern,
Germany
e-mail: steidl@mathematik.uni-kl.de
(Received June 21, 2018; revised October 31, 2018; accepted November 23, 2018)

ABSTRACT

A frequently applied indicator of tubular structures is based on the eigenvalues of the Hessian matrix of the
original image convolved with a Gaussian, whose standard derivation depends on the size of the tubes. Hence
the tube size must either be known in advance or a whole scale of standard deviations has to be tested resulting
in higher computational costs – a serious obstacle for data with varying tube thickness.
In this paper, we propose to modify the structure indicator by replacing the derivatives of the Gaussian
smoothed function by the Riesz transform. We show by various numerical examples that the resulting structure
indicator is scale independent. Smoothing with a Gaussian is just necessary to cope with the noise in the
image, but is not related to the size of the tubular structures. We apply the novel structure indicator for the
fiber orientation analysis of fibrous materials and for the segmentation of leather. The latter one was a special
challenging application since all scales are present in the microstructure of leather.

Keywords: image analysis, local fiber orientation, tubular structures.

INTRODUCTION

The motivation of this paper came from the
practical task to analyze the 3D microstructure of
felt and bovine leather. In general, the detection of
structures in data sets of two or three dimensions
is an important task in image processing. These
structures can be used as features in computer vision
or to deduce statistical properties of the data set.
Simple structure tensors as those of Förstner and
Gülch (1987), focus on the detection of edges and
vertices. Incorporating higher order derivatives as
in the boundary tensor by Köthe (2003) improves
the detection or as in the structure tensor of Aach
et al. (2006), see also Steidl and Teuber (2009), the
direction of overlapping structures and at occlusions
can be found. Further, more robust energy tensor
for edge detection were constructed by Felsberg and
Granlund (2004). Using combinations of higher order
derivatives, more complex features such as ridges or
frequencies of textures can be detected, see Lindeberg
(1999) for an overview.

In many applications it is essential to isolate certain
constituents, e.g., fibers, blobs or plates. Blood vessels
can be seen in magnetic resonance angiography, but
their detection is difficult due to the presence of other
organs. Therefore an enhancement of the blood vessels
is of interest, see Prince (1994), Du et al. (1995),

and Frangi et al. (1998). Frangi et al. (1998) use
the eigenvalues of the Hessian matrix of the data
convolved with a Gaussian function to distinguish
vessels from other constituents where the parameter
σ of the Gaussian function determines the scale. In
particular, they interprete properties on the eigenvalues
of Gauss Hessian matrices for the occurrence of fibers,
plates, and blobs. The main drawback of the Gauss
Hessian matrix as structure tensor is its dependence
on the scale of the underlying structure. One way
to overcome this dependence is scanning the image
for all scales of interest and taking the maximal
response obtained over the scales as final result.
Still this does not solve the problem completely, as
we need to calculate the eigenvalues of the Gauss
Hessian matrix for each scale separately leading to a
high computational effort and the computation of the
large scales comes along with blurring of small gaps
between structures.

Besides detecting locations of structures, the
estimation of their local directions is of interest.
Several methods have been proposed by Robb et al.
(2007); Altendorf and Jeulin (2009); Krause et al.
(2010); Redenbach et al. (2012) that do not require
the segmentation of individual fibers. The concise
comparison by Wirjadi et al. (2016) shows that the
two methods based on first (Krause et al., 2010) or
second (Redenbach et al., 2012) order derivatives – the
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structure tensor and the Gauss Hessian matrix – yield
comparable results. Moreover, they are more precise
than the competitors investigated by Wirjadi et al.
(2016) requiring a discretization of the orientation
space, i.e., the maximum response of anisotropic
Gaussians by Wirjadi et al. (2009) and the inertia
method of Altendorf and Jeulin (2009).

The local fiber orientation analysis based on the
eigenvalue analysis of the Gauss Hessian matrix has
been successfully applied for various materials, e.g.,
by Heieck et al. (2017); Sliseris et al. (2016); Wirjadi
et al. (2014). However, application of this method
requires the fiber thickness as an input parameter.
More precisely, the fiber thickness is needed in order
to properly choose the parameter σ of the Gaussian
filter applied to the gray value image for subsequent
calculation of the Hessian. This is very often known
as in the case of glass fibers. In other cases,
rough estimates can be derived from the image data.
Nevertheless, for data with varying fiber thickness,
even if these are known, this requirement represents
a serious obstacle.

