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Facilitating accurate diagnosis and ensuring appropriate treatment of dementia subtypes,

including Alzheimer’s disease (AD), Parkinson’s disease dementia (PDD), and Lewy body

dementia (DLB), is clinically important. However, the differences in glucose metabolic

distribution among these three dementia subtypes are minor, which can result in

difficulties in diagnosis by visual assessment or traditional quantification methods. Here,

we explored this issue using novel approaches, including brain network and abnormal

hemispheric asymmetry analyses. We generated 18F-labeled fluorodeoxyglucose

(18F-FDG) positron emission tomography (PET) images from patients with AD, PDD,

and DLB, and healthy control (HC) subjects (n = 22, 18, 22, and 22, respectively)

from Huashan hospital, Shanghai, China. Brain network properties were measured

and between-group differences evaluated using graph theory. We also calculated and

explored asymmetry indices for the cerebral hemispheres in the four groups, to explore

whether differences between the two hemispheres were characteristic of each group. Our

study revealed significant differences in the network properties of the HC and AD groups

(small-world coefficient, 1.36 vs. 1.28; clustering coefficient, 1.48 vs. 1.59; characteristic

path length, 1.57 vs. 1.64). In addition, differing hub regions were identified in the different

dementias. We also identified rightward asymmetry in the hemispheric brain networks of

patients with AD and DLB, and leftward asymmetry in the hemispheric brain networks

of patients with PDD, which were attributable to aberrant topological properties in the

corresponding hemispheres.
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INTRODUCTION

Dementia is progressive cognitive deterioration caused by brain
injury or disease. The deterioration is much more rapid than
that associated with normal aging, and affects memory, attention,
language, and problem-solving skills (1, 2). The etiology of
dementia can be categorized as Alzheimer’s disease (AD),
Parkinson’s disease dementia (PDD), Lewy body dementia
(DLB), vascular dementia, and other dementias.

The technique, 18F-labeled fluorodeoxyglucose (18F-FDG)
positron emission tomography (PET), which reveals glucose
metabolic distribution across the whole brain, is the most
commonly used, accurate and effective, gold-standard method
for diagnosis of early-stage dementia. Based on quantitative
analysis of FDG-PET scans, scholars have explored the clinically
significant differences between healthy controls and patients
with different dementia subtypes, including AD (3), PDD (4),
and DLB (5); however, differences in the glucose metabolic
distributions underlying the various dementia subtypes in their
early stages are usually slight, representing a challenge for
clinicians in distinguishing among dementia subtypes by visual
assessment or traditional quantification methods (4, 6, 7). Hence,
novel methods are required to facilitate accurate diagnosis and
ensure appropriate treatment for patients with dementia.

Recently, analyses of brain networks and abnormal
hemispheric asymmetry have been considered as alternative
neuroimaging approaches for exploration of marginal differences
in patients with dementia (8–10). In brain network analysis,
graph theory has been widely applied to study glucose metabolic
transformation in different brain regions in patients with
dementia. For example, Caminiti et al. studied 42 patients with
DLB and 42 healthy controls, using sparse inverse covariance
estimation and graph theory. They detected substantial
alterations in connectivity indices, brain modularity, and hub
configurations. Further, they reported observed decreases
in local metabolic connectivity within the occipital cortex,
thalamus, and cerebellum, and increases in the frontal, temporal,
parietal, and basal ganglia regions (6). In addition, there are
long-range disconnection among these brain regions, supporting
disruption of the functional hierarchy that characterizes the
healthy brain (11).

Furthermore, analyses of abnormal hemispheric asymmetry,
based on brain network parameters that have long beenmeasured
and compared, have also been used to study dementia. For
example, cortical volume (12, 13), cortical surface area (13,
14), and other asymmetries, can be evaluated to distinguish
dementia subtypes. Functional connection differences, in terms
of brain network metabolic efficiencies (9), also indicate
abnormal hemispheric asymmetry in patients with AD and
mild cognitive impairment (MCI). The results show that in AD
dementia, left hemisphere degeneration is more rapid, and the
damage more severe, as shown by decreases in patient nerve
fiber bundle fractional anisotropy (FA) (15, 16) and impaired
network efficiency (9). Additionally, Gilman used PET with
[11C] dihydrotetrabenazine to examine striatal monoaminergic
presynaptic terminal density in patients with DLB and AD. The
DLB and AD groups showed significant binding asymmetry in

the posterior putamen (17). Walter et al. used asymmetry indices
based on transcranial sonography to successfully discriminate
PDD from DLB (18). Nevertheless, no study to date has directly
compared abnormal hemispheric asymmetry detected using
FDG-PET imaging among patients with AD, PDD, and DLB.

