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Abstract. Elastic electron-3He scattering is studied in the relativistic impulse
approximation. The amplitudes for the three-nucleon system – 3He – are ob-
tained by solving the relativistic generalization of the Faddeev equation. The
charge and magnetic form factor are calculated and compared with the experi-
mental data for the momentum transfer squared up to 100 fm−2. The influence
of the various nucleon form factors is investigated.

1 Introduction

The study of electron-nucleus reactions are important to obtain information on the nucleon-
nucleon (NN) interaction which is crucial for understanding the structure of the strong in-
teractions. At this time a lot of experimental data are known for the reaction cross sections
and polarization observables. The intermediate range of energies in these reactions is mainly
interesting where the nonrelativistic description based on the potential or the nonrelativistic
meson-nucleon models does not already work. From another hand the Quantum Chromo-
dynamics which operates with quark and gluon degrees of freedom does not also give an
appropriate description.

The planned experiments, such, for example, as Jefferson Lab Experiment E1210103 at
12 GeV, require to take into account the relativistic treatment of the nuclear systems.

One of the promising approaches is the covariant formalism based on the Bethe-Salpeter
equation for two nucleons. This approach operates with relativistic meson-nucleon degrees of
freedom. There are a lot of investigations of the two-nucleon systems and their reactions (see,
[1, 2]).

The calculations with the covariant separable kernels of NN interaction are also widely
used. The results of the elastic electron-deuteron scattering investigations can be found in [3–
5].

To study the three-particle systems in quantum mechanics, the Faddeev equation is usu-
ally used [6, 7]. This equation describes these systems with a pair potential of any kind as
bound and scattering states. In the case of a system of three relativistic particles, the rela-
tivistic generalization of the Faddeev equation can be applied [8–11, 13]. In this case the rel-
ativistic two-particles T matrix is taken as a solution of the Bethe-Salpeter equation (we call
such three-particle equation as Bethe-Salpeter-Faddeev equation, BSF) or the corresponding
covariant spectator (or Gross) equation.
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To solve the BSF equation, it is necessary to know the potential of the nucleon-nucleon
interaction in the explicit form. To simplify the calculations, the separable kernels of NN
interactions can be used [9–11, 13]. In recent works, we solved the BSF equation for the
one-rank separable kernels of NN interactions and took into account the two-nucleon states
with total angular momentum j = 0, 1 [12]. For the sake of simplicity, we considered the
nucleon propagators in the scalar-particle form while the spin-isospin dependence was treated
by applying the recoupling matrix [13]. The form factors of the potential were the relativistic
Yamaguchi functions [14].

The relativistic calculations for elastic electron scattering off the 3He were considered in
several papers [9, 15]. The purpose of this work is to study the sensitivity of unpolarized
elastic electron scattering off the 3He to the nucleon electromagnetic (EM) form factors. The
vertex functions obtained in previous works [9, 10] were used in the calculation of the elastic
charge FC and magnetic FM form factors of the 3He. We consider various combinations of
the spin, isospin and momenta of the three nucleons under their permutations, to satisfy the
Pauli principle (the 3He vertex function must be antisymmetric with respect to permutation
of any pair of particles).

In present calculations we consider only main S partial wave states (1S 0 and 3S 1) of the
3He. The influence of the dipole fit, vector-dominance and relativistic harmonic oscillator
models for the nucleon EM form factors is investigated.

The paper is organized as follows: in Sec. 2 the expressions for the 3He form factors are
given, in Sec. 3 the calculations and results are discussed and finally the conclusion is given.

2 Form factors of a three-nucleon system

As a system with one-half spin the electromagnetic current of the 3He can be parameterized
by only two elastic form factors: charge (electric) FC and magnetic FM (see for example, [7]).
In calculations we use the straightforward relativistic generalization of the nonrelativistic
expressions for form factors for the 3He and they have the following form [9, 16]:

2FC = (2F p
C + Fn

C)F1 −
2
3

(F p
C − Fn

C)F2, (1)

µ(3He)FM = Fn
MF1 +

2
3

(Fn
M + F p

M)F2,

where F p,n
C is the charge form factor of the proton and neutron, respectively, F p,n

M is the mag-
netic form factor of the proton and neutron, respectively, µ(3He) is magnetic moment of the
3He. The 3He form factors are normalized to unity at zero momentum transfer while the
nucleon ones have the following normalization: F p

C(0) = F p
M(0)/µp = Fn

M(0)/µn = 1 and
Fn

C(0) = 0.
The functions F1 and F2 can be expressed in terms of the vertex functions of the three-

nucleon system. In the relativistic case, they have the form:

F1(Q2) =

∫
d4 p
∫

d4q G1G2G3G′3Ψ∗S (p, q)ΨS (p, q′), (2)

F2(Q2) = −3
∫

d4 p
∫

d4q G1G2G3G′3Ψ∗S (p, q)ΨS ′ (p, q′),

where Q is the momentum transfer, p and q, q′ = q − 2
3 Q are the Jacobi momenta of the

three-nucleon system and the nucleon propagators are:

