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Abstract
Purpose – The purpose of this paper is to propose a process mining approach to help in making early
predictions to improve students’ learning experience in massive open online courses (MOOCs). It investigates
the impact of various machine learning techniques in combination with process mining features to measure
effectiveness of these techniques.
Design/methodology/approach – Student’s data (e.g. assessment grades, demographic information) and
weekly interaction data based on event logs (e.g. video lecture interaction, solution submission time, time spent
weekly) have guided this design. This study evaluates four machine learning classification techniques used in the
literature (logistic regression (LR), Naïve Bayes (NB), random forest (RF) and K-nearest neighbor) to monitor weekly
progression of students’ performance and to predict their overall performance outcome. Two data sets – one, with
traditional features and second, with features obtained from process conformance testing – have been used.
Findings – The results show that techniques used in the study are able to make predictions on the
performance of students. Overall accuracy (F1-score, area under curve) of machine learning techniques can be
improved by integrating process mining features with standard features. Specifically, the use of LR and NB
classifiers outperforms other techniques in a statistical significant way.
Practical implications – Although MOOCs provide a platform for learning in highly scalable and flexible
manner, they are prone to early dropout and low completion rate. This study outlines a data-driven approach
to improve students’ learning experience and decrease the dropout rate.
Social implications – Early predictions based on individual’s participation can help educators provide
support to students who are struggling in the course.
Originality/value – This study outlines the innovative use of process mining techniques in education data
mining to help educators gather data-driven insight on student performances in the enrolled courses.
Keywords Prediction, MOOCs, Machine learning, Learning analytics, Process mining,
Education data mining
Paper type Research paper

1. Introduction
Massive open online courses (MOOCs) have become very popular among student
communities, since it provides them an opportunity to register for courses offered by
prestigious universities around the world. MOOCs provide a learning environment which
attracts large number of learners having different goals and motivations. Courseera, edX
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and Udacity are the three pioneers of MOOCs platform which are then closely followed by
several around the world like Miriada and Spanish MOOC in Spain, Khan Academy in
North America, Iversity in Germany, FutureLearn in England, Open2Study in Australia,
Fun in France, Veduca in Brazil, Schoo in Japan and xuetangX in China.

MOOC environment has revolutionized education by centralizing global resources and
restructuring the learning environment to bring it closer to students reach. Unlike traditional
higher education learning environment, MOOCs provide an open access to courses to anyone
with access to the internet. It provides free and open access to high-quality advanced courses
comprising of video lectures, reading materials, quizzes, problem sets and forums for
productive discussions to foster learning process and develop learning communities. The use
of technology in teaching like forum, blogs (Ebner et al., 2010), wiki or educational software
has improved the learning process. The increased availability of recorded data from such
environments has provided an opportunity to closely investigate student learning behaviors
and work toward improving their learning process.

Although there are massive enrollments in courses offered via MOOCs, the completion
rate and retaining of persistent students are rather low, often less than 20 percent
(Kizilcec et al., 2013). One of the criticisms in MOOCs is the low retention rate of the students
which is heavily criticized. Therefore, predicting the likelihood of dropout is necessary, so
that steps can be taken to retrain students by encouraging them in their learning activities.

Learning analytics (LA) has recently emerged as a new research lens that focuses on
computational techniques to inform on students’ practices. Every online interaction by
students like click, page visited or video viewed while pursuing the course is recorded in
the log history (Clow, 2013a). How can we get insights from the log history data so as
to make pedagogical interventions to support student learning during the course?
Campbell et al. (2007) identified five steps, namely, capture, report, predict, act and refine,
as the central theme in LA. Once we have captured data that report students’ interactions
with the course, analysts works toward making predictions for pedagogical intervention,
which is gradually refined.

Several works (Marquez-Vera et al., 2013; Ye and Biswas, 2014; Bayer et al., 2012;
Manhães et al., 2014; Martinho et al., 2013; Simon et al., 2006; Watson et al., 2013) have
suggested EDM techniques as the way forward to help in predictions of academic failure
among students. In this study, the focus is on predicting students’ performance through
the traces they leave while pursuing a course. The aim is to apply data mining/machine
learning algorithms to students’ data, as students are progressing through a course, in order
to predict which students are at risk of not satisfying course requirements, or are rather
likely to fail. The identification of such students would then enable educators to carry out
various forms of early intervention or provide additional and more tailored support as
mitigation measures.

