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Abstract. Many existing methods for video summarisation are not
suitable for on-line applications, where computational and memory
constraints mean that feature extraction and frame selection must be simple
and efficient. Our proposed method uses RGB moments to represent
frames, and a control-chart procedure to identify shots from which
keyframes are then selected. The new method produces summaries of
higher quality than two state-of-the-art on-line video summarisation
methods identified as the best among nine such methods in our previous
study. The summary quality is measured against an objective ideal for
synthetic data sets, and compared to user-generated summaries of real
videos.

1 Introduction

Lightweight, wearable devices allow consumers to capture a continuous stream of
frames that provides a record of their daily activities [1]. Processing frames on-the-fly,
to select a condensed set of frames that accurately represents the full content of the
video, can greatly increase the duration over which such devices can operate. Methods
for on-line video summarisation can be used for this process. As processing and
memory resources are limited, the traditional high-level feature extraction from frames,
e.g., through convolutional neural networks (CNN) [2], or methods requiring storage of
all frames [3] may be infeasible. Similarly, elaborate summary selection methods may
not be applicable on-line.

In our previous work [4], we proposed a taxonomy of on-line video summarisation
methods. We described nine existing methods within the terms of the taxonomy, and
compared them experimentally. These experiments highlighted the need for on-line
methods to be robust to changes in parameter values. For example, parameters
dependent on properties such as total video length are not suitable. The methods
investigated are as follows: Shot boundary detection method (SBD) [5], Zero-mean
normalised cross-correlation (ZNCC) [6], Diversity promotion (DIV) [2], Submodular
convex optimisation (SCX) [7], Minimum sparse reconstruction (MSR) [8],
Gaussian mixture model (GMM) [9], Histogram intersection (HIST) [10], Merged
Gaussian mixture models (MGMM) [11], and Sufficient content change (SCC) [12].
We found that the SCX and MGMM methods consistently outperformed the others.
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We use our previous findings to propose here a new on-line video summarisation
method that meets the requirements of low computational complexity for feature extraction
and summary selection, and with parameters that are relatively robust to different video
type.

Despite the large number of video summarisation methods available, and the growing
number of on-line methods, the evaluation, and therefore comparison, of methods remains a
challenge. We compare our new method against the SCX and MGMM methods by running
experiments on both synthetic and real data sets. For the synthetic data, an objectively
“best” solution is available. For the real data, we choose a video data base where user-
selected keyframe summaries are available, and can be used as ground truth.

The rest of the paper is organized as follows. Section 2 describes the classification
system, and Section 3 introduces the new method. The experiments are presented in Section
4, and the conclusion, in Section 5.

2 Classification of methods

Fig. 1. A classification of on-line video summarisation methods.
The classification for on-line video summarisation methods proposed in [4] is

reproduced in figure 1. This classification is adapted from that of Truong Venkatesh [12]
for general video summarisation. Eight key components of an on-line summarisation
method are identified:

 Feature representation. Each frame of the video is represented by an n-
dimensional vector in some feature space, � � �� . Simple features may describe
the colours within an image [5, 6, 9, 10], or the structure and texture [8]. Features
derived from convolutional neural networks (CNN) [2, 7] are relatively complex.

 Similarity. A measure of similarity is used to compare the feature vectors of
frames. Such measures include the distance between vectors in the feature space [7,
9], the volume of the convex hull of a set of frames [2], the degree of correlation

2

MATEC Web of Conferences 277, 01012 (2019)	 https://doi.org/10.1051/matecconf/201927701012
JCMME 2018



We use our previous findings to propose here a new on-line video summarisation
method that meets the requirements of low computational complexity for feature extraction
and summary selection, and with parameters that are relatively robust to different video
type.

Despite the large number of video summarisation methods available, and the growing
number of on-line methods, the evaluation, and therefore comparison, of methods remains a
challenge. We compare our new method against the SCX and MGMM methods by running
experiments on both synthetic and real data sets. For the synthetic data, an objectively
“best” solution is available. For the real data, we choose a video data base where user-
selected keyframe summaries are available, and can be used as ground truth.

The rest of the paper is organized as follows. Section 2 describes the classification
system, and Section 3 introduces the new method. The experiments are presented in Section
4, and the conclusion, in Section 5.

