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Abstract. It is shown that the inclusive spectra of the produced hadrons in
hadron-hadron and nuclear-nuclear collisions can be presented as the universal
function dependent of the self-similarity parameter in the analytical form. The
article gives a description of the self-similarity parameter depending on the ra-
pidity in the mid-rapidity region. The experimental data are in good agreement
with the results of our calculations in a wide energy range from a few GeV to a
few TeV in the central rapidity region.

1 Introduction

Almost all theoretical approaches operate the relativistic invariant Mandelstam variables s, t,
u to analyze the hadron inclusive spectra in the mid-rapidity region. However, there is another
approach to analyze multiple hadron production in hadron-hadron and nuclear-nuclear colli-
sions at high energies, which operates four velocities of the initial and final particles. It is the
so called "self-similarity" approach, which demonstrates the similarity of inclusive spectra of
the hadrons produced in the hadron-hadron and nuclear-nuclear collisions, as a function of
the similarity parameter [1].

In this work we have used the approach based on the law of similarity. For example, when
planning large expensive hydraulic structures it is necessary to carry out physical modeling.
Geometrically, the body of the model is made similarly to the nature-body [2].

As the main parameters of the problem we take the following: l the characteristic size of
the body model, l0 is the size of the nature body, l0/l is the coefficient of geometric similarity,
and U is the velocity of the impinging flow, µ is the viscosity of the fluid, ρ is the fluid density.

These parameters define the system of units: L - length, M - mass, T - time, and have the
following dimensions:

[l] = L, [U] = L · T−1, [µ] = M · L−1T, [ρ] = M · L−3.

From the defining parameters we can construct only one dynamic similarity parameter (a
dimensionless combination, independent of the choice of measuring units):

Π = ρUl/µ = Re.
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This invariant is called the Reynolds number. To provide the similarity, it is required to
have equality of this parameter for the model and nature.

Let us briefly present here the main idea of this study. Consider, for example, the produc-
tion of hadrons 1, 2, etc. in the collision of nucleus A with nucleus B:

A + B→ 1 + 2 + . . . (1)

According to this assumption more than one nucleon in the nucleus A can participate in
the interaction. The value of NA is the efficient number of nucleons inside the nucleus A,
participating in the interaction which is called the cumulative number.

Its values lie in the region of 0 ≤ NA ≤ AA (AA - atomic number of nucleus A). The
cumulative area complies with NA > 1.

Of course, the same situation will be for the nucleus B, and one can enter the cumulative
number of NB.

For the reaction with the production of the inclusive particle 1

A + B→ 1 + . . . (2)

we can write the conservation law of four-momentum in the following form:

(NAPA + NBPB − p1)2 = (NAm0 + NBm0 + M)2, (3)

where NA and NB – the number of the nucleons involved in the interaction or the fraction
of four momenta transmitted by the nucleus A and nucleus B; PA, PB, p1 are four momenta
of the nuclei A and B and particle 1, respectively; m0 is the mass of the nucleon; M is the
mass of the particle providing the conservation of the baryon number, strangeness, and other
quantum numbers.
For π mesons m1 = mπ and M = 0.
For antinuclei and K− mesons M = m1.
For nuclear fragments M = −m1.
For K+ mesons m1 = mK and M = mΛ − mK , mΛ is the mass of the Λ baryon.

In [2] the parameter of self-similarity is introduced, which allows one to describe the dif-
ferential cross section of the yield of a large class of particles in relativistic nuclear collisions:

Π = min 1/2 · (uANA + uBNB)1/2, (4)

where uA and uB are four velocities of the nuclei A and B.
Then the inclusive spectrum of the produced particle 1 in AA collision can be presented

as the universal function dependent of the self-similarity parameter:

E · d3σ/dp3 = C1Aα(NA)
A · Aα(NB)

B · exp(−Π/C2), (5)

where α(NA) = 1/3 + NA/3, α(NB) = 1/3 + NB/3, C1 = 1.9 · 104 mb · GeV−2 · c3· st−1 and
C2 = 0.125 ± 0.002.

2 Analytical solution for self-similarity parameter

An analytical solution for the self-similarity parameter Π was found in [3]. Here we give a
more detailed obtaining of the parameter and consider its behavior at small values of particle
1 rapidity. Equation (3) can be written as follows:

NA · NB − ΦA · NA − ΦB · NB = ΦM , (6)
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where relativistic invariant dimensionless values have been introduced:

ΦA = [(m1/m0) · (uAu1) + M/m0]/[(uAuB) − 1],

ΦB = [(m1/m0) · (uBu1) + M/m0]/[(uAuB) − 1],

ΦM = (M2 − m2
1)/[2m2

0((uAuB) − 1)].