The study is guided by the following research questions:

RQ1. Which machine learning algorithms are effective at predicting students, who are at
risk of failure on MOOCs data set?

RQ2. Is the integration of process mining features able to increase the effectiveness of
the machine learning algorithms for the MOOCs problem?

The significance of our study is the integration of process mining to extend the features.
Extended features are obtained as a result of process conformance testing. EDM
techniques are then evaluated on two kinds of data sets, one with process mining features
and other without. We used some of the widely used (Wu et al., 2008) classifiers, namely,
random forest (RF) (Breiman, 2001), logistic regression (LR), Naive Bayes (Cortes and
Vapnik, 1995) and K-nearest neighbor (KNN) (Hechenbichler and Schliep, 2004), to answer
the posed questions.
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This section has laid the foundation of our research inquiry. The remainder of the
paper is organized as follows. In Section 2, we present some of the related work in similar
field. Section 3 discusses data sources and the limitations of data set used in the study.
Section 4 describes the methods applied in our experiments. In Section 5, we present
answers to the research questions and discuss experimental results. Finally, in Section 6,
we make conclusion.

2. Related work
Several studies have reported and provided promising results in prediction of students who
are likely to fail in a given course. In most of these studies, the data used for prediction
consist of non-academic information; all of which require extra effort to collect. Our study is
the first of its kind which has used process mining to enhance existing features identified in
the literature.

Khobragade (2015) proposed an approach where they have predicted the students’
academic failure using decision tree, Naive Bayes and using classifiers that are based on
induction rule and decision tree. Data used for classifications involved social, academic and
background information of the student. These data have been collected through surveys.
A total of 11 features were used for prediction after applying the feature selection algorithm.
Classifiers have then been evaluated based on accuracy. Naive Bayes provided the best
accuracy of above 87 percent. However, data were gathered through surveys which are time
consuming and also involved methods that make overall prediction and do not consider
early prediction.

Marquez-Vera et al. (2013) evaluated white-box classifiers. They used induction rules
and decision tree for predicting academic failures for students in middle or secondary
school. Detailed information of students’ social background and academic information
were used. Again the data collection process used here was very extensive and time
consuming, since non-academic information was collected through surveys. The impact of
different data pre-processing approaches was also analyzed on classification accuracy.
The proposed methods show promising results for making prediction of overall academic
performance of students.

Costa et al. (2017) presented a comparative study of EDM techniques to predict those
students who are likely to fail in a programming course. The significance of this study is
that these techniques used could predict the students’ performance at early stages so that
some intervention strategy could be made to help students. This study also analyzed the
impact of data pre-processing methods and algorithms fine-tuning tasks on prediction
results. The study showed that support vector machine outperformed other techniques in a
statistical significant way, and data pre-processing and algorithm fine-tuning tasks can
improve accuracy.

The work proposed by Ahmad et al. (2015) presents an approach where EDM techniques
are used to predict academic performance of first-year students in a computer science
course. EDM techniques used are decision tree, Naive Bayes and rule-based classification.
The data used during the course of study include demographic data, previous academic
records and other family-related information. Rule-based classifiers outperformed other
methods and provided prediction accuracy of 71 percent.

Yukselturk et al. (2014) predicted students’ dropout in an online course using EDM
classifiers: Naive Bayes, decision tree, KNN and neural network. The data used for
prediction consisted of demographic information, online technology self-efficacy scale,
readiness for online learning questionnaire, locus of control scale and prior knowledge
questionnaire. A total of ten features were used for predicting class label (dropout/not).
The maximum prediction accuracy was obtained by KNN (87 percent). Data were collected
through surveys and also did not provide prediction at early stages of course.
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Another research, conducted by Boongoen (2017) in a Thai university, used a link-based
cluster ensemble method as a data transformation framework for prediction. The research
has compared several state-of-the art dimensionality reduction techniques.

Ye and Biswas (2014) used and extended standard features for MOOC analysis with
higher granularity to make more accurate predictions for dropout and performance.
Analysis was made using data collected from video lectures, weekly quizzes and peer
assessments from the ten-week course. Standard features were extended using some
detailed temporal features like when some assessment was started during the week, or when
the first lecture was viewed.