2 Classification of methods

Fig. 1. A classification of on-line video summarisation methods.
The classification for on-line video summarisation methods proposed in [4] is

reproduced in figure 1. This classification is adapted from that of Truong Venkatesh [12]
for general video summarisation. Eight key components of an on-line summarisation
method are identified:

 Feature representation. Each frame of the video is represented by an n-
dimensional vector in some feature space, � � �� . Simple features may describe
the colours within an image [5, 6, 9, 10], or the structure and texture [8]. Features
derived from convolutional neural networks (CNN) [2, 7] are relatively complex.

 Similarity. A measure of similarity is used to compare the feature vectors of
frames. Such measures include the distance between vectors in the feature space [7,
9], the volume of the convex hull of a set of frames [2], the degree of correlation

between frames [6], the intersection of feature vectors [10], the linear
independence between batches of frames [5], and the orthogonal projection of a
feature vector onto a set of existing features [8]. Statistical methods are also used,
e.g. to test equivalence of sets of frames [11].

 Grouping strategies. Using the similarity measures described above, frames are
grouped together. Groupings may be time-aware, e.g. time-contiguous shots
identified using change-detection [5, 6, 10, 12], or independent of time, e.g.
clustering of frames within the feature space [2, 7, 8, 13] or assigning frames to
components of a Gaussian mixture model [9, 11].

 Frame selection. Different approaches exist for selecting a keyframe from a group
of frames, e.g. choose the frame most central within a cluster [2, 7, 11], frames at
the start / end [5, 12] or middle [6, 10] of a shot, or alternatively, frames that
satisfy some condition, such as exceeding a ``difference'' threshold [8, 10].

 Set management. The keyframe set may be fixed, i.e. once a keyframe is
selected it cannot be removed from the set [5, 6, 7, 8, 9, 10, 12], or dynamic,
i.e. a keyframe may be removed at some later point in the processing [2, 11].

 Summary form. Frames selected as a summary form either a static keyframe
set [2, 5, 6, 7, 8, 10, 11, 12], or dynamic video skim [6, 9, 13, 3, 14].

 Number of keyframes. The number of keyframes in a summary is often
variable and as extracted, determined by the algorithm and characteristics of
the video [5, 6, 7, 8, 9, 10, 11, 12]. Alternatively, the number of frames can be
defined a priori [2], or post-processing of the selected frames can reduce the
set size a posteriori, to a pre-defined number of frames [2].

 Running memory. The memory required to run the summarisation is an
important feature for on-line applications. Some methods need only keep the
keyframe set in memory [2, 8, 9, 12], others process frames in batches and
must therefore keep the full batch in memory [5, 7, 11]. Similarly, methods
based on identifying shots within the video, may require a full shot to be
stored in memory to then select the desired keyframe from the shot [6, 10].

3 Control-charts for on-line video summarisation
Here we propose a method that uses the statistical process of control-charts to identify shots
from a streaming video. Control-charts [15] monitor a quantity of interest to detect when a
process moves out of control. The mean, µ, of the quantity is used as a baseline value, and
the process deemed to be “in control” while observations remain within a specified limit
from the mean, typically three standard deviations, σ.

Algorithm 1: On-line control chart method

Input: Data stream 푋 u �1,…,�푁 , �푖 � �퐿, minimum shot
length m, buffer sizeB, threshold for keyframe
similarity θ.

Output: Selected set of keyframes 푃 ⊂ 푋.

// Initialisation
1 푷 ← t
2 풋 ← ퟏ // Shot number
3 푺풋 ← 풙ퟏ,…,풙푩 // First shot
4 for 풊 ← ퟐ,…,푩 do
5 �풊 ← � 풙풊,풙풊tퟏ // Euclidean distance
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6 흁 ← 풎Rom �ퟐ,…,�푩
7 흈 ← 풔풕� �ퟐ,…,�푩

// Process video frame-by-frame
8 for 풊 ← 푩t ퟏ,…,t do
9 �풊 ← � 풙풊,풙풊tퟏ
10 if �풊 < 흁tퟑ흈 then