This study therefore recruited patients with AD, PDD,
and DLB, in comparison with HC, with two main objectives:
(1) exploration of the disrupted glucose metabolism network
topology (brain network) and comparison of related parameters,
and (2) exploration of hemispheric asymmetry.

MATERIALS AND METHODS

Participants
Metabolic brain images were acquired using 18F-labeled
fluorodeoxyglucose (18F-FDG) positron emission tomography
(PET) from four groups, including 22 healthy subjects, and
22, 18, and 22 patients with AD, PDD, and DLB, respectively.
Subjects were recruited from the PET Center of Huashan
Hospital, Shanghai, China. All participants were right-handed.
Three days before and after PET image acquisition, we obtained
basic information about these subjects, including their age, sex,
and Mini-Mental State Examination (MMSE) scores (Table 1).
All aspects of the study were approved by the Human Studies
Institutional Review Board, Huashan Hospital.

PET Image Acquisition and Preprocessing
Whole brain PET images were acquired from 84 participants
using a Siemens Biograph 64 PET/CT machine in the PET
Center of Huashan Hospital in Shanghai, China. The spatial
resolution of the PET scanner was 5.9mm full-width at half-
maximum (FWHM) in the transaxial plane and 5.5mm FWHM
in the axial plane. All subjects were intravenously injected with
185 MBq FDG in a dimly-lit, quiet room. They were asked
to keep their eyes closed for 1 h to reduce possible activities
which could obscure the results. Thereafter, static emission scans
were conducted for 10min. Using a Shepp–Logan filter, we
implemented a filtered back projection algorithm to reconstruct
transaxial images with the following dimensions: 168 × 168 ×

148 matrices and a size of 2.0× 2.0× 1.5 mm.
All original images were obtained in Digital Imaging

and Communications in Medicine format and converted
to NIfTI format using DCM2NII software (https://
www.nitrc.org/projects/dcm2nii/). For pre-processing of
converted images, Statistical Parametric Mapping 12 software
(Department of Imaging Neuroscience, Institute of Neurology,
London, United Kingdom) was implemented in MATLAB
(2016)1 (Mathworks Inc, Sherborn, MA, United States). First,
PET images were spatially normalized to Montreal Neurological
Institute (McGill University, Montreal, Canada) space. In this
step, we use SPM software to spatially register each image
separately to the reference PET template. Spatial registration
was a completely automated procedure, based on 12-parameter
affine transformation. Then, normalized images were smoothed
by convolution, using an isotropic Gaussian kernel with 10 × 10

1https://www.mathworks.com
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TABLE 1 | Statistical information from all participants.

Info HC(n = 22) AD(n = 22) PDD(n = 18) DLB(n = 22) p-value

Male: female 5:17 16:6 12:6 21:1 p < 0.001a

Age 63.5 ± 5.6 57.3 ± 6.4 63.5 ± 7.4 66.9 ± 8.4 p = 0.21b

MMSE 28.9 ± 1.3 20.8 ± 4.2 23.9 ± 5.3 20.0 ± 5.0 p < 0.001b

Age and MMSE are presented as mean ± standard deviation.
aχ2 test, HC, AD, PDD, and DLB.
bAnalysis of variance HC, AD, PDD, and DLB.

MMSE, Mini-Mental State Examination.

× 10 mm3 FWHM. Finally, images were converted to grayscale,
with 256 gray levels.