In this paper, we propose to replace the Gauss
Hessian matrix by a Riesz Hessian matrix and to use
the Riesz Hessian within the simple structure measures
proposed by Frangi et al. (1998). Instead of smoothing
the data with a Gaussian of appropriate size and
taking derivatives, we approximate the derivatives by
the Riesz transform (1928). The Riesz transform as
a generalization of the Hilbert transform (Stein and
Weiss, 1971) is known to be scale independent (Unser
and Van De Ville, 2010) and closely related to the
gradient. Smoothing with a Gaussian of small fixed
size is still necessary to cope with noisy data, but a
scale adaptation of the Gaussian is superfluous. The
application of the Riesz transform within structure
location and orientation detection is not new. So the
Riesz transform was used within Aach’s structure
tensor by Sedlazeck (2008) and within Köthe and
Felsberg’s boundary tensor 2005. The monogenic
signal (Felsberg and Sommer, 2001), which consists
of the function itself and its Riesz transform,
together with sophisticated multiscale techniques was
applied as structure detector, e.g., by Unser and Van
De Ville (2010); Storath (2011); Häuser et al. (2014).
However, the application of the Riesz transform within
the Hessian together with the structure measures
from Frangi et al. (1998) was not reported in the
literature so far. For an optical filter point of view of
the Riesz transform we refer to Larkin et al. (2001);
Schausberger et al. (2010).

We propose to apply this novel structure
descriptor to real-world data containing structures
at different scales: Glass and carbon fiber reinforced

composites are attractive light weight materials having
applications for example in the automotive, aerospace
and wind energy industries. The mechanical properties
of components made from fiber reinforced polymers
are crucially influenced by spatial distribution and
orientation of the reinforcing fibers within the
component. For complex shaped components, the
final local fiber orientation is hard to control.
Dedicated numerical flow simulation tools are used
to predict fiber orientations for given design of the
part under consideration and production parameters.
Micro-computed tomography (µCT) and subsequent
quantitative analysis of the resulting 3D images are the
method of choice for validating simulation results by
comparison with real observations, see, e.g., Wonisch
and Wüst (2014).

Recently, the 3D microstructure of leather has
attracted increasing interest. Non-destructive testing
methods like ultrasound imaging, small angle X-
ray scattering, and CT have been applied to capture
structural features of the collagen fiber bundles like
orientation, density or connectivity, see, e.g., Basil-
Jones et al. (2010), Bittrich et al. (2014), and Wells
et al. (2016). Bittrich et al. (2014) showed that
the quantitative analysis of µCT images of leather
microstructures is possible based on a binarization.
That is, valuable structural information can be gained
by a segmentation into collagen fiber bundle structure
(foreground) and pore space (background). Finite
element simulations of mechanical properties of
leather based on the microstructure require however to
segment individual structural elements of the leather’s
microstructure. That is, the dense and strongly
interwoven bundles have to be split into rather simply
shaped elements while preserving their connectivity
relations. This task is very demanding due to the
multiscale nature of the leather’s microstructure and
the fact, that the scales are not clearly separated,
see Godehardt et al. (2017) for more details and
Fig. 1. Moreover, being a natural material, the structure
varies strongly. Hence it is necessary to have a scale
independent structure detector.

Outline of the paper. The next section deals with
the Hessian matrix of a function which contains local
information about its curvature. We recall how the
eigenvalues of the Hessian locally describe certain
structures. Then, the so-called Gauss Hessian matrix of
a function obtained by smoothing the function with a
Gaussian of appropriate standard deviation is revisited.
Using Gaussians of different standard deviations
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Fig. 1. Volume rendering of a µCT image of the
bovine axila leather sample studied by Bittrich et al.
(2014) and Godehardt et al. (2017). Visualized are
500× 1000× 1000 pixels corresponding to 1.6mm×
3.2mm×3.2mm.

we obtain a multiscale structure indicator. Finally,
we propose to replace the latter one by a so-called
Riesz Hessian matrix which does not require a scale
adaptation to the respective size of the structure.
The Fourier transform, in particular the property that
partial derivatives result in multiplications with the
corresponding frequencies in the Fourier domain,
plays a central role both in the analysis and
computations. In the following section, we reconsider
the local structure measures from Frangi et al. (1998).
These measures can be applied for the Riesz Hessian
matrix now. We present artificial as well as real-world
examples demonstrating the good performance of the
novel structure indicator in another section. Finally,
conclusions are drawn.

MATERIALS AND METHODS

HESSIAN MATRIX AS STRUCTURE
TENSOR

In this section we recall the role of the Gauss
Hessian matrix as a structure tensor and introduce a
Riesz Hessian matrix to cope better with structures
featuring more than one scale.

Hessian matrix and Fourier transform

We start with a brief review of the Hessian matrix
of a function at a point and the role of its eigenvalues
for the detection of certain local structures in its graph.
In general, the function has to be smoothed to cope
with noise and to emphasize a special scale of its

features. We recall the role of the Fourier transform in
the convolution with a Gaussian and its second order
derivatives.

A twice continuously differentiable function
f : Rd → R can be locally approximated in a
neighborhood of any x0 ∈ Rd by

f (x) = f (x0)+∇ f (x0)
T(x− x0)

+(x− x0)
TH f (x0)(x− x0)

+o(‖x− x0‖2) .

