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Abstract. Monitoring and diagnosing the state of data storage systems, as 

well as assessing reliability and troubleshooting, require a formalized 

health model. A comparative analysis of existing knowledge representation 

methods has shown that an ontological approach is well suited for this task. 

This paper introduces a machine-represented data storage reliability 

ontology with an expert health model as baseline data. Classes of the 

ontology include the key terms of the reliability domain. Stated 

requirements for data interpretation tools allow further processing of the 

ontology-based knowledge base. Described ontology-based diagnostic 

systems have shown their applicability in the case of data storage systems 

in the construction industry. 

1 Problems of data storage system diagnostics 

A data storage system integrates multiple hardware and software components to store, 

manage and protect user data. A typical hardware platform consists of storage controllers, 

cache memory, chassis, and drives. Software of a platform implements a data path for the 

most critical data processing, a control path to manage a system configuration and service 

path for non-critical, but necessary system monitoring. 

A fault occurring in any part of the system may lead to malfunction of a component and 

eventually cause loss or corruption of information. To prevent a system failure or diminish 

its consequences a data storage system should implement technical diagnostics as a part of 

a service path. This diagnostic service should monitor the state of hardware and software 

components, analyze any change of health parameters values, detect occurring faults, 

promptly notify the operator of changes in the system’s performance and suggest 

recommendations for recovery. 

Design of an effective diagnostic solution requires the following information: 

1. What set of test parameters will show the consequences of all expected system faults 

in a noncontradictory manner.  

2. How frequently the values of test parameters should be polled for adequate technical 

state inspection and prediction. Also, which test parameters should be polled with varying 

frequencies. 
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3. How the designer could verify the algorithm of technical diagnosis and diagnosis 

equipment.  

To answer these questions a designer has to create a diagnostic model that defines the 

levels of system performance degradation and expected failure modes. Thus an adequate 

diagnostic model must satisfy the following requirements: 

- the failure modes must be representative of the system and its environment; 

- system states in the model must be mapped to the failure modes;  

- the levels of system performance degradation must be mapped to the defined system 

states;  

- any defined system state must be in one-to-one correspondence with a particular set of test 

parameters values.  

In addition a good diagnostic model should allow: 

- expansion with new failure modes in case of new results of failure modes and 

effects analysis: 

- configuration, when the parameters of the system change: 

- variability in how detailed different components of the system are represented.  

In general a manufacturer of a data storage system has an expert knowledge regarding 

the system dependability and quality of service – an expert health model. Usually this 

knowledge is not very well structured and doesn’t have a formal, but rather verbal 

representation. For example, an expert health model can define the following levels of 

system performance: fully operable, vulnerable and critical. In this case a fault of CPU in 

storage controller puts the system into a vulnerable state and the loss of all controllers puts 

the system into a critical state. 

This kind of expert health model would describe a set of known failure modes based on 

life data and user feedback. However, it does not show the connection between test 

parameters, particular changes of their values (symptoms) and known failure modes. It does 

not show the dependency between failure modes, system states and system configuration as 

well. And the main drawback of an expert health model is inability to use it for computer-

aided automated diagnosis. 

As a solution we present a formal approach to technical diagnosis of data storage 

systems using knowledge base methods. 

2 Overview of formalisms for knowledge representation 

There are several commonly used knowledge representation models: semantic networks, 

frame models, production models and logical models. 

The semantic network is an information model of the domain in the form of a directed 

graph, which vertices correspond to the objects of the domain, and the arcs (edges) define 

the relations between them [1-2]. 

The frame model is a technological model of a person’s memory and consciousness that 

is systematized as a unified theory [1-4]. 

A production model is a rule-based model that allows you to represent knowledge in the 

form of sentences like “If (conditions), then (action)” and is similar to a condition in 

programming languages if ... else ... [1-3]. 

Logical models are used to represent knowledge, expressed in the form of statements, 

axioms, which are characterized by the accuracy of determining the meaning of an 

expression, the possibility of building a knowledge base of a modular type on their basis, 

and the compactness of written expressions [1-2].  

When using these models, there is a great risk of losing a significant part of the 

knowledge. The main idea of creating a model of this type is to consider all the information 

that is used to find the optimal plan of tasks, and a set of facts and statements presented in 
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the form of formulas and equations. Comparison of various models of knowledge 

representation showed that none of the approaches satisfy all of the requirements stated 

before. 

3 Ontology of Data Storage System Dependability 

We propose to implement an ontological approach since ontology is a model that provides 

an adequate representation of knowledge and is devoid of the drawbacks of the approaches 

listed above. 

Ontology is a formal, exact specification of shared conceptualization [5]. This is a 

formal representation of a domain using a conceptual framework that defines the 

terminology of the subject area. The machine representation of the ontology allows to 

automate the processing of the data presented in it: basic concepts and concepts, as well as 

links between them [6]. For example, J. Zhou et al. use an ontological approach to model 

software reliability [7]. 

