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Abstract  

Numerical analysis of the static bending and free vibration mechanical 

behavior of FGM are performed using the UMAT-USDFLD subroutines  

in ABAQUS software. Different combinations of geometries, mechanical 

loading and boundary conditions are adopted. The material properties 

according to the coordinates of the integration points are defined in the de-

veloped numerical model. The First Order Deformation Theory is used for 

thin and moderately thick FG shells analysis. The accuracy and the ro-

bustness of the numerical model are illustrated through the solution of several 

non trivial structure problems. The proposed numerical procedure is sig-

nificantly efficient from the computational point of view. 
 

 

1. INTRODUCTION  
 

Functionally graded material, known as FGMs, are non-homogeneous com-

posite materials with mechanical properties that vary from one to three directions. 

They are generally composed of transition alloys from metal at the first surface 

to ceramic at the other opposite surface (Yanga & Shen, 2003; GhannadPour  

& Alinia, 2006; Draiche, Derras, Kaci & Tounsi, 2013). FGMs exhibit a smooth 

and continuous gradient in the composition and the material properties, which is 

the main difference with conventional composites which depicts a gradually 

properties variation with location. According to (Apetre, Sanka & Ambur, 2006), 

the closest similarities of FGMs are the laminated composites. However, their 
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properties change abruptly across the interfaces. The improved properties of com-

posite materials have led to their use in aerospace, automotive and biomedical 

applications. For this, new methodologies have to be developed to characterize 

their mechanical response when subjected to static and dynamic solicitations. 

These methodologies would be incorporated into available techniques in an opti-

mized way. 

Numerous research works are available in literature to analyze the linear 

mechanical behavior of FG shell structures (Simo, Fox & Rifai, 1989; Chung  

& Chen, 2007; Ghanned & Nejad, 2013; Shariyat & Alipour, 2014). The First 

Order Shear Deformation theory (FSDT) is widely used (Praveen & Reddy, 

1997; Lin & Xiang, 2014; Thai & Kim, 2015). The use of FSDT is justified by 

the fact that the classical Kirchhoff theory (CPT) neglects the effects of trans-

verse shear and normal strains of the structure (Wali, Hajlaoui, & Dammak, 2014). 

The Reissner-Mindlin theory provides a correct overall assessment. Nevertheless, 

equations of motion are more complicated to obtain (Frikha, Wali, Hajlaoui  

& Dammak, 2016a). Analytical works were conducted by Abrate (Abrate, 2006) 

on the free vibration and static deflections of FG square, circular, and skew plates 

with different combinations of boundary conditions on the basis of the FSDT.  

 In the objective to provide the numerical solution of FGM deformation  

and the effect of material inhomogeneity, the theoretical formulation is typically 

coupled with Finite Element method. In most studies, the solution procedure  

can be implemented into home codes (Abrate, 2006; Frikha, Wali, Hajlaoui  

& Dammak, 2016b; Frikha & Dammak, 2017); other authors obtained the numerical 

solution using the commercial FE ABAQUS commercial software (Nie & Zhong, 

2007; Alipour & Shariyat, 2012). In this regard, variations of the material 

properties in the transverse direction are often modeled in ABAQUS through the 

following technique: each layer of the composite is divided into N slices to 

approximate the gradual material properties variations (Mao, Fu & Fang, 2013). 

This method is adopted as no such type of FGM element is available in the 

software element library. The main drawback of this method is non-continuous 

segmented distribution of material properties. This conventional numerical tech-

nique is also expensive in CPU time. Results of (Mao, Fu & Fang, 2013) showed 

an imperfect correlation between analytical model and numerical computation.  

