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Abstract. This paper proposes a methodology for taking into consideration uncertainties based on polynomial
chaos (PC). The proposed approach is used in order to determine the response of Cu-Al-Zn-Mn shape memory
alloy specimen with uncertainties associated to material parameters. The simulation results are obtained by PC
method. The proposed method seems to be an efficient probabilistic tool. It is worth mentioning that PC
approach is an interesting alternative for the parametric studies. This technique is more efficient compared to
MC approach.
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1 Introduction

In recent decades, smart technologies become of increasing
interest in different engineering fields [1]. The purpose is to
develop new and intelligent systems that can be integrated
with actuators, sensors and micro controllers. Shape
memory alloy (SMA) is a smart material that is
successfully used in the achievement of such technologies
[2]. SMA material becomes more and more used due to its
interesting physical and mechanical properties compared
to other materials. Such material is characterized by the
ability to remember its original shape after deformation. In
fact, SMA can generate high values of thermal-mechanical
driving forces and can undergo reversible moderate
deformations up to 8% under loading/thermal cycles.
Such a specific behavior of SMA is because of the native
capability to undergo reversible changes of the crystallo-
graphic structure that depends on the temperature and on
the state of the stress. These changes are due to the
martensitic transformations between the crystallographic
more ordered parent phase, the austenite, and the
crystallographic less ordered parent phase, the martenite
[3]. Generally speaking, shape memory alloy is a major
challenge for the researchers due to its intelligent
characteristics. In fact, the main attractive features of
this class of materials are the capabilities of: (1) recovering
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the original shape after large deformations induced by
mechanical load (pseudo-elasticity) and (2) maintaining a
deformed shape up to heat induced recovery of the original
shape (shape memory effect) [4]. Due to its special
behavior, SMA is easily integrated in systems without
causing a high increase in volume or weight. Besides, such
material is directly activated by temperature cycles or
stress [5]. These characteristics allow the SMA to be used in
a wide range of engineering applications such as biome-
chanics such as surgical tool and prostheses, aeronautics
and automotive. The study of shape memory alloy does not
integrate dispersion in the shape memory alloy parameters.
They are considered as constant. However, such param-
eters are uncertain due to their experiment measurement.
Several methods are proposed in the literature for
considering uncertainties. Monte Carlo (MC) method is
well-known in this field but it is often costly because of the
great numbers of samples required in the aim to have a
reasonable accuracy [5–7]. Polynomial chaos method is also
presented in the literature as an attractive probabilistic
method for considering uncertainties.

The capabilities of such a method are demonstrated in
biological and environmental problem [12], in solving
partial and ordinary differential equations [13], in dynamic
systems [5] and in parameter estimation [14]. The main
contribution of this communication is the study of the
uncertainty of Cu-Al-Zn-Mn alloy. This communication is
structured as follows: modeling of shape memory alloy
specimen is presented in Section 2. One of the main
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Fig. 1. 2D diagram of the specimen.

Fig. 2. ANSYS finite element model of the specimen.

Table 1. Material parameters.

Constant E
(MPA)

n h
(MPa)

T0

(K)
R
(MPa)

B
(MPaK�1)

Ɛl

Value 30700 0.36 9230 253.15 73.4 4.2 0.1

Fig. 3. Mechanical and thermal loading of the specimen.
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contributions of this work, the MC and PC methodology
are fully in Sections 3 and 4. Finally, numerical results of
shape memory alloy problem and comments are made
based on the methodology carried out in this communica-
tion in Section 5.

2 Modeling of Cu-Al-Zn-Mn alloy specimen

The considered model consists on a simple double notch
specimen as shown in Figure 1. As a type of shape memory
alloy, we choose the Cu-Al-Zn-Mn. The geometric
characteristics of the studied specimen are the following:
l=6mm, L=70mm and r=2mm. Numerical simulations
of shape memory alloy response are performed using
commercial software ANSYS.

Regarding the descritization of the specimen, 2D Plane
182quadrilateral elementsareusedas showninFigure2.The
2Dplane is formedby fournode elementswith fourdegrees of
freedom at each node: 2 translations in the nodal x, y
directions and 2 rotations in the nodal x, y.The values of the
materiel parameters used in this model are given in Table 1.

These parameters are taken from literature [15] and are
respectively: the Young’s modulus E, the Poisson’s ratio n,
the hardening parameter h, the reference temperature T0,
the elastic limit R, the temperature scaling parameter b
and the maximum transformation strain Ɛl.