Here ∇ f (x0) :=
(

∂ f
∂x j

(x0)
)d

j=1
denotes the gradient of

f at x0 and

H f (x0) :=
(

∂ 2 f
∂x j∂xk

(x0)

)d

j,k=1
(1)

its Hessian at x0. For r ∈ Rd , the value rT∇ f (x0) is
the directional derivative and rTH f (x0)r the “second
order directional derivative” of f in direction r at
x0. The Hessian H f (x0) contains information on the
local curvature at x0 which can be used to identify
geometrical properties of f a neighborhood of x0.
More precisely, H f (x0) is a symmetric matrix and the
relation between their eigenvalues works as a tool to
identify certain structures of f . For example, suppose
that for d = 3, the matrix H f (x0) has the eigenvalues
λ1(x0)≤ λ2(x0)≤ λ3(x0). Then, the following Table 1
(bottom) from Frangi et al. (1998) gives a rough
characterization of tubular, plate and blob structures
in f . Table 1 (top) contains the information for
d = 2. In this paper, we are only interested in
tubular structures. A quantitative description follows
in Section “Structure indicators for tubular structures”.

In applications we are rarely concerned with twice
continuously differentiable functions f as required in
Eq. 1, but may just suppose that f is in the space of
(equivalence classes of) quadratic integrable functions
L2(Rd). However, convolution of f with a d-variate
Gaussian

ϕσ (x) :=
1

√
2πσ2d exp

(
− |x|22σ2

)
,

with zero mean and standard derivation σ leads to a
smooth function

( f ∗ϕσ )(x) =
∫
Rd

f (y)ϕσ (x− y)dy .

Note that for continuous functions f ∈ L2(Rd),

lim
σ→0

( f ∗ϕσ )(x) = f (x) .
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Table 1. Structures indicated by the eigenvalues of
H f , where L means low absolute value and H high
absolute value with the respective sign for 2D (top)
and 3D (bottom) applications.

λ1 λ2 Structure

L L noise
L H>0 bright tubular
L H<0 dark tubular

H>0 H>0 bright blob
H<0 H<0 dark blob

λ1 λ2 λ3 Structure

L L L noise
L L H>0 bright plate
L L H<0 dark plate
L H>0 H>0 bright tubular
L H<0 H<0 dark tubular

H>0 H>0 H>0 bright blob
H<0 H<0 H<0 dark blob

From a more general point of view, the Gaussian
ϕσ is a typical function from the Schwartz space
S (Rd) of rapidly decreasing functions. These
functions have the nice property that their derivatives
as well as multiplications with polynomials are
again functions in S (Rd). The functions of L2(Rd)
are contained in S ′(Rd), the space of tempered
distributions, on S (Rd) consisting of the linear
continuous functionals T : S (Rd)→R mapping ϕ 7→
〈T,ϕ〉, see Constantin (2016). The convolution T ∗ϕ

of a function ϕ ∈ S (Rd) with a distribution T ∈
S ′(Rd) is an infinitely often differentiable function.
In particular, f ∗ ϕσ is infinitely often differentiable.
Moreover, we have

∂ 2

∂x jxk
(T ∗ϕ)(x) =

(
T ∗ ∂ 2

∂x jxk
ϕ

)
(x) .

Finally, we will apply that the convolution is closely
related to the Fourier transform. The Fourier transform
F : S (Rd)→S (Rd) maps ϕ 7→ ϕ̂ by

ϕ̂(ω) :=
∫
Rd

ϕ(x)e−2πixTω dx ,

and its inverse is given by

ϕ(x) =
∫
Rd

ϕ̂(ω)e2πixTω dω .

In particular, the Fourier transformed Gaussian reads

ϕ̂σ (ω) = e−
σ2|ω|2

2 .

The Fourier transform F : S ′(Rd)→ S ′(Rd) maps
T 7→ T̂ by

〈T̂ ,ϕ〉 :− 〈T, ϕ̂〉
for all ϕ ∈S (Rd). In particular, the Fourier transform
maps L2(Rd) onto L2(Rd). The Fourier transform
has the useful property that derivatives of functions
became just polynomial multiplications in the Fourier
domain, i.e., for T ∈S ′(Rd),(

∂ 2

∂x jxk
T
)
(̂ω) =−(2π)2

ω jωkT̂ (ω) . (2)

Finally, the relation between the Fourier transform and
convolution is given for ϕ ∈S (Rd) and T ∈S ′(Rd)
by

(T ∗ϕ )̂(ω) = T̂ (ω) ϕ̂(ω) . (3)

Gauss Hessian Matrix

Instead of the Hessian in Eq. 1 which may not
exist if f is not twice differentiable, we deal with the
Hessian of f ∗ϕs at x0 for appropriate s > 0, i.e.,

G H f (x0,s) :=
(

∂ 2

∂x j∂xk
( f ∗ϕs)(x0)

)d

j,k=1
(4)

=

(
( f ∗ ∂ 2

∂x j∂xk
ϕs)(x0)

)d

j,k=1

and call it Gauss Hessian matrix. Due to the decay of
the second order partial derivatives of ϕs, the Gauss
Hessian matrix can be used to detect structures which
have approximately thickness 2s.

