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Dissecting Motor Neuron Disease
With Drosophila melanogaster
Rachel Walters, John Manion* and G. Gregory Neely*

Dr. John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre, School of Life and Environmental Sciences,
The University of Sydney, Sydney, NSW, Australia

Motor Neuron Disease (MND) typically affects patients during the later stages of life,
and thus, MND is having an increasingly devastating impact on diagnosed individuals,
their families and society. The umbrella term MND refers to diseases which cause the
progressive loss of upper and/or lower motor neurons and a subsequent decrease in
motor ability such as amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy
(SMA). The study of these diseases is complex and has recently involved the use of
genome-wide association studies (GWAS). However, in the case of MND, it has been
difficult to identify the complex genetics involved in subtypes, and functional investigation
of new candidate disease genes is warranted. Drosophila is a powerful model for
addressing these complex diseases. The UAS/Gal4/Gal80 system allows for the
upregulation of Drosophila genes, the “knockdown” of genes and the ectopic expression
of human genes or mutations in a tissue-specific manner; often resulting in Drosophila
models which exhibit typical MND disease pathologies. These can then be further
interrogated to identify disease-modifying genes or mutations and disease pathways.
This review will discuss two common MNDs and the current Drosophila models which
are being used to research their genetic basis and the different pathologies of MND.

Keywords: Motor Neuron Disease, Drosophila melanogaster, UAS/Gal4/Gal80, amyotrophic lateral sclerosis,
spinal muscular atrophy

INTRODUCTION

As the global population ages, our societies face an increased prevalence of age-related diseases.
A deeper understanding of the biology involved is required to develop new therapies to halt or
even reverse disease progression. MND is characterized as the progressive loss of upper and/or
lower motor neurons and a decrease in motor ability and function. It has been hypothesized that
incorrect synaptic development and function could underlie MND progression (for full review see

Abbreviations: ALS, amyotrophic lateral sclerosis; C9orf72, chromosome 9 open reading frame 72; Caz, Cabeza; DPR, di-
peptide repeat(s); FALS, familial amyotrophic lateral sclerosis; FUS, fused-in-sarcoma; G4C2, GGGGCC; GWAS, genome-
wide association study(ies); hnRNP, heterogeneous nuclear ribonucleoprotein(s); hSOD, human SOD; MND, Motor Neuron
Disease(s); NMJ, neuromuscular junction; snRNP, small nuclear ribonucleoprotein(s); SALS, sporadic amyotrophic lateral
sclerosis; SMA, spinal muscular atrophy; SMN1, survival of motor neuron 1; SNP, single nucleotide polymorphism(s); SOD,
superoxide dismutase; TBPH, TAR DNA binding homolog.
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Murray et al., 2010). Typically, but not exclusively, symptoms
begin to develop in the second half of a patient’s life, with
incidence peaking between 75 and 79 years of age (Alonso
et al., 2009), and leading to a rapid decrease in the quality
of life and death (Tabrizi, 2006). The major forms of MND
are ALS and SMA.

Genome-wide association studies have been used to establish
the heritability and molecular etiology of MND. These studies
identify SNPs that show statistical association with a specific
phenotype. However, by design GWAS do not typically identify
causative mutations (Auton et al., 2015). Instead, these studies
flag common SNP variants within haplotype blocks. These
regions may contain causative coding mutations, regulatory non-
coding mutations, or complex elements that could influence
disease susceptibility or progression. Moreover, these associations
do not always predict directionality toward disease effect.
Significant haplotype blocks are likely enriched for genes that
modify disease, or regulatory elements that act in either cis or
trans fashion, or even exert effects at long range or via unknown
complex mechanisms. To pinpoint any disease-modifying genes
within significant disease-associated haplotype blocks, large scale
in vivo genetic screens are required. Drosophila is a well-
established model organism through which to perform these
screens for the study of MND.