Brain Network Construction
Brain function networks were constructed for the HC, AD, PDD,
and DLB groups using a graph theory approach. First, using
a brain template to cover brain tissue, we chose Standardized
Automated Anatomical Labeling (AAL) template (the part that
removes the cerebellum, using only 90 regions of the brain).
Secondly, the value of each network node was calculated. The
globally normalization was obtained by averaging the intensity
values of the ROI in each patient, calculating the correlation
matrix between the nodes in the group to obtain the correlation
matrix. Partial correlation coefficients were used here to exclude
age and sex interference. Finally, the sparsity threshold (n)
method was used to determine whether the connection is taken
into account. The connection strength which is higher than top
n% in the matrix was counted as 1, and vice versa. In this
way, the aforementioned correlation coefficient matrix can be
converted into a set of binarization matrices with a threshold of
6–40% (19–22).

Brain Network Analysis
After network construction, brain function networks were
calculated for the HC, AD, PDD, and DLB groups, using
a graph theory approach. The following network parameters
were calculated: clustering coefficient (C), characteristic path
length (L), gamma, lambda, small-world coefficient (sigma),
local efficiency (localE), global efficiency (globalE), and node
betweenness centrality (BC). In graph theory, the C of a network
is as a measure of the degree to which nodes in a graph tend
to cluster together, while L is as a measure of the efficiency
of the information, or the mass transport, of a network. A
small-world network should meet the following criteria: gamma
>> 1, lambda ≈ 1, and sigma > 1. GlobalE and localE are
measures of the efficiency of information exchange in an entire
network and a local network, respectively. BC is typically used
to determine the number of candidate hubs in a network.
According to previous studies, nodes with high bi (BC/averaged
BC) values (bi > 1.5) were considered candidate hubs. We
further differentiated the AAL template according to the left
and right hemispheres, and constructed brain networks for both
hemispheres (including 45 brain regions), to further evaluate
the efficiencies of the hemispheres. In this study, network
characteristic parameters were calculated using the open source

graph analysis software, graph theoretical network analysis
(GRETNA) (23) and The Brain Connectivity Toolbox (https://
sites.google.com/site/bctnet/).

To determine the statistical significance of differences in
network parameters in the AD, PDD, DLB, and HC groups, we
used a non-parametric permutation test with 1,000 repetitions.

Seed-Based Correlation Analysis
After determining hubs in the four groups, brain areas that were
significantly changed, or isolated, among different groups were
subjected to further analysis. Seed-based correlation analysis was
used to further explore the details of the connectivity between
other brain regions and those that were significantly altered.

First, the Pearson correlation coefficient was calculated for
each voxel across the whole brain in a designated altered brain
region, and the obtained correlation coefficients converted to
z-values using Fisher’s r-to-z transformation, to ensure that
they obeyed an approximate Gaussian distribution, using the
following formula:

zi = 1/2× log[(1+ ri)/(1− ri)]

where ri refers to the correlation coefficients, and zi the
transformed z-values. Finally, these z-values were compared
among groups using Z statistics with the formula:

z = (z1 − z2)/
√

1/(n1 − 3)+ 1/(n2 − 3)

where n1 and n2 refer to the samples of two groups (24). The
false discovery rate (FDR) procedure was performed, at a P value
of 0.05, to adjust for multiple comparisons (3).

Within-Group Asymmetry
Numerous studies have revealed diverse aspects of variation in
different brain networks in patients with brain diseases. The
common feature of these investigations is that the brain networks
of the patients exhibit different degrees of degradation of small
world characteristics (25, 26). Degradation of the small world
characteristics of a brain network indicates reduction in its global
and local information processing efficiencies. Therefore, we
focused on calculation of asymmetries in the efficiency of brain
networks. To determine the statistical significance of asymmetry
indices in the AD, PDD, DLB, and HC groups, we used a
random sampling permutation test with 1,000 repetitions (27).
A two-sample t-test was used to evaluate differences between
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each disease group and the HC group, to determine if they
were significant.

In addition, to assess the degree of differences in left and
right hemispheric networks, AI values were computed for each
left-right pair, using the following formula (8, 10, 28):

AI = 200∗
∣

∣

∣

∣

MR −ML

MR +ML

∣

∣

∣

∣

where MR and ML represent the global and local
network efficiencies of the right and left hemispheric
networks, respectively.

