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Abstract. In this paper a methodology to recognize actions based on RGB
videos is proposed which takes advantages of the recent breakthrough
made in deep learning. Following the development of Convolutional
Neural Networks (CNNs), research was conducted on the transformation of
skeletal motion data into 2D images. In this work, a solution is proposed
requiring only the use of RGB videos instead of RGB-D videos. This work
is based on multiple works studying the conversion of RGB-D data into 2D
images. From a video stream (RGB images), a two-dimension skeleton of
18 joints for each detected body is extracted with a DNN-based human
pose estimator called OpenPose. The skeleton data are encoded into Red,
Green and Blue channels of images. Different ways of encoding motion
data into images were studied. We successfully use state-of-the-art deep
neural networks designed for image classification to recognize actions.
Based on a study of the related works, we chose to use image classification
models: SqueezeNet, AlexNet, DenseNet, ResNet, Inception, VGG and
retrained them to perform action recognition. For all the test the NTU
RGB+D database is used. The highest accuracy is obtained with ResNet:
83.317% cross-subject and 88.780% cross-view which outperforms most
of state-of-the-art results.

1 Introduction
The task of recognition is to name actions and describe them from a sequence of
movements. The study of human action is linked to many fields such as computer science,
psychology, healthcare. Action recognition can be used in many applications such as video
surveillance, human-machine interaction, user interface design, gaming, entertainment,
robotics, web-video description, medical diagnosis, sports analysis and many others. Action
recognition is amajor challenge because of the diversity of movements, the complexity of
motion capture and the difficulty of creating a realistic and relevant database. An action,
such as drinking, can be done in different ways, depending on the person acting, the context,
the environment, the style of the movement and many other parameters. Each action can be
done in so many ways that it is difficult to define the features describing the action. Another
challenge is how to capture and represent movement. Different representations exist and
depending on the final application, many motion capture systems are available. To obtain
good results in the recognition task, a large amount of data is necessary and specially to
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train a neural network. All this data is gathered in a database. For action recognition, the
creation of a database and manual labelling of all movement sequences one by one takes a
lot of time. In addition, the database should be as representative as possible of the reality and
conditions underwhich the recognition algorithm will be used.

Fig. 1.Methodology used to recognize action: input data are RGB video containing individual actions
(from NTU RGB+D dataset), the skeleton is extracted with Openpose then the sequence of motion is
converted into a RGB image before going into the neural network which classifies the action.

Wepresentanewmethodology toprocessRGBvideos toperformaction recognition (Fig. 1).
The first step to recognize human activity is to extract the motion from the video. As a
result, the essence of the motion is extracted, namely, the skeleton of people. Skeleton
extraction is done using OpenPose [1], a DNN-based detection system that extracts a 2D
skeleton of 18 joints for each detected body. Second, motion sequences are converted to
RGB images. The classification of images and videos has been very successful with the
development of deep learning. We exploit these advantages by transforming the skeleton-
based action recognition task into an image classification task. The motion parameters are
encoded in the three R, G, B channels and an action sequence becomes an RGB image.
Finally, image classification neural networks can be retrained to recognize actions.

2 State of the Art
Image and video classification have known a great success in the last few years, and
especially with the development of Deep Learning. Some researches tried to exploit these
advantages by transforming the skeleton-based action recognition task into an image
classification task, and this by transforming 3D skeleton sequences into images. Image
classification models can be then used on this data [2]. The motion parameters are encoded
into the three R, G, B channels and action sequences become an RGB image. Then the
image classification neural network can be retrained to recognize actions.

Laraba et al. [2] encode the (X, Y, Z) position of each joint into R, G, B channels. They
obtain with a CNN an accuracy of 74.27% for the cross-subject and 75.74% for the cross-
view action recognition using 3D skeleton data recorded by the Kinect from NTU RGB+D
dataset [3]. In the same idea, Du et al. [4] obtain an accuracy of 100% with the Berkeley
MHAD dataset [5].

In [6], Ding et al. investigated different skeleton features to encode them into RGB
images. They test five different features: joint-joint distances, joint-joint vectors, joint-joint
orientations, joint-line distances and line-line angles. They encode these features into five
RGB images before using them to train five CNN. Then, all the output scores are fused to
return a final score of the classification. With this method they achieve an accuracy of
82.31% with the NTURGB+D dataset [3].