The Drosophila UAS/Gal4/Gal80 system is used for tissue-
specific targeted regulation of transgene expression (Brand
and Perrimon, 1993; Figure 1A), or RNA interference (RNAi)
inverted repeats designed to “knockdown” genes (Dietzl et al.,
2007; Figure 1B). This tool makes Drosophila a potent system
for the high throughput investigation of candidate disease genes
in vivo. Many genetic diseases have a root cause of loss-of-
function mutations, which is particularly easy to recapitulate
using available whole genome in vivo RNAi libraries which allow
for the targeted knockdown of all corresponding individual genes
(Clark and Ding, 2006; Figure 1B). Moreover, disease genes
which exert their disease-causing effects via gain-of-function
mechanisms may be central to the development and function
of the tissue of interest, and thus often will also exhibit loss-of-
function phenotypes (Drenth and Waxman, 2007). Establishing
an experimental interaction between loss of function phenotypes
for candidate disease genes and the underlying disease process
can be informative regardless of directionality. Drosophila is
amenable to rapid and systematic genetic manipulation and is
a cost-effective, ethical system to evaluate large gene sets for
in vivo relevance with respect to organ dysfunction and disease.
Another advantage of Drosophila models is the high degree
of conservation between its genome and that of humans; with
around 60% of all genes and 75% of human disease genes having
a Drosophila ortholog (Adams et al., 2000; Fortini et al., 2000).
Furthermore, 76% of human synaptic genes have a Drosophila
ortholog (Lloyd et al., 2000) and, as it is hypothesized MND
is, in part, due to synaptic dysfunction, candidate disease genes
and synaptic regulators can be rapidly assessed for function in
the well characterized and easily accessible Drosophila motor
neuron. Drosophila in vivo screens allow for the study of
morphological changes which occur during MND. The highly
accessible Drosophila NMJ has been well developed as a model

system and this knowledge can be used to study molecular and
morphological aspects of synaptic dysfunction (Keshishian et al.,
1996). The Drosophila glutamatergic NMJ also closely resembles
vertebrate glutamatergic central synapses. It has been successfully
used to study many aspects of synaptic transmission such as
neurotransmitter release (Megighian et al., 2013; Valdez et al.,
2015), signaling (Kamimura et al., 2013; Vonhoff and Keshishian,
2017) and homeostatic plasticity (for full review see Frank, 2014).
For example, the Drosophila NMJ has aided in the discovery of
important synaptic genes and proteins such as Bruchpilot (Kittel
et al., 2006) and Synaptotagmin 4 (Yoshihara et al., 2005) (for full
review see Hewitt and Whitworth, 2017). The use of Drosophila
also allows for an in-depth study of disease progression; from the
earliest signs to terminal stages. Finally, the large range of simple
assay systems that can be undertaken rapidly using Drosophila,
from lifespan and motor assays, to anatomical screens, would
not be possible in other systems, and can each provide important
functional information on the conserved machinery required for
proper motor neuron function, and how these systems may be
dysregulated during MND.

AMYOTROPHIC LATERAL
SCLEROSIS (ALS)

Amyotrophic lateral sclerosis, the most common form of MND, is
a progressive neurodegenerative disease which can be categorized
as either sporadic (SALS); cases where no immediate family
member is affected, or familial (FALS); cases which have an
inherited and often monogenic cause. FALS accounts for just
10% of ALS cases (Kiernan et al., 2011). The worldwide annual
incidence is approximately 1.9 per 100,000 (Chiò et al., 2013)
with a projected increase of approximately 70% between 2015 and
2040 (Arthur et al., 2016). ALS is ∼1.56 times more common in
men than women (Mehta et al., 2014). However, this difference
becomes less prevalent with an increase in age, with around the
same number of male and female sufferers beyond the age of
70 (Worms, 2001). Symptoms can begin at any stage of life,
however, middle age (40–49 years) to elderly (70+ years) are
the most common ages at which the disease starts to develop.
Following onset, patients suffer a progressive loss of motor
function and after diagnosis have an average life expectancy
of 5–6 years (Koppers et al., 2012). The pathology of ALS
is varied, with patients suffering from symptoms at different
time points after diagnostics, this may in part be due to slow
prognosis, but, there are three main stages of disease progression;
early, middle, and late. Through these stages, the patient will
suffer from worsening symptoms and more increased physical
weakness (Table 1; The ALS Association of Texas, 2018; Muscular
Dystrophy Association, 2019). The leading cause of death in
ALS sufferers is respiratory insufficiency. The disease progression
of ALS has traditionally been evaluated through phenotypic
assessments, however, the phenotypic variability of ALS results
in inaccurate measurements and can delay diagnosis. Because of
this, the use of multiple biomarkers is now being studied as a
novel assessment method for disease progression (for full review
see Simon et al., 2014; Huynh et al., 2018).