RESULTS

Network Parameters
Figure 1 shows partial correlation coefficient matrices for the
four groups, produced by partial correlation analysis. The
data clearly generate visually divergent color distributions in
the different groups (i.e., the groups exhibit divergent partial
correlation coefficients). The various network parameters for the
four groups are presented in Figure 2. C, L, localE, globalE,
gamma, lambda, and sigma values were calculated separately for
each of the four groups, within a range of sparsity from 6–40%.

The results demonstrate that all four groups fulfilled the
criteria gamma >> 1, lambda ∼1, and sigma > 1 in a sparsity
range of 6–40%, indicating that all groups exhibited small-world
properties. The characteristics of the small-world attributes of the
four groups are presented in Figures 2E–G. Compared with the
HC group, the three dementia groups showed a loss of small-
world network characteristics, with the most marked difference
in the DLB group. For example, the mean value of sigma in the
sparsity range 6–40% was 1.73 in the HC group, 1.45 in the AD
group, and 1.18 in the PDD group, while it was only 1.09 in
the DLB group. Compared with the HC group, the clustering
coefficients of the AD, PDD, andDLB groups were higher, and the
characteristic path lengths were longer (Figure 2A). The values of
L in the three dementia groups were also greater than that of the
HC group (Figure 2B). Local and global efficiency values, were
lowest in the DLB group, indicating that the efficiencies of local
information processing, global communication efficiency across
the network, and integration of information between the different
regions of the brain, were lowest in this group.

A non-parametric permutation test was applied to test the
statistical significance of between-group differences among the
AD, PDD, DLB, and HC groups (p < 0.05). Compared with
the HC group, all network parameters in the DLB group were
significantly different at specific sparsity values. LocalE was
significantly higher in the AD group than the HC group at
sparsity values of 30–31%; C was significantly higher in the PDD
group than the HC group sparsity values of 18–33% and 37–
40%; localE was significantly higher in the PDD group than
the HC group at sparsity values of 21–32%; while lambda was
significantly higher in the PDD group than the HC group at
sparsity values of 11–19% and 22–27%.

Hub Regions
Normalized betweenness centrality (bi) is a very useful indicator
in graph-based theory because it reflects the relative importance
of nodes in the network, helping us to identify the hub nodes.
Before determining the candidate hubs in the four network, we
first chose a reasonable sparsity. This sparsity should ensure that
all four networks can be fully connected, without missing any
brain region, biologically reasonable, and should be as small as
possible to reflect the differences between the four groups. In this
experiment, we chose 28%.

In the HC, AD, PDD and DLB groups, 15, 19, 23, and 20
hub nodes appeared respectively on the principle of bi>1.5.
We showed its distribution and importance in an axial view in
Figure 3. In general, the four groups were mainly located in
the association area. Anatomically, the prefrontal and occipital
cortex contained most hubs in the HC group; the temporal and
parietal cortex were important for the AD hub; the hubs of the
PDD group were mainly located in the occipital and temporal
cortex; DLB was more dispersed, with hubs distributed in the
prefrontal, occipital and subcortical cortex. And the importance
of the temporal cortex was reduced in the PDD and DLB groups
compared to the AD group. All bi values for each of the four
groups are listed in Appendix A.

Seed Correlation Analysis
To further investigate the detailed connectivity associated with
the hubs in the four groups, the right middle temporal gyrus
(MTG.R) was selected as a seed. This region was selected for two
primary reasons: first, the MTG.R was a hub node in the HC,
PDD, and DLB groups (bi > 1.5) and also relatively important
in the AD group (bi= 1.48); second, in various previous studies,
the MTG.R has been identified as having a very important role in
dementia pathogenesis (29–31).

Figure 4 illustrates the correlation coefficient maps (R-maps)
associated with the MTG.R in the HC, AD, PDD, and DLB
groups. In the HC group, the R-map showed that superior
temporal gyrus and middle frontal gyrus had strengthened
connections with the MTG.R, while the paracentral lobule and
lingual gyrus had weakened connections. In the AD group,
strengthened connections with the MTG.R were focused on the
superior temporal gyrus and angular gyrus, while regions with
weakened connections were primarily in the paracentral lobule
and supplementary motor areas. In the PDD group, strengthened
connections with the MTG.R were focused on the precuneus and
angular gyrus, while weakened connection regions were in the
precentral gyrus and supplementary motor areas. In the DLB
group, strengthened connections with theMTG.R were primarily
in the middle frontal gyrus and precuneus, while regions with
weaker connections were mainly in the fusiform gyrus and
parietal gyrus.