In [7], Ke et al. suggest a new representation of skeleton data. They encode the 3D
coordinates (X,Y,Z) into a clip of grey images containing spatio-temporal information.
They obtain an accuracy of 84,83% cross-view and 79.57% cross-subject with the NTU
RGB+D database [3], 93.57% with the SBU Kinect interaction database [8] and 88.30%
with the CMU dataset [9].
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They obtain an accuracy of 84,83% cross-view and 79.57% cross-subject with the NTU
RGB+D database [3], 93.57% with the SBU Kinect interaction database [8] and 88.30%
with the CMU dataset [9].

Wang et al. [10] propose a joint trajectory map in which 3D skeleton data are encoded.
These maps are then classified by a CNN. Their joint trajectory map encodes the 3D
coordinate of the joint, the motion direction, the body parts and the magnitude of the
motion. They obtain an accuracy of 81.08% cross-view and 76.32% cross-subject with the
NTU RGB+D database [3], 94.86% with the MSRC-12 Kinect Gesture Dataset [11] and
96.02% with the G3D DATASET [12].

Li et al. [13] suggest to encode 3D relative coordinates and compute the difference with
3 reference joints (hip centre, right shoulder and left shoulder). The three generated sets of
vectors containing relative coordinates are encoded into an RGB image. They train a CNN
with these images and get an accuracy of 75.2% in cross-subject and 82.1% in cross-view
with the NTU RGB+D database [3].

In [14], Li et al. propose to use skeleton data and divide them into five body parts, the
3D coordinates (X, Y, Z) of joints of each body part is concatenated in a vector and
encoded into a RGB image. The RGB images feed the CNN and obtain with the NTU
RGB+D dataset [3] an accuracy of 84.6% cross-subject and 90.9% cross-view.

Li et al. in [15] rearrange and select the important skeleton joints automatically. The
order of joints during encoding influences the accuracy. The module selects the best order
and the most important joints before encoding them into an image and feed the CNN. They
obtain an accuracy of 83.2% cross-subject and 89.3% cross-view.

3 Methodology
The proposed methodology is based on RGB videos. Motion information are extracted with
OpenPose. These skeleton motion sequences are then converted into images. In this section,
OpenPose is presented then the conversion of the motion sequence into RGB image is
explained.

3.1 Machine Specification
For this work, all the tests on neural networks for classification algorithms are performed on
a computer, equipped with a MSI GeForce_GTX 1080 TI GAMING X 11G GPU and 32
GB (2x16GB DDR4 3000) memory. The computer is also equipped with a Intel Core
Skylake-X I7-7800x 3.5Ghz 25Mb LGA 2066 BOX CPU.

3.2 Motion Extraction with OpenPose
OpenPose is able to detect the 2D poses of several people in an image. Detection is done
by a bottom-up approach: body parts are detected and then associated with individuals on
the image. Cao et al. [1] propose a two-flow CNN architecture: the first branch is dedicated
to limb detection and the second to the affinity field of the part that gives the degree of
association between body parts to determine which are associated with which body (Fig. 2).
This step is done iteratively: each step takes as input the detection confidence cards and the
affinity field of the part (the two output branches) of the previous step and the original
image. OpenPose extracts the position of 18 joints for each detected body and returns for each
joint the coordinates (X, Y) and the confidence score C relative to the detection of each
joint.

In this work, we focus on the recognition of individual actions, only the first 49 actions
are retained from the NTU RGB+D database. From all RGB videos in the database, the
actor’s skeleton is extracted with OpenPose. Even if OpenPose does not reach the same
performances as 3D motion capture systems, OpenPose requires only RGB camera and
extract 2D skeletons from a video. It can be used in indoor and outdoor environments.
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OpenPose allows partial skeleton recognition. Some disadvantages of OpenPose are that it
returns no information about the depth and it is based on DNN which requires a high-end
computer.

Fig. 2. OpenPose methodology for the 2D pose detection of several people in an image and neural
network architecture for detection and association of body parts [1].

On some videos, OpenPose extracts the skeleton of people in the background unrelated
to the action recognition task. The extracted data have been cleaned and only the first
skeleton of 18 joints remains.