// No new shot detected
11 흁,흈 ← update 흁 & 흈 with�풊
12 푺풋 ← 푺풋 ∪푿 풊

13 else
// New shot detected

14 if 푺풋 > 풎
// Shot sufficiently long

15 풑풋 ← selectkeyframe 푺풋
16 휹← keyframediff 풑풋,풑풋tퟏ
17 if 휹 < 휽 then

// Shots too similar: merge
18 푺풋 ← 푺풋tퟏ ∪ 푺풋

// Remove last keyframe from set
19 푷 ← 푷 ퟏ:퐞tht ퟏ
20 풑풋 ← selectkeyframe 푺풋
21 푷 ← 푷∪ 풑풋
22 풋 ← 풋 tퟏ
23 else

// Shot too short: ignore
24 푺풋 ← t

25
26 Function 풇 u selectkeyframe 풀

// Select the frame closest to the mean
27 풇 ← 퐚쳌䁜퐦耀t

풙�풀
� 풙,풀�

28
29 Function 휹 u keyframediff 풇ퟏ ,풇ퟐ
// Compare 16-bin Hue histograms of frames f1 and f2

30 풉풊 u hist16 hue 풇풊 // Normalised 16-bin Hue histogram
31 휹 u 풋uퟏ

ퟏt 풉ퟏ 풋 t 풉ퟐ 풋�

3.1 Control-chart method (CC)
Assuming that each frame is represented as a point in some L-dimensional space, we take
the Euclidean distance, d, between consecutive frames as the process to be monitored. A
distance � > � t �� defines a shot boundary. Once a full shot has been identified, a
keyframe is selected as the frame closest to the centre of the cluster defined by the shot.

Potential issues with such a method are that: (1) consecutive shots identified by the
algorithm may be too similar to warrant separate keyframes, and (2) short transitions may
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3.1 Control-chart method (CC)
Assuming that each frame is represented as a point in some L-dimensional space, we take
the Euclidean distance, d, between consecutive frames as the process to be monitored. A
distance � > � t �� defines a shot boundary. Once a full shot has been identified, a
keyframe is selected as the frame closest to the centre of the cluster defined by the shot.

Potential issues with such a method are that: (1) consecutive shots identified by the
algorithm may be too similar to warrant separate keyframes, and (2) short transitions may

be identified as shots, but are not important to the summary. We address these issues as
follows:

 Define a measure of similarity between frames, as follows [16]. Use the HSV
representation of the frames to obtain 16-bin histograms of the hue value (H). If
the Minkowski distance between the normalised histograms is less than a threshold
of 0.5, the frames are similar.

 After identifying a shot and selecting the representative keyframe, we compare
this frame with the previous keyframe (if available). If the two consecutive
keyframes are similar according to the above measure, we assume that a shot
boundary has been falsely identified. The boundary is removed, and the two shots
are merged. A new keyframe is selected from the combined shot to replace the two
keyframes from the individual shots.

 We define an empirical constant to state the minimum shot length. If a shot
contains fewer frames, the shot is ignored and no keyframe is selected.

The CC method requires three parameters: a pre-defined threshold θ for classifying
keyframes as similar, a minimum shot length m, and initial buffer size B for calculating the
starting mean and standard deviation. If we assume that the number of frames per second
will be constant across videos, and that the duration required for a shot to be of interest is
largely independent of video content, the optimal value for m should be consistent across
videos. We select two seconds to be the minimum duration of a shot for it to be of interest.
The full control-chart method is given in Algorithm 1.

3.2 Feature representation
Our control-chart method may be used with any feature space. For an on-line
application, feature extraction must be a computationally inexpensive process.
Therefore, relatively complex features, such as those derived from CNN, are not
feasible.

To select a feature space for testing the algorithm, we implement the extraction of a
number of different features, including those used by existing on-line summarisation
methods. Table 1 shows the time taken to extract the different features for a video
containing 3,266 frames. The extraction time for the RGB moments is substantially
shorter than HSV histograms, even when a relatively small number of bins are used
for the histograms. We therefore select RGBmoments as the feature space to use in
the CC method.

The RGB moments are a 54-dimensional feature space; the mean and standard deviation
of the three colour channels for the nine sub-images created from a uniform 3-by-3 grid.