Next, all patient data were used as a reference for further
analysis. Z-statistical mapping was performed for the MTG.R
regions of the four groups. Figure 5 illustrates the results from
the DLB group, obtained using the Z-statistical test (z-map).
Compared with the HC group, the results of Z-statistical analysis
indicated brain regions with established connections with the
MTG.R in the DLB group. These regions were in the prefrontal

Frontiers in Neurology | www.frontiersin.org 4 April 2019 | Volume 10 | Article 369

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Chen et al. FDG-PET to Discriminate Among Dementias

FIGURE 1 | Partial correlation coefficient matrices (indicated by the color bar, ranging from −1.0 to 1.0) for the (A) HC, (B) AD, (C) PDD, and (D) DLB groups.

cortex, including the right inferior temporal gyrus (ITG.R), the
right angular gyrus (ANG.R), and the right temporal pole:middle
temporal gyrus (TPOmid.R). The right lingual gyrus (LING.R)
and some occipital lobe regions also had weakened connections
with the MTG.R (FDR corrected P < 0.05). To represent the
results more clearly, we plotted the average Z-scores of the
significant connections in the enhanced ITG.R brain region in
the four groups. The ITG.R region in the DLB group clearly
had the strongest metabolic activity connection, relative to
the HC group.

The same analysis was also performed for the AD and
PDD groups. For the AD group, connection enhancements
were relatively scattered, mainly in the right middle occipital
gyrus (MOG.R) and right inferior parietal, but also in the
supramarginal and angular gyri (IPL.R), and the right precuneus
(PCUN.R). These brain regions overlap with the brain default
mode network (DMN) to a large extent. For the PDD group,
connection enhancements were mainly located in the parietal
region, including the bilateral postcentral gyrus (PoCG.L and

PoCG.R); brain regions with weakened connections were
mainly the left precentral gyrus (PreCG.L) and the left gyrus
rectus (REC.L).

Within-Group Asymmetry of
Network Efficiencies
The within-group asymmetries of global and local network
efficiencies for each group are illustrated in Figure 6. The left and
right brain global efficiency values for the HC group were 0.6247
and 0.6253, respectively, extremely slight right asymmetry. The
right and left brain global efficiency values for the other three
groups were 0.5929 vs. 0.5993, 0.5679 vs. 0.5935, and 0.5626
vs. 0.5867, for the AD, PDD, and DLB groups, respectively
(P < 0.0001); significant rightward asymmetry (i.e., right > left)
in global network efficiency was observed in all three groups.

The left and right brain local efficiency values for the HC
group were 0.6816 and 0.6744 (P < 0.0001), respectively,
without either rightward or leftward asymmetry. Analysis of local
network asymmetry indicated significant rightward asymmetry
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FIGURE 2 | Network parameters, (A) C, (B) L, (C) localE, (D) globalE, (E) gamma, (F) lambda, and (G) sigma, for the four groups. X axis coordinates represents

sparsity threshold values, ranging from 6 to 40%. Blue curve, HC group; red curve, AD group; green curve, PDD group; magenta curve, DLB group. Red, green, and

magenta asterisks represent significant differences in sparsity threshold between HC vs. AD, HC vs. PDD, and HC vs. DLB groups, respectively (p < 0.05).

in both the AD (0.7122 vs. 0.7323, P < 0.0001) and DLB
(0.7150 vs. 0.7551, P < 0.0001) groups, while significant leftward
asymmetry was observed in the PDD group (0.7439 vs. 0.7219,
P < 0.0001).

Asymmetry Indices (AI)
There were significant differences among the groups in the
AI of global network efficiency (P < 0.05) (Figure 7). For
the HC group, both global and local network AI values
approached zero (0.93 and 1.10, respectively), indicating that

there was no significant asymmetry in brain collaboration in the
control subjects.

post-hoc comparisons of the AI values revealed significant
differences between those of the HC and patient groups.
Compared with the HC group, the PDD and DLB groups
exhibited significantly increased asymmetry in global network
efficiency (4.44 and 4.20, P < 0.0001). Further, there were
significant differences in the global network hemispheric
topological properties for each hemisphere in the PDD and
DLB groups. The AI_global value of the AD group was 0.0011,
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FIGURE 3 | Hub nodes in the (A) HC, (B) AD, (C) PDD, and (D) DLB groups. Node sizes are proportional to values of normalized centrality.

which was similar to that of the HC group, indicating no
obvious asymmetry.