For robustness, an alternative method consists in using the user subroutine 

UMAT to define the material properties according to the coordinates of the 

integration points when considering one layer. To the best knowledge of the 

authors, there are no further accessible documents in literature on ABAQUS 

implementation of static and dynamic response of FG shells when taking into 

account the continuity of material point distribution. It is within this framework 

that this work is performed. The material properties of FGM shell are defined 

according to the coordinates of the integration points using both UMAT and 

USDFLD subroutines, in ABAQUS software. The accuracy of the developed 

model is illustrated through the solution of several FG structures problems.  
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2.  BASIC CONCEPTS AND NUMERICAL IMPLEMENTATION 
11 points break 

A polynomial material law is adopted to control the heterogeneity of FGM 

properties as given by Zenkour (Zenkour, 2006), (Fig. 1): 
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where PFGM(z), Pm, and Pc denote, respectively, the effective material property, 

the metal properties and the ceramic properties. EFGM(z) designs the Young mod-

ulus and ρFGM(z) is the density, h denotes the structure thickness and z is the 

coordinate measured along the thickness direction; n is the power-law index. 

 

 

Fig. 1. Geometry of a functionally graded plate 

11 points break 

In Finite Element model, all formulations are developed under the assumption  

of a linear elastic behavior and small deformations of material. According to the 

FSDT, the displacement components are: 
 

, ,
x y y x z

u u z u v z u wϕ ϕ= + = − =
         

(2)
 

φx and φy are the rotations of the transverse normal about the Cartesian axis x  

and y, respectively; u, v and w are the in-plane displacements and deflection of 

the mid-plane, respectively. The generalized displacement vector u is then  

u = [u,v,w,φx,φy]T. z is the thickness coordinate of the shell.  

The state of deformation can be decomposed in in-plane and transverse shear 

strains as: 
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where: εαβ, χαβ, χα3 are the membrane, bending and transverse shear strains, 

respectively. The strain vectors are presented in matrix notation: 
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The in-plane membrane and bending and transverse shear stresses resultants: 
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The constitutive equations can then be written as a function of the in-plane and 

the out-of-plane linear elastic matrices depending on z: 
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The constitutive relation between the generalized stress and strain is the 

following when applying the shear correction factor (Frikha, & Dammak, 2017): 
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Numerical simulation is performed using the commercial FE software 

ABAQUS. To avoid stress discontinuity, the material properties according to the 

coordinates of the integration points are implemented in two interfaces: the first 

interface consists on the UMAT subroutine to implement the elastic mechanical 

behavior along thickness using the integration point number (KSPT). The second 

inter face consists on the USDFLD subroutine to predefine the density field 

variables at a material point. In ABAQUS the integration points through  

the thickness of the shell are numbered successively, starting from point 1, as de-

scribed in Figure 2. To obtain accurate description of FGM structure response 

using shell elements, the number of the through-thickness integration points (n) 

was carefully fixed, since a small number of integration points leads to addi-

tional error of the numerical results. Considering Simpson’s approach, the point 

(1) is located precisely on the bottom surface of the shell. Using Gauss quadra-

ture, point (1) is placed close to the bottom surface.  
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Fig. 2. Integration points defined in one layer of shell section 

 

 

3. NUMERICAL RESULTS 

 

3.1. Standard patch tests 
 

The performance of the proposed numerical simulation is assessed with standard 

patch tests (Wali, Hajlaoui, & Dammak, 2014). Classically, the reference structure 

problems are threefold: (i) Bending of a simply supported rhombic plate, (ii) 

pinched hemispherical shell with 18 hole, (iii) pinched cylinder with end 

diaphragms. In the present study, shells are modeled with the standard 

quadrilateral 4-nodes element with three rotational and three translational 

degrees of freedom per node. Results, based on the FSDT of shell elements are 

obtained with the addition of an automatic computation of the shear correction 

factors as in (Frikha & Dammak, 2017).  

FGM structure properties are: (Em, Ec, νm, νc)=(70 GPa, 380 GPa, 0.3, 0.3) for 

the metal and ceramic components, respectively. All material and geometrical 

properties are given in a coherent system of units in the UMAT subroutine. The 

power-law index is n = 6 for all cases.  