In this problem, the bottom of the specimen (y=0)
cannot be moved. The applied loading path of the Cu-Al-
Mn-Zn specimen is shown in Figure 3. The first step (AB)
corresponds to the martensite variants orientation process.
The second step (BC) corresponds to the thermal loading
above the austenite finish temperature Af. Steps 1-2 and 2-
3 correspond to the heating and cooling of the specimen. In
this study, the room temperature and the heating level are
fixed to 225 and 500K.
3 Monte Carlo (MC)

In this part, the Monte Carlo method is described. This
method refers to any calculation technique using successive
resolutionsofadeterministic systemincorporatinguncertain
parameters, which are modeled by random variables. It is a
powerful mathematical tool, which is used, in a wide range

Of applications. An MC technique is used when the
problem to be treated is complex for a resolution by
analytic manner. It generates for all uncertain parameters
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and following their laws of probability and their correla-
tions, random draws. For each draw, a set of parameters is
obtained and a deterministic calculation, according to
analytic or numerical models well defined, is operated [6].
This method can be applied to any system and the results
are accurate. However, a reasonable accuracy needs a large
number of draws. As a result, this method is expensive in
term of computational time. Generally, the MC method is
used as a reference method to validate the efficiency of
others methods of uncertainty.
Fig. 4. Flowchart of the PC methodology.
3.1 Algorithm implementation

The Monte Carlo method considers functions of the form:

X ¼ MðUÞ; ð1Þ
whereM represents the model under consideration,U is the
vector of uncertain input variables and X is the vector of
the estimated outputs. In fact, the MC algorithm consists
in five steps:

–
 the probabilistic identification of the uncertain param-
eters of the studied system;
–
 the sampling and the random generation of the achieve-
ments;
–
 spread of the uncertainty of the data set obtained by step 2
into themodel and the determination of the corresponding
output set;
–
 the estimation of the output distribution law;

–
 the convergence analysis of the distribution of the model
output.

4 Proposed method

Different methods are used in order to model the
propagation of uncertainty. These techniques are classified
in three categories: simulation technique, perturbation
technique and spectral technique. Monte Carlo (MC)
method is considered as a reference method in the
calculation of system with uncertain parameters. The
main problem of such a method comes from the high
computational time which complicates the use of this
technique. The perturbation technique considers the
Taylor series development of the response around its
mean. The main disadvantage of this method is the
condition that ensures the convergence of these series. In
fact, the variables must have low dispersion [8]. As a result,
the method used in order to take into account uncertainty
in this paper is the polynomial chaos (PC) method. The
fundamental idea of PC, developed byWiener [10] in 1938,
is to separate the stochastic components of a random
function and its deterministic components. In fact, the
random process of interest is approximated by summing
the orthogonal polynomial chaos of random independent
variables [9]. The entire proposed methodology is described
in the flowchart as shown in Figure 4. A brief mathematical
review of this method is presented. For example, given any
random variables Ui such as the displacement in a shape
memory alloy system, we can write as follows [11]:

Ui;jðu; jÞ ¼
X∞
j¼0

Ui;jðxÞcjðjÞ; ð2Þ

where j is a vector of standard normal random variables,
Ui;j is the deterministic component and cj(j) is the
orthogonal polynomials such as Legendre, hermite, etc.
The choice of the polynomial family is determined by the
density distribution of the uncertain input parameter. As a
result, a correspondence of the families of orthogonal
polynomials and the families of probability laws is
established. Because that a series expansion to infinity
cannot be used in practice, the sum is truncated to an order
Np in order to limit the number of terms to finite ones. The
order Np depends on the dimension r of the polynomial
chaos and its order p. We can write then:

Ui x; jð Þ ¼
XNp

j¼0

Ui; jðyÞcjðjÞ; ð3Þ

with:

Np ¼ ðpþ rÞ!
p!r!

� 1: ð4Þ

The calculation of the representation by thePCmethod
requires the determination of Np+1 stochastic compo-
nents. The following step is to determine the PC
coefficients by regression approach or spectral projection
technique (NISP).

5 Numerical results and discussions

In this section, the analysis of the shape memory alloy
specimen is performed with and without uncertainties.



Fig. 5. Displacement during the steps 0-3. a: black line
corresponding to mechanical load; b: red line corresponding to
heating load; c: blue line corresponding to cooling load.

Fig. 6. Displacement as a function of heating. a: red line
corresponding to heating load; b: blue line corresponding to
cooling load.

Fig. 7. Variables with influence in the displacement.

Fig. 8. Variables with non influence in the displacement.
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5.1 Deterministic analysis

Figure 5 shows the shape memory alloy specimen during
the steps (A-B) and (B-C) which are presented in Figure 3.
Figure 6 gives the displacement as a function of applied
temperature.
During the loading step, the temperature is kept
constant at T=225K. For the step 2, the specimen is
gradually heated to 500K. After that, the temperature has
returned to the room temperature. It seems that the
specimen starts to move at a temperature equal to 285.5K.
This corresponds to the reverse transformation from
martensite to austenite. The cooling allows it to return
to a martensitic state.
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5.2 Sensitivity analysis

The purpose of this part is to study the sensitivity of the
Cu-Al-Zn-Mn specimen response to input variables.
Figure 7 represents the influence of the first set of physical
parameters on the specimen considering a standard
Fig. 9. Probability distribution of the inputs. a: the Young’s mod
temperature T0; d: the maximum transformation strain Ɛl.