3.3 Data Conversion
Neural networks in the field of image classification have evolved rapidly and many models
have emerged. With the large number of models in this field and the good performance of
these models, a representation of skeletal motion sequences in images has been proposed by
Laraba et al. [2]. The conversion of the motion sequence into an RGB image is done in
three steps: extraction of the skeleton data in the matrices (X, Y, Z), normalization between
0 and 255 and mapping with the R, G, B channels. With this transformation, the motion
sequence is reduced to an image.

In this work, the motion is recorded through traditional RGB camera. From these videos,
the motion is extracted thanks to OpenPose which returns the (X, Y) positions of the joints
and the confidence C of the detection of joints for each frame. (X, Y) and C are extracted
into three different matrices. For each one, a row corresponds to the position of a joint along
the time and a column to the positions of all the joints at one frame. These three matrices are
then normalized between 0 and 255 before being mapped into RGB images. With this
transformation each sequence of video representing an action is converted into a single RGB
image (Fig. 3).

4 Data representation
In this section, an evaluation of the movement parameters influencing the effectiveness of
the classification will be conducted. Before feeding them to the neural network, the motion
capture data will be transformed into an image. For each joint, three channels are available
(RGB). The experimentation consists in finding the best data representation and the best
kind of encoding to have the highest accuracy. To realize this experimentation, twomodels of
image classification neural network have been tested: SqueezeNet [16] and DenseNet [17].
SqueezeNet is very small and has very few parameters, which makes it very quick to be
trained. DenseNet is a more complex neural network, with a high number of parameters to
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optimize. Due to its complexity, the training time is higher, but the accuracy is improved
compared to SqueezeNet.

All the following tests (summarized in Table 1) have been realized with a deep
retraining. We use models pretrained on the ImageNet dataset, and we retrain the whole
network. We prefer to use a deep retraining instead of a shallow retraining because our data
are very different from the ImageNet dataset.

The best data representation will be then used with more complex neural network
architectures. All the data representations have been tested to do cross-subject and cross-
view recognition.

4.1 Test 1: Position (X, Y) and Confidence
For the first experimentation, for each motion sequence, (X, Y) position and the confidence
score C given by OpenPose for each joint are encoded respectively in the R, G and B
channels of the image (RGB) (Fig. 3).

Fig. 3. (X, Y) positions and confidence C of each joint are encoded in R, G and B channels of an
image.

The accuracy obtained with SqueezeNet is equal to 74.25% and it is equal to 82.71%
with DenseNet (Tables 2 and 3).

4.2 Test 2: Position (X, Y) and mean between (X, Y)
For the second test, we encode the mean value between (X, Y) as input information about
the depth. The size of the body in the video gives information about the closeness of the
actor. If the actor is far from the camera, he looks small on the image. When he comes
closer to the camera, he is larger on the image. Some information about the depth is hence
contained into the (X, Y) position of each joint. We propose to encode the (X, Y) positions
and the mean between X and Y in the R, G and B channel of an image (Fig. 4).

Fig. 4. (X, Y) position and the mean of (X, Y) of each joint are encoded as an image.
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The accuracy obtained with SqueezeNet is equal to 71,43% and to 80,33% with
DenseNet (tables 2 and 3). These two first tests show that putting the confidence C in the
encoding is more relevant than setting the mean value between (X, Y) coordinates.

4.3 Test 3 and Test 4: 14 Joints
For the third and fourth experiments, the two data encoding presented above are tested with
only 14 joints instead of 18 (Fig. 5). Some articulation positions of the skeletal extraction
performed with OpenPose are missing. In particular, the joints of the eyes and ears are often
absent. For some gestures, they are missing in 50% of the frames. The actions we want to
recognize do not involve the eyes or ears. The neural network was retrained by keeping only
the other 14 nodes.

Fig. 5. OpenPose 2D skeleton [18]
The tests with 14 joints are realized one time with the confidence C and a second time

with the mean value between (X, Y) coordinates as the third channel B. The results of the
tests are in Tables 2 and 3. Using the confidence C, the test 1 and test 3 must be compared
together. The removal of the ears and eyes nodes shows an improvement with SqueezeNet
[16] and a small regression with DenseNet [17]. Test 2 and test 4, using the mean value
between (X, Y) coordinates, show an improvement of the accuracy with the two models
when we use 14 joints instead of 18. It seems using 14 joints instead of 18 joints gives
better accuracy.