The findings compared with existing studies showed that these features improved the
prediction accuracy. The time when a student starts the peer assessment assignment was
found to be a good predictor. Once the peer assessment score was available, the prediction
performance improved. Analysis shows that the students who watched video and did not
take quizzes were the ones who mostly dropped out. Overall results show that more precise
temporal features and more quantitative information improved early prediction accuracies
and false alarm rates as compared to using only assessment score features.

Bydzovska (2016) proposed an approach to predict the students’ performance using
course characteristics and previous grades. Two different approaches were used. In the
first approach, classification and regression were used to predict performance using
academic-related data and data about student’s social behavior. The findings were
significant with the small number of students. In the second approach, collaborative filtering
techniques were used to predict the student’s performance based on similarity of
achievements. Classification algorithms, namely, support vector machine, decision tree, part,
IBI, RF, Naive Bayes and rule-based classifier, were used, where support vector machine
produced best predictions which were further improved by integrating social behavior data.

Cambruzzi et al. (2015) used learning analtyics to predict dropout rates in distance
education. They developed a system that predicts dropout and supports to integrate
pedagogical interventions and textual analysis to reverse identified dropout tendencies.
The system was able to predict dropout with 87 percent precision, later the dropout was
decreased by 11 percent by implementing specific pedagogical actions.

3. Data sources
In this study, we analyzed data obtained from Coursera for course “Principles of Economics”
offered in Summer 2014. The data set consisted of assessments grades, solution submission
time, video lecture interaction log, participant’s demographic information, time spent weekly
and final grades. The course was designed as an eight-week introduction to the study of
economics. The total number of students was more than 3,000; however, we only included
data of students who were registered at the time the course started (i.e. on June 24, 2014)
and whose final score was not missing. We extracted data of total 167 students, out of which
40 students passed the course while rest had failed. Students with scores greater than
0.5 were considered passed. The final data set obtained was thus imbalanced in regard to
the final grade distribution (Figure 1).

3.1 Data set 1 – standard features
The data set comprises of features like demographics, assessment grades, time spent on
activities, video watch activities, etc. This has been characterized as “standard” features
shown in (Table I).

3.2 Data set 2 – process mining features
A data set has been generated next using logs of weekly activities during the course.
It includes features that reflect the differences in the behavior of students with respect to the
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behavior of top performing students in the course. These measures have been obtained as a
result of process conformance testing (Van der Aalst et al., 2012).

In the process conformance testing, given a normative model M and an event log L,
difference between the process behavior and L can be explained. Conformance checking was
performed using the model representing top student’s weekly activities and log of other
student’s weekly activities. The log was replayed using the model to establish a precise
relationship between event and model elements and to analyze the deviation of students
from modeled behavior. Output of conformance testing is a fitness score that is assigned to
each student (case). The fitness scores, obtained based on weekly logs of top performing
students and other students, were used as features and integrated with standard features.
The following steps have been performed to prepare data set with process mining features.

3.2.1 Step 1. Using the inductive miner method in ProM (Van der Aalst et al., 2009),
we generated a process model using activity logs of top performing students having grade
more than 90 percent. The result of this step is a process model shown in Figure 2.

3.2.2 Step 2. By using “Replay a log on Petri net for performance/conformance analysis”
method in Prom, the log model alignment was generated, as shown in Figure 3. Inputs to
this method were process model of top performing students and log of activities of other
students (Figure 4).

3.2.3 Step 3. The log model alignment generated and exported it in the comma
separated value format. We extracted fitness scores for each student and integrated them
with the standard features in data set 1. This helped characterize the fitness scores as
process mining features in data set 2. Same process was repeated and data sets were
created using weekly logs.

Final Grades

Final grade
7

6

5

4

3

2

1

0
–0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

Figure 1.
Final grade
distribution

S.No. Feature Explanation

1 Age Age in years
2 Education Highest qualification
3 Gender Female/Male/Null
4 Average score in weekly quiz Average score in quizzes of particular week
5 Number of quizzes attempted Average attempt for quiz in particular week
6 Quiz lag Duration between first and last activity of quiz
7 Lecture lag Duration between first and last activity of Lecture
8 Total lecture attended Total lectures attended in particular week
9 Video activity count Activity counts during video lecture (pause, play, stop, etc.)
10 Efforts in seconds Total time spent in a particular week

Table I.
Features obtained
from MOOCs data set:
standard features
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3.3 Limitations of data sets
MOOCs environments are different from traditional learning setups, which makes it
challenging to analyze the data. Large amount of missing data, multiple number of attempts
for assignment submission, multiple time registration and higher rate of dropout are some
of the major challenges faced during the analysis of MOOCs data.