The obtained numerical results of the normalized center-point deflection are 

gathered in table 1. Comparison with (Wali, Hajlaoui & Dammak, 2014) show  

a very good accuracy. In (Wali, Hajlaoui & Dammak, 2014), a 7DOF per node, 

3d-shell model was applied based on a discrete double directors shell element 

which is expensive from a computational time point of view. So, one can conclude 

that the proposed technique exhibits high performance. 
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Tab. 1. Results of benchmark tests  
9 points break 

Node 

per 

side 

Rhombic plate 
Hemispherical shell  

(10-2) 

Pinched cylinder 

(10-4) 

Present 
Wali et 

al.(2014) 
Present 

Wali et 

al.(2014) 
Present 

Wali et 

al.(2014) 

3 

5 

9 

17 

33 

100 

1.843           7.846 

2.761           5.186 

2.889           3.695 

3.073           3.348 

3.189           3.275 

3.278           3.268 

4.532           5.190 

5.153           5.398 

5.181           5.269 

5.204           5.220 

5.223           5.229 

5.237           5.232 

0.205           0.189 

1.822           2.157 

3.491           3.928 

4.302           4.525 

4.565           4.654 

4.672           4.746 

 

3.2. Free vibration of FG shear-diaphragm cylindrical shell 
 

 In this section, the numerical model is applied for the case of FGM cylindri-

cal shell subjected to free vibration with shear-diaphragm boundary conditions. 

The cylindrical shell has a thickness to radius ratio fixed to 0.002 and length  

to radius ratio fixed to 20. FGM structure properties are: (Em, Ec,νm, νc, ρm, ρc) = 

(205.098 GPa, 207.788 GPa, 0.31, 0.317756, 8900 kg.m-3,8166 kg.m-3) for 

nickel and stainless steel components, respectively. For free vibration, the 

equations of motion take the form of a standard eigenvalue problem: 

 

( )2
w M−K ΛΛΛΛ

          
(9)

 
 

where w is the eigen-frequencies of the FGM shell. The discretization of the 

cylinder is performed by means of S4 standard structural shell elements. The S4 

shell element is widely used for industrial applications. It is suitable for thin to 

moderately thick shell structures. The accuracy of the proposed simulation is 

assessed with results in (Wali, Hentati, Jarraya & Dammak, 2015). The variation 

of the natural frequencies (Hz) against circumferential wave number is illustrated 

in Table 3. The longitudinal wave number is equal to 1. It is plausible to depict 

the effect of the power-law distribution choice on the frequency parameters. 

Some mode shapes for the shear-diaphragm FGM cylindrical shells are illustrated 

in Fig. 3. 
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Tab. 2. Frequencies (Hz), against circumferential wave number (longitudinal wave 

number = 1, h = R = 0:002, L = R = 20, R = 1 m). 

Wave 

number 
 Stai.st n = 0.5 n = 1 n = 5 n = 30 Nickel 

2 
Present 

Wali et al. 2015 

4.5922 

4.6719 

4.5251 

4.5955 

4.5207 

4.5581 

4.5102 

4.4838 

4.5043 

4.4531 

4.378 

4.4455 

4 
Present 

Wali et al.2015 

7.2415 

7.2416 

7.1259 

7.1136 

7.1182 

7.0546 

7.133 

6.9412 

7.0891 

6.8886 

6.8881 

6.8736 

6 
Present 

Wali et al.2015 

16.989 

16.909 

16.713 

16.605 

16.694 

16.467 

16.660 

16.203 

16.629 

16.083 

16.159 

16.048 

8 
Present 

Wali et al.2015 

30.870 

30.604 

30.367 

30.053 

30.332 

29.801 

30.272 

29.325 

30.217 

29.107 

29.362 

29.046 

10 
Present 

Wali et al.2015 

48.904 

48.243 

48.107 

47.373 

48.051 

46.977 

47.957 

46.226 

47.477 

45.884 

46.514 

45.716 

 