Frontiers in Neuroscience | www.frontiersin.org 2 April 2019 | Volume 13 | Article 331

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-00331 April 10, 2019 Time: 20:3 # 3

Walters et al. Dissecting Motor Neuron Disease

FIGURE 1 | The UAS/Gal4/Gal80 system and RNAi knockdown. Schematic
presentation of the UAS/Gal4/Gal80 system and its use in transgene
expression and RNAi mediated knockdown. (A) The driver line contains a
different tissue-specific promotor for both Gal4 and Gal80. It will drive the
expression of Gal4 or Gal80 in the corresponding tissue. The responder line
carries an upstream activator sequence (UAS) upstream of a transgene. In the
F1 generation, each tissue specific promotor will drive the expression of Gal4
or Gal80 in the respective tissues. Gal80 will bind to the UAS and repress its
expression in this tissue. Gal4 will bind to the UAS and promote the
expression of the transgene. (B) The driver line contains a tissue-specific
promotor which will drive the expression of Gal4 in the specific tissue. The
responder line carries a UAS upstream of an inverted repeat of an RNAi
construct. In the F1 generation, the tissue specific promotor will drive the
expression of the Gal4 which will bind to the UAS and promote the expression
of the RNAi construct, producing hairpin RNA (hpRNA). hpRNA is processed
by Dicer into short interrupting RNA (siRNA) which will attach to endogenous
mRNA and create a break in the strand. This broken mRNA will then be
targeted for degradation and knockdown of the target gene will occur.

The cause of ALS is thought to be a combination of multiple
genetic risk variants and environmental factors including heavy
metals (Kamel et al., 2002; Gait et al., 2003) or pesticides (Malek
et al., 2012) (for full review see Bozzoni et al., 2016). From twin
studies, heritability is estimated to be between 76% (Al-Chalabi
et al., 2010)and 61% when known familial cases are excluded
(SALS) (Wingo et al., 2011) (for a full review see Al-Chalabi
and Visscher, 2014). However, more recent work using genome-
wide complex trait analysis (GCTA) has placed the estimate much
lower, at between approximately 21% (Keller et al., 2014) and 12%
(Fogh et al., 2014). The main reason for the disparity in these
estimates is due to the differing methods of obtaining the data,

TABLE 1 | The progression of ALS stages, symptoms, and physical effects (The
ALS Association of Texas, 2018; Muscular Dystrophy Association, 2019).

Stage Symptoms Physical effects

Early Muscle weakness,
fasciculations, and atrophy
often limited to one region of
the body.

Fatigue, poor balance, slurred
words, tripping, and a weak gip.

Middle The symptoms seen in early
stages are more widespread
and affect more than one
region of the body. Muscles
become paralyzed and
fasciculations continue.

Muscle contractures, weakness in
breathing, and swallowing causing
difficulty eating,drinking and
breathing.

Late Most voluntary muscles are
paralyzed, and the breathing
muscles are very weak.

Very limited mobility, poor
respiration causing fatigue, and
increased susceptibility to
pneumonia. Loss of speech and
limited eating/drinking via mouth.

where twin studies often yield higher heritability values compared
to GWAS for a variety of complex diseases (Tenesa and Haley,
2013; Feldman and Ramachandran, 2018).

Whilst familial studies have established that mutations in a
number of genes can cause ALS, mutations in C9orf72 (DeJesus-
Hernandez et al., 2011), Superoxide Dismutase 1 (SOD1) (Rosen
et al., 1993), TAR Binding-Protein 43 (TARDBP) (Neumann et al.,
2006), Ataxin 2 (ATXN2) (Elden et al., 2010), and FUS (Vance
et al., 2009; Table 2) are the most common.

