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Abstract. The truncated Dyson-Schwinger–Bethe-Salpeter equations are em-

ployed at non-zero temperature. The truncations refer to a rainbow-ladder ap-

proximation augmented with an interaction kernel which facilitates a special

temperature dependence. At low temperatures, T → 0, we recover a quark

propagator from the Dyson-Schwinger (gap) equation smoothly interpolating

to the T = 0 results. Utilizing that quark propagator we evaluate the Bethe-

Salpeter vertex function in the pseudo-scalar qq̄ channel for the lowest boson

Matsubara frequencies and find a competition of qq̄ bound states and quasi-free

two-quark states at T = O (100 MeV).

1 Introduction

The description of mesons as quark-antiquark bound states within the framework of the

Bethe-Salpeter (BS) equation with momentum dependent quark mass functions, determined

by the Dyson-Schwinger (DS) equation, is able to explain successfully many spectroscopic

data, such as meson masses, electromagnetic properties of pseudoscalar mesons and their

radial excitations, and other observables [1–13]. Such a formalism maintains important fea-

tures of QCD, e.g. dynamical chiral symmetry breaking, dynamical quark dressing, require-

ments of the renormalization group theory etc., cf. [14]. The main ingredients here are the

full quark-gluon vertex function and the dressed gluon propagator, which are entirely de-

termined by the running coupling and the bare quark mass parameters. The approach is

based on an effective model, known as the rainbow-ladder approximation [4], which speci-

fies the dressed vertex function Γμ → γμ (for quark-gluon coupling) and interaction kernel

g2Dμν(k) → G(k2)Df ree
μν (k) within the Landau gauge for the gluon propagator. Here, γμ is

a Dirac gamma matrix and Dμν stands for the gluon propagator; g is the coupling strength

and k denotes a momentum. At finite temperatures, the approach is generalized within the

imaginary-time formalism, which uses the discrete Matsubara frequencies [15–17]. Conse-

quently, the interaction kernel and the DS and BS solutions become also discrete with respect

to these frequencies.

The hot environment may modify the hadron masses, life times (decay constants) etc.

and, at sufficiently large temperature, in hot and dense strongly interacting matter, (phase)
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transitions may occur, related to quark deconfinement phenomena, as e.g. dissociation of

hadrons into quark-gluon degrees of freedom.

We calculate the pole masses of pseudo-scalar quark-antiquark bound-states for the few

first Matsubara frequencies and investigate their dependence on temperature in a large inter-

val, including the "dissociation region". We anticipate that the main peculiarities of masses

computed at some particular Matsubara frequencies will reflect the general T dependence of

the inertial masses at high temperatures. We treat the bound states within the BS formalism

within the same approach as the one used in solving the DS equation, i.e. with the rainbow

truncation and Alkofer-Watson-Weigel (AWW) interaction kernel [12].

2 Basic Formulae

2.1 Truncated Dyson-Schwinger and Bethe-Salpeter equations in vacuum

To determine the bound-state mass of a quark-antiquark pair one needs to solve the DS and

the homogeneous BS equations, which in the rainbow ladder approximation and in Euclidean

space read

S −1(p) = S −1
0 (p) +

4

3

∫
d4k
(2π)4

[
g2Dμν(p − k)

]
γμS (k)γν , (1)

Γ(P, p) = −4

3

∫
d4k
(2π)4

γμS (η1P + k)Γ(P, k)S (−η2P + k))γν
[
g2Dμν(p − k)

]
, (2)

where η1 and η2 = 1 − η1 are the partitioning parameters defining the quark momenta as

p1,2 = k ± η1,2P with P, p and k denoting the total and relative momenta of the bound

system, respectively1; Γ(P, k) stands for the tBS vertex function being a 4 × 4 matrix,

S 0(p) = (iγ · p + m)−1 and S (p) = (iγ · pA(p) + B(p))−1 are the propagators of bare and

dressed quarks, respectively, with mass parameter m and the dressing functions A(p) and

B(p). At zero temperature the above equations are O(4) invariant and the propagator func-

tions A(p) and B(p) depend solely on p2 = p2 + p2
4. The total momentum P = (0, iMqq̄), for

a particle at rest, is an external parameter for (2); the momenta of individual quarks squared

are p2
1,2 = −M2

qq̄/4 + k2 ± iMqqk4, where the Euclidean components k and k4 of the rela-

tive momentum are defined as k2 = k2 + k2
4 which, for the BS equation, are the integration

variables.