Note that

ϕσ̃ ∗ϕσ = ϕs , s2 = σ
2 + σ̃

2 .

The first and second order partial derivatives of the
Gaussian ϕs are given by

∂

∂x j
ϕs(x) =− 1√

2πs2d
s2

x j e−
|x|2
2σ2 ,

∂ 2

∂x j∂xk
ϕs(x) =


1√

2πσ2d
s4

x jxk e−
|x|2
2s2 if j 6= k,

1√
2πσ2d

s2

( x2
j

s2 −1
)

e−
|x|2
2s2 if j = k.

By Eqs. 2 and 3, the second order partial derivatives
appearing in the Gauss Hessian matrix can be written
as

∂ 2( f ∗ϕs)

∂x j∂xk
(x0) =−(2π)2F−1(ω jωk f̂ ϕ̂s)(x0) . (5)
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Riesz Hessian Matrix
Instead of approximating the Hessian matrix by the

Gauss Hessian matrix which can be used to detect local
structures of appropriate size related to the standard
deviation s of the Gaussian, we will approximate it
by a Riesz Hessian matrix now. This will make the
detection of tubular structures less dependent on their
scale and avoids computational costs due to multiscale
computations.

The Riesz transform R = (R j)
d
j=1 : L2(Rd) →(

L2(Rd)
)d is defined componentwise by

R j f (x) := (R j ∗ f )(x)

=
Γ((d +1)/2)

π(d+1)/2︸ ︷︷ ︸
Cd

lim
ε→0

∫
Rd\Bε

y j f (x− y)
|y|d+1 dy ,

i.e., as convolution of f ∈ L2(Rd) with the tempered
distribution

R j(x) :=Cd pv.
x j

|x|d+1 , j = 1, . . . ,d ,

where Γ denotes the Gamma function. Note that in
general the convolution with of a distribution in S ′

and a function in L2(Rd) is not defined. For d = 1, the
Riesz transform coincides with the so-called Hilbert
transform. In the Fourier domain the Riesz transform
becomes

(R j f )̂(ω)= (R j∗ f )̂(ω)=−i
ω j

|ω| f̂ (ω), j = 1, . . . ,d.

Then

(R jRk f )̂(ω) = (R j ∗Rk ∗ f )̂(ω) =−ω jωk

|ω|2 f̂ (ω),

and we recognize by Eq. 2 that

R jRk f (x) =
∂ 2

∂x j∂xk
∆
−1 f (x).

Here the inverse Laplacian is the differential operator
defined by

F
(
∆
−1 f
)
(ω) :=− 1

(2π)2|ω|2 f̂ (ω).

In other words, R jRk f can be considered as smoothed
partial second order derivatives of f . Therefore,
instead of the Gauss Hessian matrix (Eq. 4), we
propose to use

RH f (x0,σ) := (R jRk( f ∗ϕσ )(x0))
d
j,k=1 (6)

and call this Riesz Hessian matrix. In contrast to the
parameter s appearing in the Gauss Hessian matrix
G H f (x0,s), which must be varied to detect structures
at several scales, the parameter σ in the Riesz Hessian
matrix does not play a role in detecting structures of
varying size. In applications, σ will be a fixed rather
small parameter to cope with the noise in images. We
will see in the next section that the Riesz Hessian
matrix with this fixed parameter together with the
simple quantities defined there can serve for detecting
structures at several scales.

To make the results comparable, we will use
similarly as in Eq. 5 the Fourier transform to compute
the entries of the Riesz Hessian matrix

R jRk( f ∗ϕσ ) =−F−1
(

ω jωk f̂
ϕ̂σ

(2π)2|ω|2
)
(x0) .

(7)

STRUCTURE INDICATORS FOR
TUBULAR STRUCTURES
Frangi et al. (1998) proposed measures for the

detection of tubular structures for d ∈ {2,3} in
connection with the Gauss Hessian matrix. In the
following, we recall these measures for d = 3. Having
an approximation of the Hessian based on the Riesz
transform, we can also apply these measures in
connection with the Riesz Hessian matrix.

By Table 1 (bottom) we have for the eigenvalues of
the Gauss/Riesz Hessian matrix at a point x ∈R3 lying
in a tubular structure that

λ1(x)≈ 0 , (8)
λ2(x)≈ λ3(x) , (9)
|λ2(x)| ≈ |λ3(x)| � 0 , (10)

where the sign of λ2(x),λ3(x) indicates whether it is
a dark or a bright tube. To check these conditions
in noisy images several quantitative indicators were
introduced by Frangi et al. (1998):

The first one belongs to conditions Eq. 8 and
Eq. 10 and is given by

Wa(x) :=
|λ1(x)|√
|λ2(x)λ3(x)|

.