 
Fig. 3. Mode shapes of the FGM cylindrical shell subjected to shear-diaphragm  

boundary conditions 

 

3.3. Free vibration of FG conical panel 

 
In this section, results of free vibration of moderate thick FG conical panel 

clamped on the bottom surface are presented. Results are compared with 

numerical findings of Tornabene (Tornabene, 2009). The four-parameter power-

law distribution is: 

/ / /

1 1
: V 1

2 2

n
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a b c n c

z z
FGM a b

h h
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where, Vc denotes the ceramic volume fraction and the parameters a, b, c dictate 

the material variation profile through the FG shell thickness. Both constituents  

of FGM are the zirconia (ceramic) and aluminum (metal). Material properties and 

geometry for the zirconia and aluminum are detailed as considered in (Tornabene, 

2009). The first ten frequencies for the FG conical panel as a function of the power-

law exponent are gathered in Tables 3. The first six mode shapes are plotted  

in Figure 4. Results shows a good correlation with literature. The maximum relative 

error is about 1.2%. It is interesting to note that frequencies reach a minimum 

value for a shell made only of metal, due to the fact that aluminum has a much 

smaller modulus than zirconia. In fact, when increasing the power-law index, the 

frequencies decrease, until tending to the metal limit case. This is plausible as 

the ceramic content decreases by increasing the index n and the FGM shell ap-

proaches the case of the fully metal shell. This is in accordance with (Tornabene, 

2009). 

 
Mode shape 1 

 
Mode shape 2 

 
Mode shape 3 

 
Mode shape 4 

 
Mode shape 5  

Mode shape 6 

Fig. 4. Mode shapes for the FGM conical panel 
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Tab. 3. The first ten frequencies (Hz) for the functionally graded conical panel as a function 

of the power law index n (FGMa=1/b=0.5/c=2, h/R = 0.1, L/R = 4,R = 0.5m). 

Frequency 

(Hz) 
n = 0 n = 0.6 n = 1 n = 5 n = 20 n = 50 n = 100 n = inf. 

f1 80.56 80.77 80.96 83.99 79.95 77.68 77.08 75.45 

f2 111.71 112.00 112.27 114.74 109.89 107.16 106.45 104.64 

f3 159.61 159.90 160.21 164.14 158.08 153.73 152.57 149.50 

f4 196.57 197.21 197.74 203.51 196.03 90.13 188.52 184.12 

f5 260.99 261.52 262.05 268.29 258.02 251.17 249.35 244.46 

f6 273.92 274.52 275.07 282.90 273.37 261.17 262.84 256.57 

f7 322.90 323.50 324.14 331.57 318.93 310.48 308.26 302.45 

f8 363.36 364.58 365.56 376.25 362.46 351.53 348.53 340.35 

f9 398.36 399.44 400.31 412.50 399.00 386.47 382.95 373.16 

f10 420.65 421.52 422.48 433.08 414.25 405.49 402.38 394.01 

 

 

3.  CONCLUSIONS 
11 points break 

In this research, a numerical FE model is implemented using the UMAT-

USDFLD subroutines, in ABAQUS software in order to predict the FGMs material 

response to static and free vibration solicitations. The material properties accord-

ing to the coordinates of the integration points are defined so that stress dis-

continuity at the interfaces are eliminated. To the best knowledge of the authors, 

there are no further accessible documents in literature on ABAQUS implementa-

tion of FG shells mechanical behavior when taking into account the continuity of 

material point distribution. This is the main contribution of the present research. 

To check the performance of this technique, the present results are compared and 

validated with findings available in literature. It is also verified that the proposed 

solution procedure is significantly efficient from the computational point of view. 

The present study enables closed-form solutions for some fundamental solid me-

chanics problems, and will aid the development of finite element models for 

structures made of FGMs. Indeed, the present work can be applied in case of com-

plex shells structures, contrarily to the analytical formulation which is limited  

to weak differentiable geometry of shell structures. 
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