Source 6
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Figure 2.
Process model of top
performing students

using inductive miner
method based on log
of week-1 to week-2

Figure 3.
Result of replaying

log history on process
model for

conformance analysis

Figure 4.
Screen-shot of report

generated after
replaying log on
process model
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In this study, a total of 167 students’ data have been used, of which the majority of
students belonged to one class and also final data set was imbalanced. It has been found
that in a typical MOOCs setting, students are active in the early weeks and become
inactive or withdraw from the course in later weeks which result in a large number of
missing values.

Figure 5 shows the average number of quizzes attempted by students during each week.
Students attempted most of the quizzes in week-1 only. Figure 6 shows the average number
of lectures watched during the course. It is evident that last three weeks were the most
inactive weeks. The majority of the students either did not watch lectures or withdrew from
the course. These indicate unequal patterns of participation. Figure 7 shows average time
spent during the course. The graph shows week-7 to be the least active week. However,
online engagement traces do not necessarily reflect all activities related to learning process.
Due to this reason, measurement of success and participation in MOOC environment must
be reconsidered (Clow, 2013b; Bergner et al., 2015).

This study recognizes these limitations in the data sets; however, this subset
(of 167 students) is representative of student participation and completion from a real-world
MOOC environment. The data sets have been used to mainly demonstrate the effectiveness
of data mining techniques using process mining features.
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Figure 5.
Average number of
quizzes attempted
( failed or passed)
by students during
the course

Average Number of Lectures Watched

Average Lectures Watched
Total Lectures

14
12
10
8
6
4
2
0

Le
ct

ur
es

 C
ou

nt
s

W
ee

k-
1

W
ee

k-
2

W
ee

k-
3

W
ee

k-
4

W
ee

k-
5

W
ee

k-
6

W
ee

k-
7

W
ee

k-
8

Figure 6.
Average number of
lectures watched
by students during
the course
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4. Experimental design
The aim of this study is to compare the effectiveness of existing popular machine learning
algorithms for early identification of students, who are likely to fail and to investigate the
effect of process mining features in the performance of the techniques.

4.1 Classification methods
We used classification methods that have been utilized in the field of education domain and
are suitable for imbalanced data set. Machine learning algorithms used in the experiment
are as follows: Naive Bayes, RF, LR and KNN. In the following subsections, the classification
methods used are briefly explained. Table II shows the parameters used for classifiers.

4.1.1 LR. LR is a parametric method, used in classifications wherein a sigmoid function
is estimated based on the training data. This method is based upon the assumption that
the probability of event occurring follows a logistic distribution. The distribution is defined
as follows:

P outcome ¼ Pass=X
� � ¼ 1

1þe�Xtb

where XTb ¼ b0þb1x1þb2x2þ � � � þbnxn and X is a set of measurements,
X ¼ x1; x2; . . .; xn½ �.

Using this function, input space is partitioned into two regions. New instances are
classified to the region they belong. The distribution is in the shape of an “S,” which
indicates that difference at the extreme ends will not effect much, as compared to the
difference around center. LR is bounded by 0 and 1 to represent the probabilities. The upper
and lower portions of “S” represent high probabilities and low probabilities of the same
even, respectively.

This approach is widely used in the literature to predict the retention with high
accuracy (Lin and Reid, 2009; Mertes and Hoover, 2014; Veenstra et al., 2009; Dunn and
Mulvenon, 2009).

4.1.2 Naive Bayes. Naive Bayes is a simple supervised method, which is a special form of
discriminant analysis. It is based on the Bayes theorem (Benbassat, 1990), returns
probability of prediction using the evidence derived from observed data. This method relies
on two assumptions: all attributes are conditionally independent and contribute equally to
the final outcome of the class and that there are no hidden attributes that can affect the
process of prediction. The Naive Bayes classifier assigns to each instance the class value
with the highest conditional probability. This method is extensively used since 1950s and is
a very popular method especially in the domain of text mining. Naive Bayes performs
surprisingly well in cases where even the attributes are not independent. This method
is used in several studies in the domain of education data mining (Pittman, 2008;
Zhang et al., 2010; Khobragade, 2015; Nandeshwar et al., 2011; Mashiloane and Mchunu, 2013;
Sharma and Mavani, 2011; Costa et al., 2017; Ahmad et al., 2015).