4.4 Test 5 and Test 6: Change Joints Order
For these tests, the (X, Y) positions of the 14 joints are encoded in different orders. The
understanding of the motion by the neural network depends on the data representation and the
order of the joints in the encoder gives different accuracy results. The first order tried in tests
3 and 4 is the following: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13. The second order tried in
tests 5 and 6 is the following: 0, 4, 3, 2, 1, 5, 6, 7, 10, 9, 8, 11, 12, 13 (Fig. 5). This order
associates the two arms and the two legs.

When we compare the results of the tests 3 and 4 with tests 5 and 6, we can conclude
that the accuracy is influenced by the order of the joints and the order 0, 1, 2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12, 13 gives a better accuracy (Tables 2 and 3).

4.5 Conclusion: the best data representation
To find the best data representation, the different data representations have been tested with
two models: SqueezeNet [16] and DenseNet [17]. These tests show that:

the more relevant third coordinate is the confidence C returned by OpenPose and it

6

MATEC Web of Conferences 277, 02034 (2019)	 https://doi.org/10.1051/matecconf/201927702034
JCMME 2018



The accuracy obtained with SqueezeNet is equal to 71,43% and to 80,33% with
DenseNet (tables 2 and 3). These two first tests show that putting the confidence C in the
encoding is more relevant than setting the mean value between (X, Y) coordinates.

4.3 Test 3 and Test 4: 14 Joints
For the third and fourth experiments, the two data encoding presented above are tested with
only 14 joints instead of 18 (Fig. 5). Some articulation positions of the skeletal extraction
performed with OpenPose are missing. In particular, the joints of the eyes and ears are often
absent. For some gestures, they are missing in 50% of the frames. The actions we want to
recognize do not involve the eyes or ears. The neural network was retrained by keeping only
the other 14 nodes.

Fig. 5. OpenPose 2D skeleton [18]
The tests with 14 joints are realized one time with the confidence C and a second time

with the mean value between (X, Y) coordinates as the third channel B. The results of the
tests are in Tables 2 and 3. Using the confidence C, the test 1 and test 3 must be compared
together. The removal of the ears and eyes nodes shows an improvement with SqueezeNet
[16] and a small regression with DenseNet [17]. Test 2 and test 4, using the mean value
between (X, Y) coordinates, show an improvement of the accuracy with the two models
when we use 14 joints instead of 18. It seems using 14 joints instead of 18 joints gives
better accuracy.

4.4 Test 5 and Test 6: Change Joints Order
For these tests, the (X, Y) positions of the 14 joints are encoded in different orders. The
understanding of the motion by the neural network depends on the data representation and the
order of the joints in the encoder gives different accuracy results. The first order tried in tests
3 and 4 is the following: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13. The second order tried in
tests 5 and 6 is the following: 0, 4, 3, 2, 1, 5, 6, 7, 10, 9, 8, 11, 12, 13 (Fig. 5). This order
associates the two arms and the two legs.

When we compare the results of the tests 3 and 4 with tests 5 and 6, we can conclude
that the accuracy is influenced by the order of the joints and the order 0, 1, 2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12, 13 gives a better accuracy (Tables 2 and 3).

4.5 Conclusion: the best data representation
To find the best data representation, the different data representations have been tested with
two models: SqueezeNet [16] and DenseNet [17]. These tests show that:

the more relevant third coordinate is the confidence C returned by OpenPose and it

is obvious the (X, Y) coordinates are neccessary.

the suppression of the most missing joints (eyes and ears) is relevant and improves
the accuracy with Squeezenet.

the order of the joints is important and the best order found is: 0, 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13.
Table 1. Parameters used in the tests to evaluate the different data representations.

test RGB
conversion

number
of nodes

nodes
order

1 (X,Y),c 18 order 1
2 (X,Y),mean 18 order 1
3 (X,Y),c 14 order 2
4 (X,Y),mean 14 order 2
5 (X,Y),c 14 order 3
6 (X,Y),mean 14 order 3

legend
order 1 = (14,15,16,17,0,1,2,3,4,5,6,7,8,9,10,11,12,13)
order 2 = (0,1,2,3,4,5,6,7,8,9,10,11,12,13)
order 3 = (0,4,3,2,1,5,6,7,10,9,8,11,12,13)

Table 2. Results of the tests to evaluate the different data representations with SqueezeNet
[16] in cross-subject.