Following examples in the literature [4, 7, 8, 12] the interaction kernel in the rainbow

approximation in the Landau gauge is chosen as

g2(k2)Dμν(k2) =
(
DIR(k2) + DUV (k2)

) (
δμν − kμkν

k2

)
,

DIR(k2) =
4π2Dk2

ω6
e−k2/ω2

, DUV (k2) =
8π2γmF(k2)

ln

[
τ +

(
1 + k2

Λ2
QCD

)2] , (3)

where the first term originates from the effective infrared (IR) part of the interaction deter-

mined by soft, nonperturbative effects, while the second one ensures the correct ultraviolet

(UV) asymptotic behaviour of the QCD running coupling, F(k2) = {1 − exp(−k2/[4m2
t ])}/k2

with mt as an adjustable parameter, mt � 0.5 GeV, and τ = e2 − 1, ΛQCD = 0.234 GeV, and

γm = 12/(33 − 2Nf ) for Nf as active flavors. We restrict ourselves to the simplest version

1 Usually, for quarks of masses m1,2 the partitioning parameters are chosen as η1,2 = m1,2/(m1 + m2). However,

in general, the tBS solution is independent of the choice of η1,2.
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of the model, namely with the interaction kernel where the UV term (the effect of which is

found [18] to be negligibly small) is ignored at all. This interaction is the Alkofer-Watson-

Weigel [12] kernel. A prominent feature of such an interaction is that, with only a few

adjustable parameters - D, ω in the IR term and quark mass parameter m in the bare quark

propagator S 0 - it provides a good description of the pseudoscalar, vector and tensor meson

mass spectra at zero temperature. At finite temperatures the interaction AWW kernel is kept

the same as in vacuum. Notice also that, even at zero temperatures, the tBS equation becomes

rather complicate for numerical solutions since it involves the quark propagator functions in

the complex Euclidean space, where they can (actually they do) exhibit pole-like singulari-

ties. A rather detailed analysis of solving the tBS equation in vacuum in presence of poles

has been reported in [5]. Reiterate that, within the rainbow approximation, the Euclidean

P4 = iMqq̄ is an external parameter in the tBS equation, while k4 is an integration variable.

At finite temperatures the O(4) symmetry is broken and, consequently, the dependence of

the quark propagator on p and p4 requires a separate treatment. To describe the propagator

in this case a third function C is needed, besides the functions A and B introduced above for

vacuum.

The inverse quark propagator is now parametrized as

S −1(p, ωn) = iγpA(p2, ω2
n) + iγ4p4C(p2, ω2

n) + B(p2, ω2
n). (4)

Accordingly, the interaction kernel is decomposed in to a transversal and longitudinal part

[g2Dμν(k,Ωmn)] = PT
μνD

T (k,Ωmn, 0) + PL
μνD

L(k,Ωmn,mg), (5)

where Ωmn = ωm − ωn and the gluon Debye screening mass mg is introduced in the longitu-

dinal part of the propagator, where k2 = k2 + Ω2
mn + m2

g enters. The Debye mass describes

perturbatively the screening of chromoelectric fields at large temperatures, therefore it is rel-

evant for the perturbative UV term in the limit of quark-gluon plasma where the light-quark

bound states do not longer exist, and the system is to be described by quark and gluon degrees

of freedom. As for the non-perturbative pure phenomenological IR term, the Debye mass is

neglected in the confinement region, i.e. at temperatures below Tc.

By using the Feynman rules for finite temperatures, see e.g. [16], it can be shown that the

gap equation has the same form as in case of T = 0, Eq. (1), except that within the Matsubara

formalism the integration over k4 is replaced by the summation over the corresponding fre-

quencies, formally
∫ d4k

(2π)4
−→ T

∞∑
n=−∞

∫ d3k
(2π)3

. The explicit form of the system of equations

for A, B and C to be solved can be found in [19, 20].

3 tBS equation at finite temperatures

3.1 Partial decomposition of the BS vertex function

We focus on the tBS equation for pseudo-scalar states. Prior an analysis of the tBS equation at

finite temperature, we briefly recall the calculations at T = 0. The O(4) symmetric solution of

Eq. (2) in Minkowski space for the pseudo-scalar mesons can be written in the form (cf. [12,

21]

Γ(P, p) = [F1 + (pP)F2 p̂ + F3P̂ + F4( p̂P̂ − P̂p̂)]γ5, (6)

where the scalar vertex functions Fi are functions of p2 and even functions of (pP). In (6)

the notation p̂ = pμγμ and P̂ = Pμγμ is adopted. It has been found that the contribution of the

last term in Eq. (6), proportional to the tensor matrix σμν = i[γμ, γν]/2, is negligibly small [5]
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and, for the qualitative analysis we are interested in the present paper, can be safely omitted.