Similarly, the AI_local values of the AD, PD, and DLB groups
(2.66, 3.03, and 5.35, respectively) deviated substantially from
that of the HC group (1.10) and indicated clear asymmetry.
Hence all the dementia groups exhibited results significantly
different from those of the HC group (p < 0.0001).

DISCUSSION

This study employed the novel approach of combining brain
network and asymmetry analyses to explore the marginal
differences in glucose metabolic distributions in brains from
patients with three dementia subtypes. The findings of this
investigation have potential to facilitate accurate diagnosis and
ensure appropriate treatment of patients with various types
of dementia.

Briefly, we found that network alterations in the DLB
group were broader than those in the AD and PDD group.
Also, the three dementia groups exhibited divergent network
alterations, manifested as differences in global measures.
For example, compared with the HC group, the three
dementia groups all showed loss of small-world network
characteristics. We also identified different hub regions among
the four groups.

Investigation of abnormal hemisphere asymmetry within the
groups demonstrated that subjects in the HC group had balanced
left and right brains, and the brain network did not exhibit
strong bias, either rightward or leftward. Conversely, in the
AD and DLB groups, significant rightward asymmetry in local
network efficiency was detected, when leftward asymmetry in the
hemispheric brain networks of patients with PDD was detected.

Below, we discuss the physiological and pathological
implications of these findings.
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FIGURE 4 | Results of seed correlation analysis for the (A) HC, (B) AD, (C) PDD, and (D) DLB groups. Images were drawn using the REST toolbox (32).

Effectiveness of Brain Network Analysis
To verify the effectiveness of employing brain network analysis
in this study, we compared our network parameter results
with those from previous studies (Table 2). In general, our
experimental results are within the scope of those in the existing
literature, exhibiting good consistency with previous reports.
For example, the C value for the AD group in this study
was 0.50, consistent with previous reports; lamdba was 1.03,
and previous reports also showed that lamdba values fluctuate
around 1.0. Overall, network parameters for the three dementia
subtypes included in this study are similar to those in previous
reports, indicating that the brain network analysis method used
in our investigation are effective, and supporting the validity of
comparisons among the three dementia subtypes within a single
study using this approach.

In addition, although the data presented in Figure 2 show
that all three dementia groups exhibited small-world network
properties, analysis of network parameters revealed that the DLB
group experiencedmoremarked changes relative to the other two
dementia groups. This may be due to differences in the severity
of cognitive loss, and the literature suggests that normal cognitive
function is highly dependent on typical functional connectivity
(37). The significant loss of small world properties in DLB may
be associated with presynaptic dysfunction caused by the α-
synuclein aggregates present in the brain cortex, even at early
stages of this disease (24, 40). Overall, these results show that

brain network analysis is very effective for distinguishing among
AD, PDD, and DLB.

Effectiveness of the Hubs Identified in
This Study
In this study, 19, 23, and 20 hub nodes were identified in the
AD, PDD, and DLB groups, respectively. These hubs could be
considered as biomarkers to aid physicians in distinguishing
among dementia subtypes. Comparisons with the literature
indicated that the majority of the hubs identified in this study
have been reported previously, while the remainder can be
explained by physiological and pathological phenomena, further
indicating that hubs identified in this study were meaningful.