If Wa(x) ≈ 0, λ1(x) ≈ 0 and at least |λ3(x)| � 0, it
remains to check for condition Eq. 9. In this case, the
value of

Wb(x) :=
∣∣∣λ2(x)
λ3(x)

∣∣∣
should be close to one. With these two measures,
vessels could be detected in clean images. However,
in applications the data is usually affected by noise. In
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noisy regions, the Gauss Hessian has low eigenvalues,
hence its Frobenius norm is small. To make the
measure independent of the range and scale of the
image, the maximal Frobenius norm over all image
points is used as normalization. Then, a third indicator
is obtained

Wc(x) :=

√
∑

3
i=1 λ 2

i (x)

maxy

√
∑

3
i=1 λ 2

i (y)
.

Finally, the three measures are combined within the
following product

V (x,s) := e−
W 2

a (x)
a

(
1− e

−W 2
b (x)
b

)(
1− e−W 2

c (x)
)
,

where a,b ∈ R>0 are weights. Similar to Wa and Wb,
measures for plate- and blob-like structures can be
introduced based on Table 1.

For two dimensional structures we use the
following indicator

V (x,s) = e
−1

a

(
λ1(x)
λ2(x)

)2 (
1− e−W 2

c (x)
)
. (11)

Finding a fiber of thickness 2s at x requires a large
value of V (x,s). With this value of s, the identifier is
not able to detect tubes of diameter smaller than s, as
they are blurred too strongly by the convolution, while
the tubes of thickness larger than 4s are considered to
be constant regions.

In practice the thicknesses of the fibers are not
known, so Frangi et al. (1998) propose to search over
the interval of scales [smin,smax] and take

V (x) := max
s∈[smin,smax]

V (x,s) (12)

as fiber detection measure. This means that we need to
calculate several Gauss Hessians for each point in the
image.

We propose to relax the scale dependence of the
tube indicator by using the Riesz Hessian instead of
Gauss Hessian. In the following, we denote by VG,
resp. VR the measure (Eq. 11) with respect to the
Gauss, resp. the Riesz Hessian, and similarly for VG
and VR in Eq. 12.

RESULTS

In this section, we show how the Riesz Hessian
performs in contrast to the Gauss Hessian by various
artificial examples. Further, we apply the Riesz
Hessian to two and three dimensional real-world data
sets containing tubular structures of varying size,
where we could not obtain satisfactory results using
the Gauss Hessian.

DISCRETIZATION

In our experiments, we deal with discrete data
f : Rd ⊃ G → R defined on an image grid with G :=
{1, . . . ,N1} × . . .× {1, . . . ,Nd}, d = 2,3. To allow a
comparison of the Gauss and Riesz Hessian matrix,
we compute their components in the Fourier domain,
i.e., by Eqs. 5 and 7, respectively. The computation
of the discrete Fourier transforms is realized using
the function fftn of MATLAB. We mirror the image
at the boundary for the calculation of the Hessians,
to avoid artifacts occurring from the periodicity
assumption of the discrete Fourier transform. Hence,
for the calculation of the Hessian matrices, we consider
the image f̃ : {1, . . . ,2N1} × . . .× {1, . . . ,2Nd} → R
with

f̃ (x) = f
(
min{x,2N +1− x}

)
,

where N := (Ni)
d
i=1 and min is meant componentwise.

ARTIFICIAL 2D DATA

0 1 2 3 4 5 6 7 8 9 10
0

200

400

600

800

Scale

E
rr
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VG

VR

Fig. 2. Error plot of structure indicators based on
Gauss and Riesz Hessians with threshold 0.15(1−
e−1).

The artificial fork-like structure in Fig. 3a has
vessels in two different scales. The image is of size
55× 55 pixels with values in [0,1]. The thick vessel
is 15 pixel wide and the thin one 5. It is corrupted
by additive Gaussian noise of standard deviation 0.3.
We apply the indicator V•(x,s), • ∈ {G,R} defined
in Eq. 11 with a := 1 for different scales s to the
noisy image. We assume that a pixel x ∈ G belongs
to the tubular structure, if V•(x,s)≥ δ (1− e−1), where
δ := 0.15. Note that 1− e−1 is the maximal possible
value V• can achieve. As error measure we use the
number of falsely classified pixels. Fig. 2 shows the
error plot based on V•, • ∈ {G,R} for different scales.
The Riesz Hessian method produces the smallest error
for s = 0.7. This confirms the fact that the convolution
is only necessary for smoothing the noise. Fig. 3c
depicts the very good result. The Gauss Hessian
approach has a larger error and we recognize a global
minimum at s = 3.5 and a local minimum at s = 8.1.
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−1 0 1

(a) Original fork (b) Noisy fork

(c) VR for s = 0.7 (d) VG for s = 3.5

(e) VG for s = 8.1 (f) VG

Fig. 3. Results of structure indicators based on Gauss
and Riesz Hessians applied to an artificial noisy 2D
fork with white Gaussian noise (σ = 0.3). (a),(b) are
represented as gray values according to the above
color map, (c)-(f) white indicates a detected structure
and black means no detection.