Memory size parameters optimized
SqueezeNet 3 747 633

Results Accuracy
(in%)

Training
time (min)

Evaluation
time (s)

test1 74.253% 22.80 29.2680
test2 71.439% 22.34 29.2983
test3 74.553% 22.50 29.9367
test4 73.160% 22.57 29.0531
test5 73.512% 22.83 29.4864
test6 72.487% 22.75 29.2175

As shown in Table 2, with the SqueezeNet model, the training time is approximately the
same for all the tests and is between 22.34 and 22.83 minutes. The evaluation time is also
approximately the same for all the tests and is between 29.0531 seconds and 29.9367
seconds. The highest accuracy obtained is 74.553%.

The DenseNet model is more complex. Compared to SqueezeNet, DenseNet has a
higher number of parameters to optimize and training time and evaluation time are higher.
The training time is between 73.16 and 74.63 minutes, which is approximately three times
higher than SqueezeNet. Theevaluation time isbetween 55.6769and57.2752 secondswhich is
approximately twice the evaluation time of SqueezeNet. The highest accuracy obtained is
82.718%.

The two models do not agree on the best data representation. According to SqueezeNet,
the best data representation is obtained with the parameter configuration of the test 3 and
with DenseNet, the best accuracy is obtained with parameters configuration of the test 1.
The difference between these two tests is the number of joints: 14 or 18 joints.
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In terms of accuracy, the best data representation is the encoding of the (X, Y) position
and the confidence C of the 14 (or 18) joints in the following order: (14, 15, 16, 17), 0, 1, 2,
3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13. This way of encoding is used for the tests in the following
section.

Table 3. Results of the tests to evaluate the different data representations with DenseNet [17] in
cross-subject.

Memory size parameters optimized
DenseNet 51.1 12 566 065
Results Accuracy

(in%)
Training
time (min)

Evaluation
time (s)

test1 82.718% 73.39 56.0388
test2 80.338% 74.43 55.6769
test3 82.711% 74.63 57.2752
test4 80.981% 74.56 57.1248
test5 82.688% 73.16 56.1067
test6 80.735% 74.37 57.0115

5 The Image Classification Model for Action Recognition
With the best data representation chosen in the previous section, different models of image
classification are compared. Then the importance of the transfer learning approach is
demonstrated with different kinds of training with each model: deep, shallow or from
scratch. Finally, a comparison of performances is made for the cross-subject and cross-view
action recognition tasks.

5.1 Models Comparison
In this section, we compare different models of image classification in terms of accuracy,
training time and evaluation time. All these models are tested with two chosen data
representations (corresponding to test 1 and 3 in 1): encoding (X, Y) and C in RGB
channels for 14 (or 18) nodes in the following order (14, 15, 16, 17), 0, 1, 2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12, 13. We evaluate the following models: SqueezeNet [16], AlexNet [19],
DenseNet [17], Resnet [20, 21], Inception [22, 23, 24], VGG [25].

Three deep retraining of all the selected models have been realized with the two data
representations. The best results obtained for each model are summarized in Table 4. The
highest accuracy is 83.317% and is obtained with ResNet152 with 18 nodes. It seems
difficult to choose the best data representation between 18 or 14 joints. For some models
(SqueezeNet, DenseNet and VGG13), suppressing the more often missing joints can
improve the accuracy. With 14 nodes data representation, the highest accuracy is obtained
with ResNet152 (83.317%). With 18 nodes, the highest accuracy is obtained with
DenseNet (82.651 %).

The accuracy is not the only criteria to choose a model. Depending on the application,
the memory required, or the training and evaluation times can be important. The models
requiring the shortest training time are SqueezeNet and AlexNet. SqueezeNet requires the
smallest memory size. The slowest model in terms of training time and evaluation time is
ResNet152. VGG19 is the model requiring the largest memory size.

5.2 Transfer Learning: Deep, Shallow or from scratch
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demonstrated with different kinds of training with each model: deep, shallow or from
scratch. Finally, a comparison of performances is made for the cross-subject and cross-view
action recognition tasks.