For example, in the AD group, the hub regions included the
left medial frontal gyrus and angular gyrus, which are part of
the DMN. DMN activity is established to be abnormal and to
result in a disrupted topological structure in AD. In addition,
the bilateral hippocampus was included among hub regions
in AD. Reduced gray matter volume and abnormal functional
connectivity in the hippocampus have also been proven in AD.
Currently, the mainstream hypothesis is that AD is associated
with pathological accumulation of misfolded proteins, including
amyloid-β (Aβ) and tau (41). Hence, one possible explanation for
the identified hubs is that they exhibit preferential vulnerability
to AD pathology. Alpha-synuclein (α-synuclein) misfolds in the
cells of the central nervous system to form Lewy bodies, which
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FIGURE 5 | (A–C) Z-statistics map showing the brain regions with strengthened or weakened connections with the right middle temporal gyrus in patient groups

compared with the HC group (FDR corrected P < 0.05). Red, strengthened; blue, weakened. (D) Average Z-scores for the ITG.R in the four groups (*P < 0.05, **P

> 0.05).
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FIGURE 6 | Eglobal and Elocal values for left and right brains from the HC, AD, PDD, and DLB groups. **P < 0.0001.

FIGURE 7 | Global efficiency and local efficiency group asymmetry indices. Data are presented as mean ± SD. Blue bars, HC; red bars, AD; green bars, PDD; and

magenta bars, DLB groups. **P < 0.0001; ns, no significance.

accumulate and lead to impairment of nigrostriatal dopamine
(DA) neurons.

The results of our analyses of brains from patients with
PDD indicated that hubs were mainly concentrated in middle
temporal gyrus, middle occipital gyrus, inferior occipital gyrus,
and fusiform gyrus. Structural and pathological changes occur
in middle occipital gyrus and inferior occipital gyrus in PDD.
Voxel-based analysis of FA, using DTI, found that it was
significantly reduced in patients with this condition (42). Further,
Kim et al. reported that there is significant hypoperfusion in the
fusiform gyrus in patients with PDD (29).

Although there is no literature to support significant changes
in the middle temporal gyrus of patients with PDD, numerous
studies have concluded that this key brain region is closely
related to Parkinson’s disease (PD) and related disorders. For
example, Howlett et al. demonstrated that a combined pathology
(comprising Aβ plaques, phospho-tau, and α-synuclein positive
features) is a major determining factor in the development

of dementia, particularly in the middle temporal gyrus, which
contributes to the deterioration of PD to related disorders (43).

In the DLB group, we detected higher betweenness centrality
in the right thalamus, consistent with a previous study
suggesting that both thalamic nodes have higher node degrees in
DLB compared with controls, possibly reflecting compensatory
responses (39). Notably, thalamic alterations in DLB appear to
be associated with significant attention and cognitive deficits.
To a certain extent, this may be attributable to differences
in pathological protein deposition (Aβ, α-synuclein, and tau),
leading to compensatory responses in the brain network, and
ultimately leading to alterations in the hubs of the different
dementia groups.

The DLB hubs in the anterior cingulate and paracingulate gyri
were first discovered in this investigation. The anterior cingulate
cortex (ACC) is part of the brain limbic system and is widely
recognized as a structure involved in control-related functions
(44). Neuroimaging studies show that separate areas of the ACC
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TABLE 2 | Comparison of network parameters reported in the present study and in previous reports.

References Experimental image N Disease C L Sigma Lambda Gamma

Present Study FDG-PET 22 HC 0.48 1.57 1.36 1 1.37

Present Study FDG-PET 22 AD 0.59 1.64 1.28 1.04 1.33

Duan et al. (20) FDG-PET 22 AD 0.6 1.64 1.22 1.03 1.25

Jiang et al. (33) 11C-PiB PET 18 AD ∼0.50 ∼1.59 ∼1.37 ∼1.01 ∼1.38

Yao et al. (34) MRI 91 AD ∼0.6 ∼1.9 – ∼1.1 ∼1.25

Seo et al. (35) FDG-PET 216 AD ∼0.6 ∼2 ∼1.6 – –

He et al. (36) MRI 92 AD ∼0.4 ∼1.5 – ∼1 ∼1.2

Present Study FDG-PET 18 PDD 0.63 1.67 1.32 1.05 1.4

Utianski et al. (37) EEG(DELTA) 18 PDD – – – 1.1 1.3

Present Study FDG-PET 22 DLB 0.65 1.67 1.27 1.05 1.34

Chen et al. (38) FDG-PET 22 DLB 0.58 ∼2.1 1.244 ∼1.1 ∼1.4

Peraza et al. (39) rs-fMRI 22 DLB 0.48 1.8 – – 1.3

N, the number of subjects participating in the experiment. The bold values represent the experimental results of our present study in this paper.

are involved in cognition and emotion, and this structure also
contributes to emotional and cognitive development. There is a
strong correlation between emotional and cognitive impairment
in DLB disease manifestations.