These minima correspond to the detection of the
different vessel sizes. In Fig. 3d, we see that for s =
3.5, small vessels are well recognized, except for the
branching point, while the large vessel is estimated
too thin. Using σ = 8.1 the large vessel is detected
well, while the branching point is over-smoothed and
the small vessels disappear, see Fig. 3e. Instead of
V•(x,s) at different scales we could use V•, i.e., take
the maximum over the interesting scales. To find
these scales we perform a grid search on 1

10N for all
possible combinations of smin < smax ∈ [ 1

10 ,10], as well
as for the best percentage δ of 1− e−1 in 1

100N as

threshold. The optimal parameters and corresponding
errors are reported in Table 3. In contrast to the Gauss
Hessian approach, the result for the Riesz Hessian
improves only slightly. However, as shown in Fig. 3f,
the larger scale part of the fork is over-smoothing at
the branching point.

Table 2. Optimal parameters and related errors for V•.

Indicator sopt Error

VG 3.5 160
VR 0.7 9

Table 3. Optimal parameters and related errors for V•.

Indicator smin smax δ Error

VG 1.0 9.9 0.31 95
VR 0.6 0.8 0.16 7

(a) Angle of e1,R, s = 0.7 (b) Angle of e1,G, s = 3.5

(c) Color coding

Fig. 4. Directions of the detected tubular structures
given by the direction of the eigenvector of the smallest
eigenvalue of the Hessian.

We are not only interested in the position of the
structures but also in their directions. This can be
done by considering the normalized eigenvector e1 of
the smallest eigenvalue of the corresponding Hessian.
In Fig. 4, we show the angles of the eigenvectors
at points, where a structure is detected. The detected
directions coincide in most parts with those of the
tubular structure, except for the bifurcation with the
Gauss Hessian approach. However, there are some
errors in the directions detected via the Gauss Hessian

113



DOBROVOLSKIJ D ET AL: Second order Riesz transforms

due to smooth direction changes. Note that due to
the mirror boundary conditions, the angles are slightly
disturbed at the bottom.

SPHEROIDAL GRAPHITE IN GRAY
CAST IRON
Cast iron with spheroidal graphite is also known

as ductile cast alloy and is popular due to its good
ductile behavior. The spherical graphite inclusions
yield better energy absorption during loading and
thus higher ultimate tensile strength characteristics are
reached. Fig. 5(a) shows a micrograph of cast iron with
spheroidal graphite where we see a section through
the spherical inclusions and grain boundaries of the
polycrystalline iron matrix.

Our approach can be used to detect the spheroidal
graphite inclusions. For blobs in two dimensions we
use the following structure indicator

V (x,s) = (1− e
−1

a

(
λ1(x)
λ2(x)

)2

)
(

1− e−W 2
c (x)
)
,

(a) original

(b) small blobs Gauss,
s = 2.0,δ = 0.2,a = 0.01

(c) big blobs Gauss,
s = 5.0,δ = 0.05,a = 0.01

(d) blobs Riesz,
σ = 0.8,δ = 0.2,a = 0.01

(e) blobs Riesz,
morphologically opened

Fig. 5. 2D blob detection illustrated using the
example of spheroidal graphite in gray cast iron. The
structuring element for the morphological opening is a
square of edge length 5 pixels.

and use as threshold δ (1 − e−1)2. The results in
Fig. 5 show that the Riesz Hessian is able to detect
both small and large structures in one detection step.
Moreover, large blobs that are close together are
separated cleaner even without postprocessing. Note
that the postprocessing is performed on binary data and
is very fast.

ARTIFICAL 3D DATA

0 1 2 3 4 5 6 7 8 9 10

2,000

4,000

6,000

Scale
E
rr
or

VG

VR

Fig. 6. Error plot of structure indicators based on
Gauss and Riesz Hessians with threshold 0.02(1−
e−1)2.

Next we consider the 3D fork like structure
corrupted by Gaussian noise with standard deviation
σ = 0.5 in Fig. 7. The original image is of size
35× 35× 35, the thick tube of 15× 15 and the thin
one of 5×5 pixels. The tubular structures are detected
if the indicator V• is larger than (1− e−1)2/50, i.e.,
a value larger than 2% of the maximal response
value. Fig. 6 shows the errors for different scales.
The optimal scales with the corresponding errors is
given in Table 4. The Riesz Hessian yields the best
result for small s = 0.8. The Gauss Hessian performs
worse even at the best scale s = 2.9. The tubular
structures indicated by V• at the optimal scales are
shown in Fig. 7d and c. The result based on the Gauss
Hessian looks very blurry and detects background
areas as structures. The structures detected by the
Riesz Hessian approach fit the original data much
better. Still, some small areas of the background are
considered to belong to the big tube. The indicator
V• in Table 5, does not give an improvement for the
Riesz Hessian method, but the Gauss Hessian approach
profits from the different scales. However, the interval
[smin,smax] is smaller than in two dimensions and does
not include scales corresponding to the large tube. The
result is visualized in Fig. 7e. It has sharper edges as
those obtained via VG(·,2.9), but more background is
classified wrongly.