5.1 Models Comparison
In this section, we compare different models of image classification in terms of accuracy,
training time and evaluation time. All these models are tested with two chosen data
representations (corresponding to test 1 and 3 in 1): encoding (X, Y) and C in RGB
channels for 14 (or 18) nodes in the following order (14, 15, 16, 17), 0, 1, 2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12, 13. We evaluate the following models: SqueezeNet [16], AlexNet [19],
DenseNet [17], Resnet [20, 21], Inception [22, 23, 24], VGG [25].

Three deep retraining of all the selected models have been realized with the two data
representations. The best results obtained for each model are summarized in Table 4. The
highest accuracy is 83.317% and is obtained with ResNet152 with 18 nodes. It seems
difficult to choose the best data representation between 18 or 14 joints. For some models
(SqueezeNet, DenseNet and VGG13), suppressing the more often missing joints can
improve the accuracy. With 14 nodes data representation, the highest accuracy is obtained
with ResNet152 (83.317%). With 18 nodes, the highest accuracy is obtained with
DenseNet (82.651 %).

The accuracy is not the only criteria to choose a model. Depending on the application,
the memory required, or the training and evaluation times can be important. The models
requiring the shortest training time are SqueezeNet and AlexNet. SqueezeNet requires the
smallest memory size. The slowest model in terms of training time and evaluation time is
ResNet152. VGG19 is the model requiring the largest memory size.

5.2 Transfer Learning: Deep, Shallow or from scratch

In this section, we evaluate the importance of the transfer learning. The different models of
image classification will be retrained with a deep, shallow or from scratch training
[26][27][28]. These models are originally conceived for image classification and we test their
ability toperform action recognition by converting the 2D skeleton data into RGB image.

All the models have already been trained for image classification. The following models
are tested: SqueezeNet [16], AlexNet [19], Inception [23], DenseNet [17], ResNet [20, 21],
VGG [25].

Table 4. Results obtained by a deep retraining using 18 nodes and using 14 nodes parameters
configuration in cross-subject.

Model
(retrained deep)

Memory
size (MB)

Parameters
optimized

Accuracy
for test
1(%)

Accuracy
for test 3 (%)

Training
time (min)

evaluation
time (s)

SqueezeNet 3 747633 75.788 75.803 22.541 29.263
AlexNet 228.8 57204593 74.545 74.051 22.730 27.619
Inception v3 98.2 24481346 81.985 81.528 87.567 63.738
DenseNet169 51.1 12566065 81.940 82.651 74.683 55.322
ResNet34 85.4 21309809 82.591 81.356 40.366 36.053
ResNet152 233.8 58244209 83.347 81.693 117.074 74.771
VGG13 516.6 129151601 79.096 78.871 77.244 52.718
VGG19 559.8 139770993 78.497 78.984 109.260 66.915

The two chosen data representations are used to train the neural network models.
Transfer learning can be compared to learning a language. For someone who already

knows several languages, it is easier to learn a new one compared to someone who only
speaks one language. Thanks to previous knowledge, the learning process is easier. It is the
same for neural networks. We start with models designed for image classification. The
network is already able to classify images, and with some adaptation of the parameters it is
also capable to classify motion sequence images. The three kinds of retraining are tested
with different models of image classification neural networks (Table 5). As expected, the
accuracy is better when a deep retraining is applied. A training from scratch gives an
accuracy between 62.278% and 77.779%. It is better than the accuracy obtained with a
shallow retraining which is between 26.607% and 47.025%. The shallow retraining only
retrains the last layers. In this case, the difference between the features for the images in the
ImageNet dataset and our images representing motion sequences are considerable. It is
important to note that the parameters of the simulation are kept the same between the
different kinds of retraining, especially the number of epochs which indicates the number of
training iterations over the dataset. Training time is smaller for a shallow retraining because
only the last layers are retrained. Since the architecture of the models is kept between the
different kinds of retraining, the memory required of each model stays the same size. The
evaluation time also stays the same for the different kinds of retraining.
Table 5. Results obtained by a training from scratch, deep retraining or shallow retraining and the

number of the test for the data representation used (Table 1).
From Scratch Deep Retraining Shallow Retraining