Effectiveness of Seed Correlation Analysis
The results of seed correlation analysis in this study also provide
physicians with new insights into means of discriminating
among the three dementia subtypes included. Comparisons
with the literature also verify the effectiveness of our seed
correlation analysis, or provide physiological and/or pathological
explanations for our findings.

For example, the results of our seed correlation analysis
indicated that, compared with the HC group, regions of
strengthened connection in the AD group were primarily located
in the brain DMN. These findings can be explained by DMN
atrophy, which is generally acknowledged in the context of
glucose metabolism (45). Further, many studies have shown that
DMN activity is abnormal and develops a disrupted topological
structure in AD (41).

In addition, strengthened connections between the bilateral
postcentral gyrus and the MTG.R were detected in the PDD
group. The postcentral gyrus is the somatic sensory center, and
its abnormal function is closely associated with PD, and diffuse
glucose anomalies in the postcentral gyrus are correlated with
dementia in patients with PD (29–31).

In the DLB group, the connection with the right inferior
temporal gyrus was strengthened, consistent with a previous
study suggesting that this area is significantly different in patients
with DLB relative to controls onmedical imaging, and potentially
represents either an alternative or adjunctive biomarker, which
may reflect compensatory responses (46).

Effectiveness of Within-Group Asymmetry
The results of within-Group asymmetry analyses provide further
evidence of the feasibility of using brain network analysis to
discriminate dementia subtypes in the clinic. Through analysis
of network parameters (global efficiency and local efficiency), we
found that the phenomenon of abnormal hemisphere asymmetry
was present in all three groups of patients with dementia.
These results support the findings of previous investigations

using non-brain network analysis methods. For example, we
found that HC subjects exhibited no significant differences
between their two hemispheric brain networks, suggesting that
the two hemispheres have similar intra-connected pathways
in HC. Scholars previously identified rightward asymmetry in
AD hemispheric brain networks (16, 26, 47, 48). Notably,
the AD patients exhibited significant rightward asymmetry in
network efficiency, suggesting that intra-connections in the
left hemisphere are less well integrated, with less efficient
communication at the hemispheric level, in patients with AD.
Our findings are consistent with earlier studies (9, 49).

Similar to the AD group, we also discovered that the DLB
group exhibited rightward asymmetry, whereas the PDD group
had leftward asymmetry in local efficiency. This may be explained
by the fact that PDD progression is accompanied by a decrease in
brainmotor zone function, since themotor zone is on the left side
and the memory area on the right (50).

Study Limitations
Although the findings of this study indicate that the methods
we employed are effective, there are several issues that require
further consideration. First, we constructed unweighted and
binary networks. During the study, we discarded the direction in
which the nodes were connected, and this variable may contain a
lot of unknown information, including brain cooperation mode,
information transmission, and biological transmitter diffusion
mode. Also, partial correlation matrices were used to calculate
network parameters and identify altered ROIs. Subsequently,
Pearson correlation was applied in this study for ROI-based
correlation analysis, which may have introduced bias.

Second, it can be the case that the use of brain templates
with better symmetry generate AI values closer to zero;
therefore, the development of a symmetrical brain template, with
corresponding biological information may facilitate improved
exploration of the symmetry of brain function.

Third, the data set included in this study was insufficient.
The number of patients included in this study was limited,
which may mean that the experimental results are not entirely
representative. In future, we plan to collect more disease cases.
In addition, the sex of patients in the different groups was not
symmetrical, particularly in the DLB group, which is a mental
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illness more common in men, making it more difficult to collect
a sex-balanced sample set for this condition. In future, we plan
to further investigate DLB brain network differences between
the sexes, to determine whether this characteristic significantly
impacts the results.

Finally, in this experiment, the MMSE scale values of the
three disease groups did not match exactly, which may have
impacted the cognitive function results; however, given the
different pathogenesis of the types of dementia studied, it may
be difficult to identify perfectly matched subjects.
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