Table 2. Characteristic of uncertain parameters.

Constant E (MPA) T0 (K) B (MPaK�1) Ɛl

Value [24560;
36840]

[202.52;
303.78]

[3.36;
5.04]

[0.08;
0.12]
deviation of 20%. The set is formed by the Young’s
modulus E, the reference temperature T0, the temperature
scaling parameter b and the maximum transformation
strain Ɛl. By comparing these curves with the mean value
curve, it can be clearly seen that these parameters have an
influence on the behavior of the studied example. Figure 8
shows the displacement of the specimen considering the
other set of the physical parameters: Poisson’s ratio n, the
hardening parameter h and the elastic limit R. From
Figure 8, we can conclude that these variables have a weak
influence on the behavior of the specimen. In the next
subsection, we will take into account the parameters that
have an influence on the behavior of the studied specimen.
ulus E; b: the temperature scaling parameter b; c: the reference



Fig. 10. Mean value of the displacement. Fig. 11. Standard deviation of the displacement.

Table 3. Summary results of the displacement.

Number of uncertain parameters r= 4 (E, b, T0, Ɛl)

NMC 500
Order of chaos 3
Mean maxi of the displacement
(MC, PC)

3.317/3.316

Std maxi of the displacement
(MC, PC)

0.037/0.033

Time MC (h) 85.208
Time PC (h) 33.39
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5.3 Probabilistic analysis

In this part, the static behavior of Cu-Al-Zn-Mn
specimen is investigated using polynomial chaos (PC)
approach. The PC results are compared with the Monte
Carlo (MC) method. The material parameters of such a
studied system are summarized in Table 1. Uniform
probability distribution is treated in order to describe the
random parameters. In this case, the Legendre poly-
nomials are the best used to deal with uniform
uncertainties. They are calculated using the recurrence
relation as mentioned in the equation:

PL0
ðuÞ ¼ 1

PL1
ðuÞ ¼ u

ðnþ 1ÞPLnþ1
ðuÞ ¼ ð2nþ 1ÞuPLnðuÞ � nPLn�1

ðuÞ
:

8<
: ð5Þ

Numerical results are presented for the formulation
derived in Section 3. The material variables of the Cu-Al-
Zn-Mn specimen that influence in the displacement are
respectively: the Young’s modulus E, the temperature
scaling parameter b, the reference temperature T0 and the
maximum transformation strain Ɛl. These variables are
supposed to be random and they are defined as shown in
Table 2. The parameters are chosen to be random
following a uniform distribution around their normal
values ± 20%.

Using the Monte Carlo approach consists on creating a
grid of numerical values from the certain parameters and
calculating the quantity of interest. The quantity of
interest is analyzed for 500 simulations. Figure 9 represents
the distribution of the input variables (E, b, T0, Ɛl) in the
case of uniform distribution. Figures 10 and 11 present the
evolution of the displacement as a function of loading steps
by two stochastic approaches MC and PC in the case of
4 uncertain parameters and for two values of PC orders.
The mean value and the standard deviation of the
displacement of the specimen are calculated by polynomial
chaos approach. The obtained results are compared with
those given from MC simulations for 500 simulations.
Figures 10 and 11 show the mean value and the standard
deviation of the displacement of the specimen in the case of
p=1 and p=3. It can be seen from these figures that as p
increases, the result seems to become better. For p=3, the
displacement of the specimen matches with the MC
simulations results. These figures show that the obtained
solutions are around the Monte Carlo simulation which is
the reference solution. Besides, one can notice that the
computational time is considerably reduced. Table 3
presents a summary of the two stochastic methods used
in this example.

It is worth mentioning that the Monte Carlo approach
is a well-known technique used in order to solve complex
system with uncertainties. To have a reasonable accuracy,
this method requires a great number of samples. In this
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paper, 500 of sampling of 4 input variables are calculated
and then the problem is solved for each sample of input
variables.

However, this approach has a poor convergence for the
mean and the standard deviation of the solution. Thus, it
requires a large number of samples to have a good precision.
The PC method is used as an alternative to deal with the
uncertainty, quantification. Such amethod is more efficient
compared to MC method.

6 Conclusion

In this work, the Monte Carlo method and the PC
approach were coupled to finite element solutions
discussed above in order to calculate the displacement
of the Cu-Al-Zn-Mn specimen. The response of such a
material is coupled to probabilistic approaches when
material parameters present uncertainties. Results using
PC are compared with MC method. Convergence was
verified with comparisons against solution from MC
simulations. The main results of the present study
demonstrate that the PC method may be an effective
alternative of MC simulations. As regard efficiency, the
PC based simulation is computationally less expensive
compared to MC in order to generate solutions. A future
track of this work is to apply optimization under
uncertainty in complex system formed by shape memory
alloy. Further work in this context is in progress.

The present research work has been supported by the laboratory
of mechanics of normandy (LMN), INSA Rouen and the
laboratory of mechanics, modeling and manufacturing (LA2MP),
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