G1 = [(
1
3
√

s + i(
1
2

q4 + p4))2 − p2 −
1
4

q2 − p · q − m2]−1, (3)
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G2 = [(
1
3
√

s + i(
1
2

q4 − p4))2 − p2 −
1
4

q2 + p · q − m2]−1,

G3 = [(
1
3
√

s − iq4)2 − q2 − m2]−1,

G′3 = [(
1
3
√

s − iq4)2 − q2 −
4
9

Q2 +
4
3

q ·Q − m2]−1,

here m is the nucleon mass.
Since the solution of the BSF was found in the three-nucleon c.m.s. and the 3He form

factors are calculated in the Breit system, the Lorentz boost transformation for the internal
momenta should be done. The q, q′ are defined in the corresponding c.m.s of the initial and
final 3He, respectively, while Q – in the Breit system. The Lorentz transformation mixes the
q0, qz and Qz components of the momenta such that after the Wick rotation q0 → iq4 the q, q′

momentum components become complex-valued. Since the 3He vertex function was obtained
only for the real values of q4, it is almost impossible to apply the Lorentz transformation for
the q′. Fortunately, since the characteristic parameter of the transformation η = −Q2/4s is
equal to only 0.12 at −Q2 = 100 fm−2, we can perform a Taylor series expansion of the
expression for q′ near the q value and get: q′ = (q0,q − 2

3 Q). In this case the arguments of
the final 3He vertex function become (q′4, |q

′|) = (q4, |q − 2
3 Q|).

The symmetric ΨS and mixed-symmetry ΨS ′ functions can be expressed [9, 16] in terms
of the vertex functions found as a solution of the BSF equation in [9, 13]. Considering only
S partial-wave states in the 3He these functions have the following form [9]:

ΨS (1) = A(1) + A(2) + A(3), (4)

ΨS ′ (1) =
1
2

(B(3) + B(2) − 2B(1)), (5)

where

A(i) = us(i) − ut(i), (6)
B(i) = us(i) + ut(i). (7)

Here i is the number of particle and us and ut are the functions of the 1S 0 and 3S 1 states,
respectively. The expressions for us,t related to the the BSF equation solutions Φs,t as follows
(a = (1S 0,

3 S 1)):

ua(p, q) = ga(p)τa(q, s)Φa(q), (8)

which is a consequence of using the kernel of NN interaction in a separable form.

3 Calculations and results

To calculate functions F1,2 we used the analytic expressions for ga(p), τa(q, s) and interpola-
tion of the numerical solutions for functions Φa(q) which were obtained by solving the BSF
system of homogeneous integral equations by means of the Gaussian quadratures (see de-
tails in [10]). The Vegas algorithm of Monte-Carlo integrator was used to perform a multiple
integration in Eq. (2).

To study the influence of the nucleon EM form factor, three models were considered: the
well known dipole fit (DIPOLE), the vector-dominance model (VDM) and the relativistic
harmonic oscillator model (RHOM)) [4].
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Figure 1. (Color online) The charge form factor of 3He. Solid line is the result of using the Dipole
fit, long dashed line – with RHOM, and short dashed line with VDM. The experimental data STAN-
FORD (1977) are from [17], ORSAY (1972) – [18], SLAC (1978) – [19], JLAB (2017) – [20]

In Fig. 1 the charge form factor FC is shown for the transfer momentum squared region
up to 100 fm−2. It is seen that the obtained results describes well the experimental data only
at low and in the medium region of momentum transfer squared t = −Q2. The difference
between calculations and the experimental data becomes larger with increasing the transfer
momentum and it depends crucially of used nucleon form factor model. The difference be-
tween calculations themselves becomes larger with increasing the transfer momentum and
reaches the half of order at −Q2=100 fm−2. It should be stressed here that only VDM gives
the interference minimum in the FC observed at the experiment which, however, shifted a lot
to the region of high Q2.

In Fig. 2 the magnetic form factor FM is shown for the transfer momentum squared region
up to 100 fm−2. As in the case of FC, the results describe the experimental data at low and
partially in the medium region of momentum transfer squared Q2. All three models does
not give the interference minimum (opposite to FC results), which is observed in the data at
Q2 about 16-18 fm−2, and systematically overestimated the experimental data starting from
10 fm−2. The DIPOLE and RHOM results practically coincides up to the −Q2 = 100 fm−2

while the VDM curve goes above them and the difference reaches about half of the order of
magnitude at −Q2 = 60 fm−2.

We consider the difference between results of the calculations and the experimental data
as an indication that the simple one-rank separable kernel should be improved and the multi-
rank kernel should be considered. We see also the rather large influence of the EM nucleon
form factors to the 3He elastic form factors.
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Figure 2. (Color online) The magnetic form factor of 3He. Notations for the results as in Fig. 1. The
experimental data STANFORD (1977) are from [17], ORSAY (1972) – [18], BATES (2001) – [21],
JLAB (2016) – [20]

4 Conclusion

In the paper the solutions of the BSF equation for the 3He have been used to calculate the
elastic form factors. The expressions for the form factors have been obtained by the straight-
forward relativistic generalization of the nonrelativistic expressions. The multiple integration
have been performed by means of the Monte Carlo algorithms. The influence of the various
EM nucleon form factors has been investigated which has been found to be large.

The difference between calculations as well as overestimation of the experimental data
are, supposedly, due to the simple model of the NN interaction (the separable one-rank).
Hopefully, the increasing the rank of the separability can improve the results.

This work was partially supported by the Russian Foundation for Basic Research grants
N 16-02-00898 and N 18-32-00278.
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