Models Accuracy
(%)

Training

Time
(min)

Test Accuracy
(%)

Training

time
(min)

Test Accuracy
(%)

Training

time
(min)

Test

SqueezeNet 65.399 23.187 1 75.803 22.541 3 36.389 18.054 3

AlexNet 68.917 22.692 3 74.545 22.647 1 30.147 16.907 3
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Inception 75.189 87.291 1 81.985 87.246 1 30.043 40.110 3

DenseNet 77.636 74.458 1 82.651 74.683 3 47.025 34.276 3

ResNet34 77.779 40.195 1 82.591 39.620 1 41.105 22.523 3

ResNet152 72.547 117.145 3 83.317 115.029 1 40.985 46.783 3

VGG13 72.854 77.287 1 79.096 76.006 1 33.366 31.956 3

VGG19 72.337 109.427 1 78.984 109.26 3 26.712 40.226 1

5.3 Cross-subject vs Cross-view
One challenge in action recognition lies in the large variations of action representations.
The same action varies depending on the subject or on the view angle [29]. In this section, we
compare the capacities of the neural network to treat cross subject or cross view data. The
NTU RGB+D database allows two types of action classification evaluation: cross-subject
evaluation and cross- view evaluation. These two kinds of evaluation allow to test the
robustness of the neural network classification for data with a different view angle and data
with different subjects never seen by the neural network before.

All the data representation tested in Table 1 are tried for the cross subject and cross-
view simulation on all the models. Table 6 refers the data representation which reach the
highest accuracy obtain with the model in cross-subject and cross-view case. Between all
the models, the highest accuracy is obtained with ResNet152 in both cross-subject and
cross-view configuration. The cross-subject and cross-view do not reach the highest accuracy
with the same data representation. It seems more relevant for the cross-subject configuration
to encode (X, Y) position and the confidence score C using 14 or 18 nodes with this order
(14, 15, 16, 17), 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13. At the opposite the higher accuracy
for the cross-view configuration are obtained with the encoding of (X, Y) position and the
mean value of (X, Y) using 14 nodes in the 2 possible orders: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13 or 0, 4, 3, 2, 1, 5, 6, 7, 10, 9, 8, 11, 12, 13.
Table 6. The highest accuracy obtained for all the models in a cross-subject and cross-view simulation

and the data representation used (Table 1).
Cross-subject Cross-view

Models Accuracy Test Accuracy Test
SqueezeNet1 1 75.803% 3 81.031% 4
AlexNet 74.545% 1 79.157% 5
Inception v3 81.985% 1 87.365% 5
DenseNet169 82.651% 3 88.237% 6
ResNet34 82.591% 1 88.069% 4
ResNet152 83.317% 1 88.780% 6
VGG13 79.096% 1 85.155% 6
VGG19 78.984% 3 85.885% 6

6 Comparison with the State of the Art
In this section, we compare the results obtained in the state of the art with the same
database: NTU RGB+D dataset [3]. This database contains several representations of the
same data sequence. We divided the methods in three categories depending on the kind of
data used: skeleton (Table 7), RGB video (Table 8) or both (Table 9). Accuracy obtained
using skeleton data or RGB+skeleton data is respectively 1.3% and 0.4% higher than the
accuracy obtained in our study. They obtain a better accuracy, but they use more complex
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Cross-subject Cross-view

Models Accuracy Test Accuracy Test
SqueezeNet1 1 75.803% 3 81.031% 4
AlexNet 74.545% 1 79.157% 5
Inception v3 81.985% 1 87.365% 5
DenseNet169 82.651% 3 88.237% 6
ResNet34 82.591% 1 88.069% 4
ResNet152 83.317% 1 88.780% 6
VGG13 79.096% 1 85.155% 6
VGG19 78.984% 3 85.885% 6