Table 4. Optimal parameters and related errors for V•.

Indicator sopt Error

VG 2.9 1274
VR 0.8 610

114



Image Anal Stereol 2019;38:107-119

(a) Original 3D fork (b) Noisy 3D fork

(c) VR for s = 0.8 (d) VG for s = 2.9 (e) VG

Fig. 7. Results of structure indicators based on Gauss and Riesz Hessians applied to an artificial noisy 3D fork
with white Gaussian noise (σ = 0.5).

Table 5. Optimal parameters and related errors for V•.

Indicator smin smax δ Error

VG 2 3 0.03 1129
VR 0.8 0.8 0.02 610

We are also interested in the directions of the
tubular structures, which are detected by the different
methods. We show the directions of the eigenvectors
corresponding to the smallest eigenvalue at each
detected point in Fig. 8. The colorization is based on
the angle of the eigenvector to the x-axis in the xy-
plane. In the thin tubular structure both methods lead
to similar estimates of the directions, which match
the direction of the fibers. The Gauss Hessian method
does not detect the whole tube near the branching
point. Both methods find wrongly classified directions
in the background. This observation corresponds to the
detection seen in Fig. 7.

Fig. 9 shows two slices of the fork, one from
the thick tube and the other close to the tip, i.e., at
z = 10,30. In contrast to the Gauss Hessian method,

the Riesz Hessian one detects the whole rectangular
structure of the thick tube, but the directions at the left
and right corner are slightly disturbed.

LOCAL 3D FIBER ORIENTATION
ANALYSIS FOR FIBROUS MATERIALS

Here, we apply the orientation analysis based
on the Gauss and Riesz Hessian to a synchrotron
radiation µCT (SRµCT) of a sample from a felt used
for dewatering the pulp during paper production. This
data set generated at the ESRF in Grenoble (Cloetens
et al., 2002) has been used to study flow properties
(Rief, 2005), see also Ohser and Schladitz (2009,
Section 3.4). Fig. 10 shows the volume rendering of a
590×600×450 pixel subsample clearly featuring thin
and thick fibers. We illustrate the potential of replacing
the gradients by the Riesz transform for simultaneous
orientation analysis of fiber systems with varying fiber
thickness.
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(a) e1,G for s = 2.8

(b) e1,R for s = 0.8

Fig. 8. Directions of the detected tubular structures
given by the direction of the eigenvector of the smallest
eigenvalue of the Hessian.

(a) e1,G for s = 2.8 (b) e1,G for s = 2.8

(c) e1,R for s = 0.8 (d) e1,R for s = 0.8

Fig. 9. Slices trough the thick and thin part of the tubes
shown in Fig. 8.

Fig. 10. Fiber felt sample, 590×600×450 subvolume
of the SRµCT data set. Volume rendering of the
original data set.

Visual impression suggests that the thick fibers
are mainly oriented in the x-direction. The analysis
based on the Gauss Hessian with σ = 5 does not
capture all thick fibers properly, see Fig. 11a. The
analysis based on the Gauss Hessian with σ = 15
smudges both structure and local orientation results,
see Fig. 11b. The Hessian based on the Riesz transform
however, finds very consistently both thin and thick
fibers in x-direction, see Fig. 11c and the orientation
histogram 11e.

To summarize, for real CT image data of structures
with strongly varying fiber thicknesses, the Riesz
transform based method yields better local orientation
results than those obtained by the state-of-the-art
method. The fact, that it does not rely on the prior
knowledge about the observed fiber thickness, is a
huge advantage in all applications where fibers of
varying thickness have to be analyzed.

SEGMENTATION OF TYPICAL
STRUCTURAL ELEMENTS OF BOVINE
LEATHER

The simulation of mechanical properties of bovine
leather is of great practical interest, but needs a deep
understanding of the microstructure. In particular,
the segmentation of the collagen fibers is essential.
The method consists of three basic steps: first, the
original data set is filtered with a median and a soft
shock filter to get rid of noise and to obtain a basic
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(a) δxx, Gauss Hessian, σ = 5 (b) δxx, Gauss Hessian, σ = 15

(c) δxx, Riesz Hessian
(d) color legend (e) (φ̂ , θ̂)-histogram, Riesz Hessian

Fig. 11. Fiber orientation analysis results for fiber felt sample. The visualized results are clipped down in positive
x-direction from originally 590 slices to 400 in order to oppress the boundary effects. (a),(b),(c) xx-components
δxx of the computed Hessians. (a) Gauss Hessian using σ = 5 to match thin fibers. (b) Gauss Hessian using
σ = 15 to match thick fibers. (c) Riesz Hessian. (d) Color legend for (a),(b),(c). (e) Volume weighted histogram
of the local fiber orientations for method (c).