4.1.3 RF. RF uses a standard machine learning technique called a “decision tree.”
Decision trees build a classification model by a recursive binary partition of a labeled data

Classifier Training setting Implementation source

KNN K¼ 3 Scikit-learn (Pedregosa et al., 2011)
Random forest Estimator¼ 10 Scikit-learn (Pedregosa et al., 2011)
Naïve Bayes Gaussian default setting Scikit-learn (Pedregosa et al., 2011)
Logistic regression default settings Scikit-learn (Pedregosa et al., 2011)

Table II.
Machine learning

parameters
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set into increasingly homogeneous nodes. Homogeneity is measured by the Gini index,
which is defined as:

G ¼
X

k:P kð Þ: 1�p kð Þð Þ

where P(k) is the proportion of observations in the kth class.
At each step, an optimization is carried out to select, in each node, the feature and the

numeric threshold or group of values if the variable is categorical that would produce the
lowest G value if used to divide the node. This process continues until it is not possible to
reduce the Gini index in any node. The final output is a classification tree with completely
homogeneous lower nodes. However, this is not always the case, and the predominant
class is used to label the node, the other cases being classification errors. On the basis of
these errors, the tree is pruned to allow a higher generalization capacity. Small
modification in a data set affects the results of classification in a case of single tree.
However, this limitation could be overcome using ensemble learning techniques to obtain
a better performance. Bootstrapped sample of the available instances is used to generate
unpruned trees in a large number (500-2,000). In order to add randomness and to decrease
correlation, each node division is carried out with a randomized subset of the predictors.
In ensemble techniques, correlation is not a desirable property because the different
results make sense to the voting system. New instance is classified to the class it belongs,
based on the aggregate number of votes given by multiple trees. This method is widely
used in the prediction of student’s performance (Bydžovská, 2016; Mashiloane and
Mchunu, 2013; Marquez-Vera et al., 2013).

4.1.4 KNN. KNN (Hechenbichler and Schliep, 2004) is a classification method that
estimates the class for every new instance using the k-closest instances, by calculating a
distance metric, from the training set. Class probabilities for the new instance are estimated
as the proportion of training set neighbors in each class. Ties are broken randomly or by
including the k + 1 closest neighbor in the calculation. K is the number of neighbors,
an important parameter to be considered when using this method. A small value leads to an
increase in the probability of over-fitting, while too large a value causes a high-bias
classification. This simple algorithm has been successful in a large number of classification
problems (Gray et al., 2014; Minaei-Bidgoli et al., 2003; Mayilvaganan and Kalpanadevi, 2014;
Yukselturk et al., 2014).

4.2 Evaluation measures
In order to compare the performance of each classifier, F1-score and area under
curve (AUC) were used. Due to the imbalanced nature of data set, overall accuracy might
be misleading.

4.3 F1-score
F1-score is widely used in binary classification problems. F1-score is the harmonic mean
between Precision and Recall:

Precision ¼ TP
TPþFP

Recall ¼ TP
TPþFN

where TP is the number of positive instances correctly classified as positive; FP is the
number of negative instances incorrectly classified as positive; and FN is the number of
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positive instances incorrectly classified as negative:

F1� score ¼ 2� precision� recall
precisionþrecall

4.4 AUC
A receiver operating characteristic curve is a way to compare diagnostic tests. It is a plot of
the true positive rate against the false positive rate. The AUC is a number between 0 and 1:

False positive rate ¼ FP
FPþTNð Þ

True positive rate ¼ TP
TPþFNð Þ

4.5 Training procedure
To estimate the generalization capability of the model to future data set, ten-fold
cross-validation technique was used. This technique splits the original data set into ten
subsets of equal size, preserving the original ration of minority and majority class instances.
One subset is left for the validation and rest are used for training the model. This process is
repeated ten times using different subsets for training and validation each time. In the end,
average results across each iteration are computed. Performance of classification methods
described in Section 4.1 was evaluated next. These methods are used for the prediction of
student’s final outcome of the course as Pass or Fail on two data sets that are discussed in
Section 3. Prediction was based on the learners’ demographics and dynamic data of the
previous week. Each data set was divided on weekly basis. After each week, prediction was
made based on the available data of current and previous weeks. In definition, week-3 data
set means that it consists of the all available data till week-3 which includes week-2 and
week-1 data as well. We assume that prediction accuracy improves as more data become
available in upcoming weeks. For instance, prediction after week-4 means that we used all
available data till week-4, which might include scores of assessments and quizzes, which are
part of final score and ultimately improve accuracy. Prediction accuracy at early stages is
important so that timely interventions can be made to help students.

5. Experimental results
This section first presents the experimental results which are discussed next. Table III
displays the result of data set 1 which includes features like demographic and grading scores.

Data set LR RF NB K.NN

Week-1 0.77 0.712 0.788 0.724
Week-2 0.879 0.866 0.89 0.848
Week-3 0.794 0.803 0.618 0.678
Week-4 0.8 0.799 0.715 0.722
Week-5 0.836 0.858 0.764 0.75
Week-6 0.836 0.84 0.743 0.747
Week-7 0.85 0.842 0.503 0.75
Week-8 0.841 0.866 0.536 0.801
Rank(mean) 1.75 1.875 3.125 3.25

Table III.
Comparative results of

the effectiveness of
machine learning

algorithms on the data
set using standard
features and mean
ranks of classifiers
from highest (1) to

lowest (N)
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Table IV displays the result of data set 2 which enriches the standard features with
process mining features. Next, we answer the research questions in the light of our results
of analysis:

RQ1. Which machine learning algorithms are effective at predicting students, who are at
risk of failure on MOOCs data set?

In order to answer this question, prediction was performed using four machine learning
techniques on two data sets. Table III shows the results of effectiveness of machine
learning algorithms using data set 1 (using standard features only) to predict students
who are likely to fail. The results show that maximum F1-score obtained is 0.78 by
Naive Bayes classifier after week-1. For week-2, F1-score improved to 0.89 by Naive Bayes
classifier. After week-2, F1-score of all classifiers drops. In MOOC environment, it is
normal that students are active in first week and also the assessments are easy to score
high compared to the later weeks. After week-4, we observe continuous growth in F1-score
for almost all classifiers. Maximum score achieved after week-8 is 0.86 by RF. Different
classifiers performed differently for each week data, but overall RF and LR performed
better than rest of the techniques. The performance of the models looks promising, till the
mid of the course (after week-4) F1-score reaches to 80 percent by LR.

Table IV shows the results of classifiers using process mining features. Using process
mining features, F1-score increases for almost all weeks. After week-5 and week-6, F1-score
drops but still maximum score is 0.87 by Naive Bayes. The results show that overall all
classifiers performed well in prediction; however, the Naive Bayes method outperforms
all methods by scoring maximum accuracy of 0.89 after week-8.

In order to measure the significance of above findings, we used the Friedman’s test
(Demšar, 2006) methodology for comparison of multiple classifiers over multiple data sets.
The Friedman’s test is a non-parametric test used to compare observations repeated on
same subjects. Chi-square with k-1 degree of freedom is the test statistic for the
Friedman’s test, where k is the number of repeated measures. When the p-value is small
( po0.05), null hypothesis is rejected. The goal of this test is to see that there is any
significance difference among the performance of machine learning techniques in our
experiment. Null hypothesis of our study is “There is no difference among the
performance of multiple classifiers.”

After applying the Friedman’s test, p-values obtained are 0.02 and 0.001 for data set 1
and data set 2, respectively. As p-values are less than 0.05, null hypothesis is rejected.
We conclude that there is significance difference between the performance of classifiers.
The calculation of mean ranks of classifiers ( from highest to lowest) shows that the LR and
Naive Bayes scored highest ranks for data set 1 and data set 2, respectively, and thus
outperformed other classifiers on these data sets.