6 Comparison with the State of the Art
In this section, we compare the results obtained in the state of the art with the same
database: NTU RGB+D dataset [3]. This database contains several representations of the
same data sequence. We divided the methods in three categories depending on the kind of
data used: skeleton (Table 7), RGB video (Table 8) or both (Table 9). Accuracy obtained
using skeleton data or RGB+skeleton data is respectively 1.3% and 0.4% higher than the
accuracy obtained in our study. They obtain a better accuracy, but they use more complex

data containing more information including depth. Nevertheless, for action recognition based
on RGB video, we obtain (at the best of our knowledge) the highest accuracy which is
83.317% with ResNet152 in cross- subject. We compare our results with other methods
using the NTU RGB+D dataset even if in our case we only use 49 individual actions instead
of 60 actions including 11mutual interactions.
Table 7. Action classification performance for different architectures using skeletal data as input of

the neural network
Methods
using skeleton data

Date Accuracy
cross-subject

Accuracy
cross-view

two streams 3DCNN [30] August 2015 66,85% 72,58%
LSTM+CNN [31] July 2017 82,89% 90,10%
5 CNN in parallel [6] May 2017 82,31%
conversion into image + CNN [7] March 2017 79,57% 84,83%
trajectories maps+CNN [10] December 2016 76,32% 81,08%
conversion into image + CNN [13] July 2017 75,2% 82,1%
conversion into image +CNN [2] March 2017 74,27% 75,74%
conversion into image + CNN [14] April 2017 84,6% 90,9%
conversion into image +CNN [15] April 2017 83.2% 89.3%

Table 8. Action classification performance for different architectures using RGBvideos as input of the
neural network

Methods
using RGB videos

Date Accuracy
cross-subject

Accuracy
cross-view

body part segmentation
+3CNN in parallel l[32] April 2017 80,8%

Our method
(with ResNet152) June 2018

data representation test 1
83,317%

data representation test 6
88.780%

Our method
(with DenseNet) June 2018

data representation test 3
82,651%

data representation test 4
88.237%

Table 9. Action classification performance for different architectures using both skeletal data and
RGB videos as input of the neural network

Methods
using RGB videos and skeleton data

Date Accuracy
cross-subject

Accuracy
cross-view

RNN+CNN [33] March 2017 83,74% 93,65%

7 Future Research
Important issues that must still be addressed in future work are scalability of action
recognition systems with respect to vocabulary size, recognition in the presence of unknown
actions, scenes containing multiple persons and interactions between multiples persons. The
increase of number of actions to recognize, involves the increase of the complexity of the
recognition and the database size. Only actions contained in the database can be recognized.
In presence of an unknown action, the classifier will return a known action class with the
highest similarity. In this work, we focus on individual actions, but it should be extended to
scenes containing multiples persons and interactions between multiples persons.
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8 Conclusion
As artificial intelligence grows, the possibilities and applications multiply in many fields
and the action recognition domain is not spared. The recent breakthroughs made in deep
learning for the human pose estimation have broadened the potential of the action
recognition field by getting rid of the use of dedicated motion capture sensors.

This work demonstrates that the human pose data extracted from traditional RGB videos
contain sufficient information to train a classifier capable of recognizing individual actions
and obtaining performances similar or superior to the state of the art. These results pave the
way for motion capture databases expansion as any video can be used without the use of
depth or motion sensors.

OpenPose is a very recent technological leap and to ensure that the data extracted are
reasonably accurate, a comparison was carried out between OpenPose, the Kinect v2
camera and the Qualisys system. The Kinect v2 is one of the most popular motion capture
systems and has been used in many researches while the Qualisys provides a reliable and
precise motion capture data. We concluded that OpenPose offers sufficiently reliable 2D
skeleton data to train a machine learning model.

Based on an intensive study of the related work, we chose to use an image classifier
based on deep neural networks and the NTU RGB+D database as our first set of data. We
converted the motion sequences into RGB images to be able to use existing deep neural
network models designed for image classification. We tested several image classifier models:
SqueezeNet, AlexNet, DenseNet, Resnet, Inception, VGG. Different data representations
have also been tested. The data representation with the encoding of (X, Y) coordinates and the
confidence score of 18 joints into RGB channels gave the highest accuracy. Finally, different
image classifiers havebeen tested. DenseNet and ResNet are the ones which gave the highest
accuracy. The highest accuracy reached during this study is 83.317% in cross-subject and
88.780% in cross-view evaluation. In the latest state-of-the-art results, higher accuracy was
reached with 3D skeleton data or with the fusion of RGB data and skeleton data (+1.3% and
+0.4% respectively) due to the use of more complex data containing more information
including depth information.
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