segmentation into fore- and background. From the
denoised data we want to compute normal directions,
because they are very sensitive to fiber boundaries,
i.e., they change a lot at the fiber boundaries. To
obtain a robust estimation of the normal direction the
Riesz Hessian matrix is computed. Note that the local
fiber bundle thickness in the leather varies strongly,
such that it is impossible to choose the right scale s
for calculating the derivatives by the Gauss Hessian.
Subsequently, the local normal directions are derived
as those corresponding to the largest eigenvalue
of the Riesz Hessian and the local differences of
these normal directions are calculated, cf. Fig. 12b.
Finally, the watershed transform, cf. Fig. 12c, and
a hierarchical coarsening (Beucher, 1994) is applied
to the thus derived orientation gradient image. The

latter thrives on differences of features of the existing
regions. A slice of the final segmentation is shown
in Fig. 12d. This result can now be used to analyze
the microstructure of the leather, see Godehardt
et al. (2017). So far, this is the only successful
attempt on automatic segmentation of individual fiber
bundles from CT images of leather samples. Note
that the method was also reported without giving the
mathematical details in this short conference paper.

DISCUSSION

In this paper, we modified the Gauss Hessian
by replacing the derivatives of the Gaussian
smoothed function in Eq. 4 with the respective Riesz
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(a) original (b) local gradient of normal
orientation

(c) initial segmentation (d) final segmentation

Fig. 12. Slices through the leather data set “axila”
from Bittrich et al. (2014), steps of the segmentation.
The initial segmentation is achieved by the watershed
transform on the orientation gradient image as
described above, the final one after four waterfall
coarsening steps. See Godehardt et al. (2017) for
details.

transforms in Eq. 6. As a result, both the local
orientation analysis as well as Frangi’s local structure
indicators based on the Riesz Hessian matrix are less
restrictive to the scale of the tubular structures. The
fact, that they do not rely on the prior knowledge
about the observed fiber thickness, is a big advantage
in all applications, where fibers of varying thickness
have to be analyzed. This was demonstrated by various
numerical examples including artificial test images
as well as real world applications in two and three
dimensions. Even though in most examples the focus
was on the detection of tubular structures, the Frangi
Riesz Hessian indicators can be used for plate or blob
detection as well.
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Analysis of superimposed oriented patterns. IEEE T
Image Process 15:3690–700.

Altendorf H, Jeulin D (2009). 3D directional mathematical
morphology for analysis of fiber orientations. Image
Anal Stereol 28:143–53.

Basil-Jones MM, Edmonds RL, Allsop TF, Cooper SM,
Holmes G, Norris GE, Cookson DJ, Kirby N,
Haverkamp RG (2010). Leather structure determination
by small-angle X-ray scattering (SAXS): Cross sections
of ovine and bovine leather. J Agr Food Chem 58:5286–
91.

Beucher S (1994). Watershed, hierarchical segmentation
and waterfall algorithm. In: Serra J, Soille P, eds.,
Computational imaging and vision Vol. 2: Mathematical
morphology and its applications to image processing.
Dordrecht: Kluwer, pp 69–76.

Bittrich E, Schladitz K, Meyndt R, Schulz H, Godehardt M
(2014). Micro-computed tomography studies for three-
dimensional leather structure analysis. J Am Leather
Chem Assoc 109:367–71.

Cloetens P, Ludwig W, Boller E, Helfen L, Salvo L, Mache
R, Schlenker M (2002). Quantitative phase contrast
tomography using coherent synchrotron radiation. Proc
SPIE 4503:82–91.

Constantin A (2016). Fourier analysis, Vol 1: Theory.
Cambridge: Cambridge University Press.

Du YP, Parker DL, Davis WL (1995). Vessel enhancement
filtering in three-dimensional MR angiography. J Magn
Reson Imaging 5:353–9.

Felsberg M, Granlund G (2004). POI detection using
channel clustering and the 2D energy tensor. In:
Rasmussen CE, Bülthoff HH, Schölkopf B, Giese MA,
eds., Pattern recognition: Proc 26th DAGM Symp. Lect
Not Comput Sci 3175:103–10.

Felsberg M, Sommer G (2001). The monogenic signal.
IEEE T Signal Process 49:3136–44.

Förstner W, Gülch E (1987). A fast operator for
detection and precise location of distinct points, corners
and centres of circular features. In: Proc ISPRS
Intercommiss Conf Fast Process Photogramm Data, pp
281–305.

Frangi AF, Niessen WJ, Vincken KL, Viergever MA (1998).
Multiscale vessel enhancement filtering. In: Wells WM,
Colchester A, Delp S, eds. Medical image computing
and computer-assisted interventation (MICCAI’98).
Lect Not Comput Sci 1496:130–7.

Godehardt M, Schladitz K, Dietrich S, Meyndt R, Schulz
H (2017). Segmentation of collagen fiber bundles in
3D by waterfall on orientations. In: Angulo J, Velasco-
Forero S, Meyer F, eds. Mathematical morphology and
its applications to signal and image processing: Proc
13th Int Symp (ISMM 2017). Lect Not Comput Sci
10225:447–54.
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