Table 1. Average time to extract features for the VSUMM video #21, and methods that use
the features.

Feature Time to extract (s)
RGB moments of 9 blocks (CC) 25

HSV histogram - [8, 4, 4] bins for Hue, Saturation,
Value (ZNCC, SBD, HIST) 85

CENTRIST 252-dimensional structural histogram
(MSR) [17] 522

MPEG-7 colour layout descriptor (GMM) [18] 1,546
Penultimate layer of VGG CNN (DIV) [19] > 1.5hr

4 Method testing and evaluation
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Here we compare the results for the proposed CC method with the two existing
methods, SCX and MGMM, found to perform best in our previous comparison study
[4].

4.1 Synthetic data
We first consider the performance of the three methods on seven synthetic data sets.
The first data set follows the example of Elhamifar et al. [20]. The data consists of
three clusters in 2-dimensional space as illustrated in figure 2 (#1). Each point
represents a frame in the video. The three clusters come in succession but the
points within each cluster are generated independently from a standard normal
distribution. The order of the points in the stream is indicated by a line joining
every pair of consecutive points. The time tag is represented as the grey intensity.
Earlier points are plotted with a lighter shade. The “ideal” selected set is shown
with red target markers. In addition to the two dimensions plotted, two noise
dimensions are added (from the distribution 푁 0, 0㔷‹ ). Data sets #2 - #5 are also
shown in figure 2. Again, each data set contains an additional two noise dimensions.
Data sets #6 and #7 follow a similar structure but with more dimensions, six and
eight, respectively.

#1 #2 #3 #4 #5

Fig. 2. Synthetic data sets #1 - #5. The time tag is represented as the grey intensity. Earlier points are
plotted with a lighter shade. The “ideal” selected sets are shown with red target markers.

Using synthetic data allows an objective assessment of the summaries produced. If
the video is already segmented into units (events, shots, scenes, etc.), the selected
frames must allow for distinguishing between the units with the highest possible
accuracy [21]. Therefore we use three complementary measures of the quality of the
summary of synthetic data sets:

Cardinality : � u 푃 (1)

Approximation error : � u
푖u1

푁

�� �푖,�푖
� (2)

Accuracy : � u 1 t �� 푃 (3)

where 푋 u �1,…,�푁 is the sequence of video frames, N is the total number of frames in
the video, 푃 u �1,…,�� is the selected set of keyframes, �푖

� is the keyframe closest
to frame �푖 , d is the Euclidean distance, and 1 t �� 푃 is the resubstitution classification
accuracy in classifying X using P as the reference set. To obtain a good summary, we strive
to maximise A while minimising J and K.

We train the method parameters on 50 randomly generated data sets following the
distribution of data set #1. Solutions are evaluated as follows:

 Find the Pareto set for the three criteria A, K and J.
 Exclude any results in the Pareto set with K > 10. This step removes the

solution that selects all frames as keyframes, giving perfect accuracy and no
error.
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to maximise A while minimising J and K.
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distribution of data set #1. Solutions are evaluated as follows:

 Find the Pareto set for the three criteria A, K and J.
 Exclude any results in the Pareto set with K > 10. This step removes the

solution that selects all frames as keyframes, giving perfect accuracy and no
error.

 Select the summary with the best accuracy. Where multiple summaries tie,
select that with the fewest frames, and use the approximation error to split
any remaining ties.

Taking the 50 optimal parameter sets as a cluster, the set closest to the cluster centre is
chosen as the tuned method parameters.

The methods are then tested on 300 randomly generated data sets, 50 from each of the
remaining six data set patterns, using the parameters tuned on data set #1. For each data set
the accuracy, cardinality and approximation error are calculated for each method. The
methods are then ranked. Four paired-sample t-tests are performed, comparing the accuracy
and approximation error for our proposed CC method against the two existing methods.

Table 2. Results of paired-sample t-tests comparing the accuracy (A) and approximation error (J) for
the CC method summaries and the summaries generated by the MGMM and SCX methods. The

confidence interval for the difference is shown for significant results (at the 0.05 significance level).