Then, at T = 0, there remain only three components in the BS vertex.

To extend the equation to finite temperatures one has to take into account the broken O(4)

symmetry which requires separate consideration of space-like and time-like products of four

vectors. Consequently, the first three terms in Eq. (6) transform into six components:

Γ(P, q) ≡ Γ̃(P, q)γ5 =

=
1

2

[
A1 + A2P0γ0 − A3(q̃p̃)q0γ0 − A4q0P0

ˆ̃q + A5(q̃p̃) ˆ̃q − A6
ˆ̃p
]
γ5, (7)

where the scalar functions Ai depend separately on the time, (P0, q0), and spatial components,

(|P|, |q|) of 4-vectors P and q. The unit vectors q̃ and p̃ in (7) are purely spatial, i.e. q̃ =

(0,q/|q|) and p̃ = (0,P/|P|). To pass to Euclidean space, recall that for a meson at rest at

T = 0 the four product (Pq) transforms as (P0q0)M → −(P4q4)E = −iMqq̄q4, where q4 is the

integration variable in the BS equation. Within the rainbow approximation, the interaction

kernel does not depend on the total momentum P. Therefore, in the tBS equation, P4 plays the

role of an external parameter which defines the pole of the two-particle Green function, P2
4 =−M2

qq̄. If the two-particle system is not at rest then P2
4+P2 = (iE)2+P2 = −M2

qq̄, where E is the

total energy of the meson. At finite temperatures the Feynman rules in Euclidean space [16]

result in the same formal procedure for the tBS equation as the one used in deriving the tDS

equation, i.e. formally, the relative momentum becomes discrete, q = (q, q4) → qn = (q, ωn)

and the integration over q4 is replaced by summation over the Matsubara frequencies ωn. The

total energy of the meson becomes also discrete, iE → iEN = iΩN = 2πiNT , where ΩN is the

Matsubara frequency for bosons, with N ∈ Z. Then the BS equation in Euclidean space reads

Γ̃(PN , pn) =
4

3
T

∑
m

∫
d3q
(2π)3

γμS (+)(1)Γ̃(PN , qm)S̃ (−)(2)γνDμν(κmn), (8)

where Γ̃ is defined by Eq. (7), κmn = (p−q, ωn −ωm) and S̃ (−)(2) = γ5S (−)(2)γ5. Correspond-

ingly, the quark propagators S (+)(1) and S̃ (−)(2) are

S (+)(1) = i�γ · (P/2 + q)σV (1) − iγ4 · (P4/2 + q4)σC(1) + σS (1), (9)

S̃ (−)(2) = i�γ · (P/2 − q)σV (2) + iγ4 · (P4/2 − q4)σC(2) + σS (2), (10)

where σV,C,S are defined by the solution of the tDS equation at the same temperature T ,

σV,(C,S )(1, 2) =
A(q1,2, ωm1,2

), (C(q1,2, ωm1,2
), B(q1,2, ωm1,2

))

q2A2(q1,2, ωm1,2
) + ω2

m1,2
C2(q1,2, ωm1,2

) + B2(q1,2, ωm1,2
)
. (11)

3.2 Angular integration

As seen in Eqs. (8)-(11) the tBS equation implicitly depends on three spatial solid angles,

(θP, ϕP), (θq, ϕq) and (θp, ϕp). The dependence on (θq, ϕq) and (θp, ϕp) follows from the inter-

action kernel D
(
κ2 = (p − q)2 + (ωm − ωn)

2
)
, which consists of two parts, D1(κ

2) ∼ e−κ2/ω2

and D2 = κ2/ω2D1(κ
2)) ≡ ακ2 exp(−ακ2). The dependence on (θP, ϕP) and also on (θq, ϕq)

comes from the propagator functions σF1
(1) and σF2

(2). The angular parts of D1 and D2

of the kernel can be handled by decomposing them over the spherical harmonics Ylm(q) and
Y∗

lm(p) as

D1(κ
2) ≡ e−κ

2/ω2

= e−[(ωn−ωm)
2+(|q|−|p|)2]/ω2

4π
∑
lm

f (s)l (2|q||p|/ω2)Ylm(q)Y∗
lm(p), (12)
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where the coefficients f (s)l (2|q||p|/ω2) (here ω2 denotes the slope parameter of the AWW

kernel) are proportional to the scaled spherical Bessel functions of the first kind, In(x). The

second part of the kernel can be found by observing that D2(ακ
2) = −α dD1(ακ

2)
dα , where α =

1/ω2.