Data set LR RF NB K.NN

Week-1 0.831 0.817 0.829 0.816
Week-2 0.831 0.833 0.861 0.796
Week-3 0.842 0.852 0.872 0.808
Week-4 0.87 0.845 0.871 0.825
Week-5 0.878 0.892 0.878 0.844
Week-6 0.854 0.889 0.88 0.835
Week-7 0.865 0.868 0.879 0.828
Week-8 0.879 0.886 0.89 0.848
Rank(mean) 2.56 2.0 1.43 4

Table IV.
Comparative results of
the effectiveness of
machine learning
algorithms on the data
set using process
mining features and
mean ranks of
classifiers from
highest (1)
to lowest (N)
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Figures 8-11 show the performance of classifiers when compared with second metric, i.e.
AUC. The results are almost similar like in case of F1-score. All classifiers performed better
with process mining features than standard features alone:

RQ2. Is the integration of process mining features able to increase the effectiveness of
the machine learning algorithm for the MOOCs problem domain?
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Figure 8.
Comparative results of

logistic regression
method on the data
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features and without
process mining
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Figure 9.
Comparative results of
Naive Bayes method

on the data set
consisting of process
mining features and

without process
mining features
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Figure 10.
Comparative results of
random forest method

on the data set
consisting of process
mining features and
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In order to answer this question, we performed same prediction experiment on data set 2,
which consists of features used in data set 1 and additional features obtained in the result of
conformance testing. Table IV displays the F1-score obtained after evaluating machine
learning algorithms on data set 2. F1-score improves after each week as expected. Figures 8-11
show the comparative results of the effectiveness of machine learning algorithms when
applied on data set 1 with standard features and data set 2 which contains process mining
features as additional features to the standard features. The results showed that for all weeks,
F1-score improved using process mining features except for week-2 for some methods.
In order to measure the significance of these results, paired t-test was applied on the results.
Following p-values were obtained as a result of t-test: p-value (LR) ¼ 0.052; p-value
(RF) ¼ 0.02; p-value (KNN) ¼ 0.007; and p-value (Naive Bayes) ¼ 0.01. According to
Gorunescu (2011), in order to present a significance difference, p-value should be normally less
than 0.05. Based on this discussion, we conclude that all classifiers present a statistically
significant improvement in F1-score when process mining features were integrated with
standard features, except LR.

5.1 Feature importance
In order to identify the relevant predictor variables, we used variable importance measure
produced by the RF classifiers. We trained an RF model with 10,000 trees on data set 2 and
rank the ten features by their respective importance measures. We chose data set 2, as it
comprises of both standard features and process mining features. We wanted to investigate
which features are more informative to the target variable. Table V shows the top ten
important features for each week. The results show that features that measure time spent
weekly and video watch activities were the most important features for all weeks. Second
most important features are related to process mining.

6. Discussion and conclusion
Educational data mining provides an insight from educational data. However, most of the
EDM studies used traditional data mining techniques. This work describes a possibility to
integrate process mining approaches in order to achieve high prediction accuracy. The use
of features obtained from process mining approach for the purpose of prediction of students’
performance is novel.

We took Coursera MOOC as a case study with the focus on predicting student’s
performance through the traces they leave while pursuing a course. Data mining/machine
learning algorithms were applied to weekly generated student data, as students are
progressing through a course, in order to predict which students are at risk of not satisfying
course requirements, or are rather likely to fail.

This study conducted a comparative analysis of four techniques (LR, RF, Naive Bayes
and KNN). These techniques were evaluated on using two data sets, one with standard
features used in the literature and second with features obtained from process conformance
testing. The impact of process mining features has been analyzed on the effectiveness of
mentioned techniques. The results show that techniques used in the study are able to predict
the performance of students at early stage. By integrating process mining features with
traditional features, effectiveness of the some techniques has improved. LR and Naive Bayes
classifiers outperform other techniques in a statistical significant way for data set 1 and
data set 2, respectively. We also measured the importance of features using RF classifier.
The results show that process mining features were among top ten important features for all
data sets; however, features related to time spent weekly and video watch activities were
most important features among all.

The significance of our study is the use of process mining to enrich the features,
and the results show that overall performance is statistically significantly improved using
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process mining features. The limitation of this study is the missing values and the small size
of the data. This study recognizes these limitations in the data sets; however, this subset
(of 167 students) is representative of student participation and completion from a real-world
MOOC environment. The data sets have been used to mainly demonstrate the effectiveness
of data mining techniques using process mining features.
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