Method Test P-value Confidence interval
MGMM ACC − AMGMM 1e-5 [0.02, 0.04]

JCC − JMGMM 6e-4 [-1.7, -0.4]
SCX ACC - ASCX 0.7 -

JCC - JSCX 3e-23 [-4.0, -2.7]
Table 2 shows the results of the paired-sample t-tests. At the 0.05 level, there is no

significant difference between the accuracy values for the CC and SCX methods (i.e. the
difference has a zero mean). All other tests find a significant difference. The confidence
intervals for the mean differences are less than zero for J, implying that the error tends
to be less for the CC method, and greater than zero for A, implying that the accuracy
tends to be greater for the CC method. The CC method summaries tend to rank best
according to our three criteria; an average of 1.4 across the 300 experiments,
compared to the existing methods that have average ranks of 2.2 and 2.3 for the
MGMM and SCX methods, respectively.

4.2 VSUMM videos

The methods are tested on 50 real videos from the VSUMM collection1 [16]. Whereas the
summaries of the synthetic data can be assessed in relation to a “correct” result, there is no
such objective assessment available for real videos; what constitutes a good summary is
somewhat subjective. The VSUMM collection includes a database of five user-selected
summaries for each video. These summaries can be used as a ground-truth, to compare
method-generated summaries against. Following the approach of De Avila et. al [16], the
match between two summaries is described by an F-measure calculated using the 16-bin
histograms of the hue values of selected keyframes, as explained in Section 3.1.

Parameters for each method are tuned on video #21. We select the parameters
that produce the summary with the highest average F-measure when compared with
the five user ground-truth summaries. These parameters are used to run the
methods on the other 49 videos.

Figure 3 shows the F-measure (averaged across the five user summaries) versus the
number of keyframes selected by each method for the VSUMM videos. Each point on the
plot corresponds to a video. The ideal summary has a high F-measure, and low number of
frames. Points in the upper-left corner of the plots shown in figure 3 therefore represent the
better summaries. The points for all methods are plotted with grey colour on all plots. The

1 https://sites.google.com/site/vsummsite

7

MATEC Web of Conferences 277, 01012 (2019)	 https://doi.org/10.1051/matecconf/201927701012
JCMME 2018



points of the method in the title of the subplot are shown with black markers. The CC
method generates a higher proportion of good summaries than the existing two methods. As
an illustration of these results, figure 4 shows the summary of video #47 produced by the
CC method, compared to the summary from user #1. All five frames in the user summary
are matched in the CC method summary.

Fig. 3. Number of keyframes (K) and F-measure averaged over five user ground-truths, for
summaries of the 50 VSUMM videos. Filled, grey circles show the results for all three methods, with
the points for the named method highlighted in black.

CC

User #1

Fig. 4. Comparison of VSUMM video #47 summaries from user #1 and the CC method. The
matches have been calculated using the 16-bin histogram method with threshold 0.5 [16].

5 Conclusion
Control-charts are a simple and effective approach to on-line video summarisation. Our
proposed CC method performs well in comparison to existing methods, both on small
synthetic data sets and real videos. On-line methods require computationally inexpensive
feature spaces. The CC method uses RGB moments, which are significantly faster to
extract than the features used by some of the existing on-line methods. Feature extraction
time can be improved further by working with compressed images. However, further work
is required to assess the effect on summary quality.

The videos used for testing have well-defined shots, providing a relatively easy
summarisation task. The performance of the new method may be different on other types of
video, e.g. where the shots are less clearly defined or the variability within shots is greater.
Examples of such type of data are egocentric videos and lifelogging photo streams.
Performance on longer videos must also be considered. For the application of wearable
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extract than the features used by some of the existing on-line methods. Feature extraction
time can be improved further by working with compressed images. However, further work
is required to assess the effect on summary quality.

The videos used for testing have well-defined shots, providing a relatively easy
summarisation task. The performance of the new method may be different on other types of
video, e.g. where the shots are less clearly defined or the variability within shots is greater.
Examples of such type of data are egocentric videos and lifelogging photo streams.
Performance on longer videos must also be considered. For the application of wearable

devices, it may be necessary to introduce a restriction on the number of keyframes that can
be selected.

Similarly, when shots can potentially become very long, or consecutive shots very
similar, a more dynamic approach to sampling, and the shot detection and similarity
thresholds may be beneficial, and will be investigated in future work.
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