To elucidate the contribution of genetic variation to sporadic
ALS, population-wide studies have been performed. To date, 14
GWAS have been completed (for full review see Max-Planck-
Gesellschaft, 2017) spanning a wide range of populations. These
studies have linked many genes to an increased risk of ALS,
including, with the exception of FUS, those genes discussed
above. However, C9orf72 is the only gene that exhibits a genome-
wide significant peak which has been confirmed in a second
cohort (Ahmeti et al., 2013). As ALS is heterogeneous in nature,
the mechanism by which these or other nearby genes may

TABLE 2 | The major genetic contributors to a patient’s risk of developing ALS.

Gene Protein Inheritance % of FALS cases
which exhibit a
mutation in this

gene

References

C9orf72 C9orf72 Autosomal
dominant

(AD)

23.5 DeJesus-
Hernandez
et al., 2011

SOD1 SOD1 AD 20 Rosen et al.,
1993

TARDBP TDP-43 AD 5 (Inclusions in
90% of cases)

Neumann
et al., 2006;
Mackenzie
et al., 2007

ATXN2 Ataxin 2 AD 4.7 Elden et al.,
2010

FUS RNA-binding
protein FUS

AD 5 Vance et al.,
2009
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modify disease is not fully understood and requires further
study. These genetic risk factors have well-established Drosophila
disease models which have routinely been used in the study of
ALS, its causes, and its effects on motor neurons.

C9orf72

The cellular function of C9orf72 is currently under contention.
Similar to TDP-43 (discussed below), C9orf72 is thought to play
a role in mRNA stability and transport (Figure 2). The first intron
of human C9orf72 contains a hexanucleotide repeat expansion
G4C2. Importantly, an increased number of G4C2 repeats has
been linked to an increased risk of ALS (DeJesus-Hernandez
et al., 2011). C9orf72 genetic mutations are the most frequent
known cause of ALS (Majounie et al., 2012); with around 40%
of FALS cases exhibiting various numbers of repeat expansions
(Renton et al., 2011) and C9orf72 is also the only locus to show a
genome-wide significance in meta-analysis studies (Malek et al.,
2012; Al-Chalabi and Visscher, 2014).

There are multiple potential mechanisms by which the G4C2
repeat expansions can cause disease. These include a loss of
C9orf72 normal cellular function, sequestering and altering the
function of RNA binding proteins by RNA foci (Lill et al.,
2011), or by AUG translated di-peptide repeat proteins (DPRs)
(Ash et al., 2013; Figure 2). There is no known Drosophila
C9orf72 ortholog. Therefore, to study the relative importance
and contribution of C9orf72 in MND, transgenic Drosophila lines
expressing either C9orf72 pure or RNA-only human G4C2 repeat
variants, or animals which express both, have been generated
(Mizielinska et al., 2014; Lee et al., 2016). C9orf72 pure lines
will express both RNA and DPRs. Ectopic expression of human
C9orf72 DPRs in fly motor neurons causes lethality at 25◦C, while
these models are semi-lethal at 18◦C (Yang et al., 2015). The lack
of endogenous Drosophila C9orf72 has proven to be a benefit to
these studies, as it provides a control model for experimental use
which contains no C9orf72.

Studies suggest that the C9orf72 RNA species form nuclear
RNA foci, which could have a role in sequestering RNA-binding
proteins in the nucleus (Ash et al., 2013). Furthermore, the G4C2
repeat expansions, but not the RNA foci (Mizielinska et al.,
2014), are translated via repeat-association non-ATG translation
to form DPR proteins, which form aggregates in the cytoplasm
of the cell body (Mackenzie et al., 2013; Mori et al., 2013; Zu
et al., 2013; Cooper-Knock et al., 2014). A further model has
been developed, using a UAS-(G4C2)48 construct, to study the
effect of G4C2 repeats on translation (Burguete et al., 2015).
This highlighted that these repeats localize in neurites and can
negatively impact the branching of the cell, ultimately affecting
the neuron’s function. Mizielinska et al.’s (2014) study also
suggests the pathogenicity of C9orf72 DPRs is highly associated
with arginine containing DPR proteins, adding to the growing
body of knowledge on DPR-specific pathology. The effects of
RNA foci in the neuron has also been investigated (Burguete et al.,
2015). However, the link between RNA and disease progression
is widely debated. Drosophila lines expressing only the RNA foci
have recently been created (Moens et al., 2018) for the study