Ontology is required to link the concepts of faults, errors, error classes and test 

parameters. Some existing ontologies include the concepts of reliability of technical 

systems (e.g. ACM CS Classification). Existing ontologies are of a general nature and do 

not solve the problem posed though. In addition, the existing ontologies are presented in 

English and do not include Russian terms. 

Therefore, it is necessary to develop a new ontology with a technical diagnostics as a 

domain, a data storage condition monitoring and diagnostics as a scope, and a developer of 

the diagnostic system as a target user of the ontology. Requirements for the ontology are 

given in Table 1. 

Table 1. Requirements for the Ontology. 

Competence 
Ontology 

Classes 

Diagnostic 

Task 
Explanation 

know how to 

interpret 

informational 

signs 

Symptom 

Error 

Systemstate 

control of 

technical 

condition 

A separate set of observed informational signs 

can be associated with a subset of errors 

characterizing the state of the system. The health 

symptom of the storage system can be defined as 

the worst among all the signs corresponding to 

these errors. 

know which 

informational 

signs you 

need to track 

and in what 

order 

Error 

Symptom 

control of 

technical 

condition 

It can be implemented by ranking informational 

signs, for example, on primary (associated with a 

large number of types of errors) and 

confirmatory (associated with a smaller number 

or only with one type of errors). 

be able to 

fail 

Symptom 

Fault 

Error 

verification 

of 

diagnostic 

algorithms 

Depending on the level of abstraction, which 

requires the implementation of the introduction 

of faults, a specific fault can be simulated as a 

change in the internal state of the system or as a 

change in information signs. 

know what 

errors and 

malfunctions 

can occur in 

the system 

Risk factor 

Fault 

Error 

technical 

prediction 

Based on the data on the intensity of the flow of 

faults and taking into account the presence, 

absence or change of individual risk factors, it is 

possible to estimate the probability of errors. 
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know where 

to get 

information 

about fault 

rates 

Manufacturer 

report 

technical 

prediction 

Background information on the probability of 

drive failures can be obtained from the official 

documentation of the manufacturer. 

know how to 

prevent a 

malfunction 

or fix an 

error 

Error 

Fault 

Reliability 

measure 

decision 

making in 

case of 

changes in 

the 

technical 

condition 

When solving the problem of controlling the 

technical condition: the decision-making 

subsystem should take measures to correct the 

detected errors. 

When solving the problem of predicting the 

technical condition: the decision-making 

subsystem should take preventive measures to 

change / implement means of preventing 

malfunctions. 

Today there are two standards for ontology descriptions: OWL (Web Ontology 

Language) and RDF. At the same time, there are various tools to describe ontologies: 

define classes and relations in ontology, as well as build a knowledge base on their basis [8-

9]. For the purposes of the current project we have set the following requirements for the 

development environment: support for one of the standard ontology description languages, 

the ability to export data, a graphical interface, open source code and support for plug-ins. 

All these requirements are met by the Protégé software [10], which is most often used for 

similar tasks in scientific and academic projects. 

Based on the task, classes defined in the ontology correspond to the concepts specified 

in the expert health model and are supplemented with terms from the reliability domain 

(risk, failure, reliability improvement method) (Figure 1). 

 

 

Fig. 1. Classes in the data storage health ontology. 

4 Formal approach to health model 

A way to formally represent conceptual relations is to define them on the domain space. For 

the purpose of this paper let us consider the following notions in the domain space: faults as 

the cause of system failure, errors as a characteristic of system failure, and symptoms that 

allow identification of a failure. 

Let F = {f1, f2, … , fn} be a set of expected system faults, as described in expert health 

model and derived from the known failure modes, where each fi  can be defined with a 
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corresponding stochastic process. Let S = {s1, s2, … , sm} be a set of possible errors caused 

by system fault. And let  = {1, 2, … , p} be a set of symptoms, that can be monitored 

via test parameters. 

Now we can say, that an error sk is in a direct consequence relation 1 with a fault fi, if 

an error sk occurs only after the fault fi occurs. The same way a symptom j is in a direct 

consequence relation 2 with an error sk, if the error sk always shows as the symptom j. 

We shall call the relation (fi, j) as a consequence relation , when there is an error sk 

that holds direct consequence relations (fi, sk) и (sk, j) with fi and j. 

For example, in a data storage system the following are in the consequence relations: 

fi – a CPU upset in a storage controller, sk – loss of the controller, j – absence of messages 

from the controller in system logs. Another example: fi – a hard drive sector damage, sk – 

partial data loss, j – increment of SMART reallocated sector counter or j – increase of a 

corrected error count (if error correcting codes are present). 

Thus a formal health model <F, , > would define all the pairs (fi, i), that hold 

consequence relations  with each other. Such a model can be used as a diagnostic model 

(Fig. 2). When annotated with functional relations, the formal model becomes a 

mathematical reliability model, which represents system properties and system’s state 

transition dynamic. 