The angular dependence on (θP, ϕP) and (θq, ϕq), which comes from the propagator func-

tions, is calculated in an analogous manner as in Eq. (12)

σF1
(p1)σF2

(p2) =
∑

L

σF1F2

L (ωn,ΩN , |q|, |P|)
∑

M

YLM(P)Y∗
LM(q). (13)

In the expressions above, the superscripts F1F2 denote the decomposition of diagonal

F1F2 = VV, S S , CC and non-diagonal products VS , S V, VC, CV, CS , S C of the propagator

functions, respectively.

4 Results

We solve the tBS equation for pseudo-scalar ground states for two values of the Matsubara

frequency N = 1 and N = 2. At given temperature and Matsubara frequency the possible

value of the pole mass is restricted to the interval 4π2N2T 2 > M2
qq̄ ≥ 0 which corresponds to

0 < |P|2 < 4π2N2T 2. The maximum value of the pole mass corresponds to the limit of thermal

mass, i.e. |P| → 0. For the lowest Matsubara frequency, N = 1, this limit can occur already

at T ∼ 100 MeV, which implies that the solution of tBS at large temperatures approaches the

thermal limit |P| → 0. Results of calculations for the ground state pseudo-scalar pole masses

are presented in Fig. 1 for the Matsubara frequencies N = 1 (solid curve) and N = 2 (dashed

curve) as functions of temperature. In both cases, the mass rapidly increases with increasing

temperature, and already at T ≥ 100 MeV (for N = 1) and T ≥ 80 MeV (for N = 2) becomes

larger than the maximum value of the mass of two quasi-free quarks at the same value of T .

This is demonstrated in Fig. 1, where the mass of two quarks, defined as the solution of tDS

equation, M2q = 2B(0, ω0)/A(0, ω0), is presented by the dotted curve.

Figure 1. The solution of the tBS equation with

the AWW kernel for pseudo-scalar mesons for the

Matsubara frequency N = 1, solid curve and

N = 2, dashed curve. The dotted line represents

the maximum value of the two quasi-free quark

masses as the solution of the tDS equation for the

Matsubara frequency with n = 0 and zero three

momentum |k| = 0

For temperatures, where Mqq̄ > M2q, the bound ground state, in the "canonical" sense,

does not exists or can be considered as unstable against the dissociation into two correlated

quasi-free quarks.

5 Summary

We have investigated the solution of the truncated Dyson-Schwinger (tDS) equation at fi-

nite temperature within the rainbow approximation by employing the Alkofer-Watson-Weigel
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(AWW) model which consists only of the infrared term in a more complex interaction kernel.

The solution of the tDS equation is a prerequisite for a consistent solution of the truncated

Bethe-Salpeter (tBS) equation for quark-antiquark bound states at finite temperature within

the same approximation. We investigate to what extent the model, which provides a fairly

good description of ground-state mesons at zero temperatures, can be applied to the truncated

tDS equation at finite temperatures.

In our calculations, we restrict the boson Matsubara frequency ΩN = 2πNT to N = 1 and

N = 2. Larger values of N provide large values of Mqq̄ (N > 2), far above masses of known

lightest pseudo-scalar mesons. For each Matsubara frequency ΩN , the ground state mass

M2
qq̄ = 4π2N2T 2 − P2 is defined as the first (lowest) zero of the corresponding determinant as

a function of |P|. Such a mass is referred to as the Matsubara pole mass.

For both frequencies ΩN , N = 1 and N = 2, we find that the pole masses rapidly increase

with increase of temperature. This is in agreement with the behaviour of the screening masses

at large temperatures reported in literature, see e.g. [22].

At large values of T , T > 100 MeV, the pole masses become larger than the sum of two

quarks. This implies that at large T the ground state of two quark does not occur in the sense

as commonly adopted in quantum mechanics where the binding energy is negative. This can

be interpreted as dissociation instability of the state against a fragmentation into a state of

two quasi-free quarks.
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