Equation (6) can be written as follows:

[(NA/ΦB) − 1] · [(NB/ΦA) − 1] = 1 + [ΦM/(ΦA · ΦB)]. (7)

Minimum Π is found from the following:

dΠ/dNA = 0, dΠ/dNB = 0. (8)

Let us introduce the intermediate variables:

FA = [(NA/ΦB) − 1], FB = [(NB/ΦA) − 1].

From the above we obtain: FA · FB = 1 + ΦM/(ΦA · ΦB).
Then (8) is also equal to 0 as

dΠ/dFA = 0, dΠ/dFB = 0.

From (4) we can obtain:

4Π2 = N2
A + N2

B + 2NA · NB · (uAuB),

4Π2 = (FA + 1)2Φ2
B + (FB + 1)2Φ2

A + 2ΦA · ΦB(FA + 1) · (FB + 1) · (uAuB),

FB = α/FA.

The condition of the minimum d(4Π2)/dFA = 0 gives the equation for FA:

F4
A + F3

A − (ΦA/ΦB)2 · (α2 + αFA) + (uAuB) · (ΦA/ΦB) · (F3
A − αFA) = 0,

or
F4

A + F3
A[1 + (uAuB)/z] − (α/z) · FA · [(uAuB) + (1/z)] − α2z2 = 0,

where z = ΦB/ΦA.
When changing A to B: z→ (1/z), F1 → (α/FB),

(α/FB)4 + (α/FB)3[1 + (uAuB) · z] − αz(α/FB)[(uAuB) + z] − α2z2 = 0,

or
F4

B + F3
B[1 + (uAuB) · z] − zα · FB · [z + (uAuB)] − α2z2 = 0.

Thus, at z = 1→ FA = FB, ΦA = ΦB = Φ.
But since FA = FB, then (NA/Φ − 1) = (NB/Φ − 1) and NA = NB,

F2 = α, FA = FB = α1/2 = [1 + (ΦM/Φ
2)]1/2,

NA = NB = N = (1 + F) · Φ = 1 + [1 + (ΦM/Φ
2)]1/2 · Φ,

Π = 1/2[2N2 + 2N2(uAuB)]1/2 = (N/
√

2)[1 + (uAuB)]1/2 = N · chY.
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Let us express the scalar product of four-dimensional velocities using the rapidity:

(uAuB) = ch2Y,

(uAu1) = (m1t/m1) · ch(−Y − y) = (m1t/m1) · ch(Y + y),

(uBu1) = (m1t/m1) · ch(Y − y).

Here m1t is the transverse mass of the particle 1, m1t = (m2
1 + p2

1t)
1/2, Y - rapidity of interacting

nuclei, y - rapidity particle 1.
If y � 1 it is possible to decompose hyperbolic functions into a series and write an

approximate expression for the parameter Π,

(uAu1) = (m1t/m1) · ch(−Y − y) = (m1t/m1) · ch(Y + y),

(uBu1) = (m1t/m1) · ch(Y − y),

ch(Y + y) = chY · chy + shY · shy,

ey ≈ 1 + y + y2/2,

e−y ≈ 1 − y + y2/2,

shy = 1/2(ey − e−y) ≈ 1/2(1 + y + y2/2 − 1 + y − y2/2) = y,

chy = 1/2(ey + e−y) ≈ 1/2(1 + y + y2/2 + 1 − y + y2/2) = 1 + y2,

(uAu1) = (m1t/m1) · ch(Y + y) = (m1t/m1) · (chY · chy + shY · shy) ≈

(m1t/m1) · [(1 + y2) · chY + y · shY] ≈ (m1t/m1) · (1 + y2) · chY,

(uBu1) = (m1t/m1) · ch(Y − y) = (m1t/m1) · (chY · chy − shY · shy) ≈

(m1t/m1) · [(1 + y2) · chY − y · shY] ≈ (m1t/m1) · (1 + y2) · chY.

Thus,
(uAu1) ≈ (uBu1) ≈ (m1t/m1) · (1 + y2) · chY.

And in this case:

Φ = ΦA = ΦB = [(m1/m0) · (uAu1) + M/m0]/[(uAuB) − 1] ≈

[(m1/m0) · (m1t/m1) · (1 + y2) · chY + M/m0]/[ch2Y − 1] =

(1/m0)[m1t · (1 + y2) · chY + M] · [1/(2sh2Y)],

ΦM = (M2 − m2
1)/(4m2

0sh2Y).

Thus at y � 1
N = 1 + [1 + (ΦM/Φ

2)]1/2Φ,

where
Φ ≈ (1/m0)[m1t · (1 + y2) · chY + M] · [1/(2sh2Y)],

ΦM = (M2 − m2
1)/(4m2

0sh2Y).

The result of our calculations using this formula for Au + Au collisions at s1/2 = 2.42 GeV
is shown in Fig. 1. The prediction of the yield dependence of pions in Au + Au interactions
on their rapidity is given.