 

 

Fig. 2. Test system with a diagnostic model based on a formal health model. 

 

We set the following modeling goals: 

1. Support fault injection via modification of the structured monitoring data. 

2. Evaluate System reliability based on estimates of the probability of fault occurrence 

in its elements. 

3. Define the set of test parameters to be polled and diagnose a data storage failure 

based on system monitoring data. 

4. Determine the necessary frequency of data collection and a subset of the analyzed test 

parameters as a part of the complex examination methodology. 

5. Verification of machine learning training and testing results. 

6. Validation of the monitoring data in order to exclude incorrect data from subsequent 

analysis. 

The corresponding model input should be the following: 

- fault intensity parameters based on a risk assessment or as the output of a fault 

injection module; 

- structured monitoring data with the composition according to the architecture of a 

specific storage system. 

And the corresponding model output should be the following: 

Virtual data
storage system

HW/SWmonitoring data

Monitoring data 
preprocessingSW

monitoring data

Data storage
system

Machine learning 
for technical 
diagnostics

FI

Diagnostic model

Formal health model
Risk 
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injection

Monitoring 
data

Training
data

=?

Results 
verification
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- evaluation of the system reliability; 

- system performance diagnosis; 

- structured monitoring data, modified in accordance with the fault injection 

methodology. 

Additional model requirements are the following: 

- rapid reliability evaluation at the early design stages and during the operation of the 

system; 

- flexibility and scalability in order to customize the model in accordance with the data 

storage configuration parameters; 

- the possibility of expanding the model with a detailed representation of system 

elements. 

5 Discussion 

One of the ways to use the ontology is to develop algorithms for condition monitoring and 

diagnostics in a data storage system. As an example, such an algorithm would determine 

the current state of the system by searching for the closest match in a set of system states 

based on comparison of the monitoring data and the symptoms of the corresponding states, 

all described in the ontology. As a result of the comparison, the state of the system is 

recognized as a class of the existing ontology, the distance to which from the actual class of 

the ontology is minimal, after which it would determine whether this state is a warning, an 

error or a critical failure. 

A basic methodology of creating a knowledge base on the basis of a specific ontology 

includes a non-automated transformation of an expert health model. However, to build a 

complex knowledge base and provide further data processing, it is necessary to develop a 

set of tools, including automation tools for creating the knowledge base and knowledge 

output tools to support the diagnostic algorithm. Moreover, in order to ensure that an 

ontology and knowledge base can be used, it is necessary to perform an ontology 

assessment and verification: to verify the ontology’s correctness and consistency, as well as 

to verify that the ontology is consistent with its purpose. 

One way to build a knowledge base includes the following steps: 

1. Create instances for the following classes: Fault, Error, System state, Symptom (the 

core of the ontology). It is advisable to perform this step for each class in parallel and 

independently, so as not to miss possible errors in the source data (as identified in step 4). 

2. Set relationships between instances of classes. 

3. Check the knowledge base for the absence of instances of classes: whether it was 

possible to specify all the links in the ontology with instances of the listed classes. 

4. If an isolated instance of a class is found, analyze the cause of this error and 

supplement the knowledge base accordingly. Save a record of this error. Return to step 2. 

5. If it is necessary to solve a particular diagnostic problem, supplement the knowledge 

base with instances of one of the corresponding classes: Risk factor, Manufacturer report, 

Reliability measure. 

Options of how to build a formal health model include the following: 

1. A fault tree with an analytical solution based on a set of events and relationships 

between events described in the ontology. 

2. A Petri net or one of the variants of extended Petri nets (for example, the Stochastic 

Activity Network) based on a variety of events and relationships between events described 

in the ontology. 

To implement these two methods, it is required to explicitly determine functional 

dependencies to describe the cause-and-effect relationships between the system states in the 

knowledge base. 
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3. A finite state machine A with the transition graph, where vertices represent the 

changes in the internal states of the system sk. Such a finite state machine can be created by 

system decomposition followed by functional analysis of the system, or by process mining 

based on the set of the monitoring data as the event logs. In this case, the data storage 

diagnostic can be considered as an state machine diagnostic task: for a given state machine 

A with the transition table it is required to find the current state sk based on the values of the 

automaton outputs represented by the (not always fully defined) vector of output values (1, 

2, … , p). 

6 Approbation 

These systems have shown their applicability by the example of data storage systems in the 

construction industry. 

Ontology-based approach to data storage systems technical diagnostics was tested for a 

storage system in a construction company. Development of technical documentation and 

drawings is carried out using special software [11-14]. These application software products 

allow you to form and develop architectural solutions and their components. 

During the study and analysis of individual structural elements, a set of models is 

formed. This set is a knowledge base that is stored in the data acquisition system. To 

improve the reliability of storing this information and diagnosing its storage system, an 

approach has been applied. A prototype of an expert system has been developed using a 

combined presentation model with semantic network and frame model as the basis. 
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