Since this equation (uAu1) does not depend on mA, it is valid for any hadrons and nuclei:

(uAu1) = (PA/mA)(P1/m1) = EA · E1/mA · m1 − ~pA · ~p1/mA · m1 =

mA · chY · m1t · chy/mA · m1 + mA · shY · m1t · shy/mA · m1 =

(m1t/m1) · (chY · chy + shY · shy) = (m1t/m1) · ch(Y + y).

Therefore, we conclude that our approach is also valid for projectile π mesons.
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Figure 1. Distribution of secondary pions in Au + Au collisions as function of the pion rapidity

3 Self-similarity parameter in the central rapidity region

In the mid-rapidity region (y = 0, y is the rapidity of particle 1) the analytical form for Π was
found in [3].

In this case NA and NB are equal to each other: NA = NB = N.

N = [1 + (1 + ΦM/Φ
2)1/2]Φ, (9)

where
Φ = (m1tchY + M)/(2m0sh2Y), (10)

ΦM = (M2 − m2
1)/(4m2

0 · sh2Y). (11)

Here m1t is the transverse mass of the particle 1, m1t = (m2
1 + p2)1/2, Y - rapidity of interacting

nuclei. And then
Π = N · chY. (12)

For baryons we have the following:

Πb = (m1tchY − m1)chY/(m0sh2Y),

and for antibaryons –
Πa = (m1tchY + m1)chY/(m0sh2Y).

The results of calculations for the ratio of the antiproton cross section to the proton one
after integration of over dm1t are in good agreement with the experimental data [4, 5].

Taking into account the quark and gluon contributions we will obtain the following ex-
pression for the inclusive cross-section of hadron production in the central rapidity region
[5]:

E(d3σ/dp3) = [φq(y = 0, pt) + φg(y = 0, pt) · (1 − σnd/g(s/s0)∆)] · g · (s/s0)∆. (13)
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Figure 2. Results of the calculations of the inclusive cross-section of hadron production in pp collisions
as function of transverse mass at the initial momenta Pin = 31 GeV/c. They are compared to the NA61
experimental data from [6]

In formula (13) we apply the following symbols: σn - cross-section of hadron production by
means of the n-pomeron exchange; φ = φ(Π); g - constant (∼ 20 mbarn), which is calculated
within the "quasi-eikonal" approximation; S 0 = 1 GeV2; ∆ = [αp(0)−1] ∼ 0.08, where αp(0)
is the subcritical pomeron intercept.

The first part of the inclusive spectrum (Soft QCD (quarks)) is related to the function
φq(y = 0,Π), which is fitted by the following form:

φq(y = 0,Π) = Aq · exp(−Π/Cq), (14)

where Aq = 3.68 (GeV/c)2, Cq = 0.147.
The function φq(y = 0,Π) related to the second part (Soft QCD (gluons)) of the spectrum

is fitted by the following form:

φq(y = 0,Π) = Agm1t · exp(−Π/Cg), (15)

where Ag = 1.7249 (GeV/c)2, Cg = 0.289. Using (13) we can calculate the inclusive cross
section of hadron production as a function of the transverse mass.

For example, in Fig. 2 the calculated inclusive spectrum (1/m1t) · dσ/(dm1tdy) of π−

mesons produced in pp collisions at the initial momentum Pin = 31 GeV/c is presented
versus their transverse mass mT . It is possible to see a good agreement between the results of
our calculations and experimental data of NA61 experiment [6].

In Fig. 3 we present the calculations of inclusive spectra of charged hadrons (mainly pions
and kaons) produced in pp collision at

√
s = 7 TeV performed by using (13) and the perturba-

tive QCD (PQCD) within the leading order (LO) compared to the LHC data. It is possible to
see a good agreement between the results of our calculations and experimental data at pt < 2
GeV/c. More detailed information on the application of our method for spectrum calculations
was given in [8] and in the report at the seminar [9].
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Figure 3. Results of the calculations of the inclusive cross-section of charge hadrons produced in pp
collisions at the LHC energies as a function of their transverse momentum pt at

√
s = 7 TeV. The points

are the LHC experimental data [7]

4 Conclusion

The approach described in this paper has shown the following:
- the inclusive spectra of the produced hadrons in hadron-hadron and nuclear-nuclear col-

lisions can be presented as the universal function dependent of the self-similarity parameter
in the analytical form;

- the experimental data are in good agreement with the results of our calculations in a
wide energy range from a few GeV to a few TeV in the central rapidity region;

- the use of the self-similarity approach allows us to describe the ratio of the total yields
of the particles to antiparticles produced in AA collisions as a function of the energy in the
mid-rapidity region and a wide energy range.

In this article we have described the self-similarity parameter depending on the rapidity
in the mid-rapidity region.
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