into the role of repeat RNA on disease progression without the
input from the DPR proteins. Depending on the genomic location
of the RNA repeats, lines can be produced with cytoplasmic
or nuclear foci, allowing the elucidation of these different
pathologies. These early RNA-only models have suggested that
neither cytoplasmic or nuclear RNA are toxic and therefore has a
limited role in ALS (Moens et al., 2018). Drosophila models have
also shown that changes to transport through the nuclear pore,
via the nuclear-pore complex, contribute to neurodegeneration
in C9orf72 pathogenesis. This was validated in vitro using
patient neurons. However, the cause of the defective transport
has yet to be found. Zhang et al. (2015) attributes it to sense
RNAs, whereas Freibaum et al. (2015) suggests it could be due
to a combination of DPRs and toxic RNAs. As shown here,
there have been many attempts to elucidate the contribution of
different possible mechanisms responsible for C9orf72-caused
disease progression. These studies highlight the ongoing effort
to establish a timeline and mechanism for C9orf72 toxicity using
genetically tractable systems.

SOD1

The human SOD1 gene encodes one of three members of the
SOD enzyme family. As shown in Figure 3, SOD1 proteins
bind to Cu2+ ions via a specific binding site and catalyze the
dismutation of free radical species in the cell. SOD1-mediated
removal of harmful superoxides is hypothesized to suppress
apoptosis and prevent cellular damage by free radicals (Danial
and Korsmeyer, 2004; Bunton-Stasyshyn et al., 2015). It was
the first gene to be linked to familial ALS, with 11 missense
SOD1 mutations showing an association with ALS (Redler
and Dokholyan, 2012). Currently, over 90 disease-modifying
mutations have been found in SOD1 (Redler and Dokholyan,
2012; Bunton-Stasyshyn et al., 2015) and around 20% of FALS
cases carry a SOD1 mutation (Shaw et al., 1997). Although the
mechanism(s) through which the mutated enzyme contributes
to ALS are unknown, there is evidence that the accumulation of
misfolded proteins and a gain of toxic function of the mutated
enzyme is involved (Clement et al., 2003; Beers et al., 2006; Nagai
et al., 2007).

A recent Drosophila SOD1 model (Gallart-Palau et al., 2016)
was found to exhibit non-functioning mitochondria, a cellular
phenotype of ALS. In this model, the human wildtype (hSOD)
and mutant SOD1G93A was expressed in the thoracic muscles
of Drosophila. This targeted expression lead to phenotypes
which are stereotypical of ALS, such as impairment of normal
motor behavior and mitochondrial pathology. This study builds
on previous work, where transgenic motor neuron specific
expression of hSOD1 exhibited progressive negative motor effects
accompanied with defective neural circuit electrophysiology,
accumulation of SOD1 aggregates and an increased stress
response in ventral nerve cord glial cells (Watson et al.,
2008). These studies suggest that overexpression of mutated
SOD1 protein can cause both cell autonomous and non-cell-
autonomous damage, as in the case of the effect on glial cells
(Watson et al., 2008), and is a possible cause of SOD1-mediated
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FIGURE 2 | Cellular features of C9orf72 in a healthy and diseased neuron. Schematic presentation of a neuronal cell body with normal and disease-state C9orf72
cellular location and functions. In healthy neurons, C9orf72 is thought to function in mRNA stability and transport. In the diseased state, it is thought to form nuclear
RNA foci which sequester RNA binding proteins. Through RAN translation of the mutated gene, DPR proteins are created. These form cytoplasmic protein
aggregates. It is also thought mutations could cause the loss of C9orf72’s role in mRNA stability and transport.

ALS. However, in these studies, it is not clear whether the disease-
phenotypes observed are due to overexpression of the mutant
SOD1, or from the mutated protein itself and therefore would be
caused by low-levels of the mutated protein. To address this issue,
a recent study has investigated the effect of dosage of transgenes
on subsequent disease pathology in Drosophila models of SOD1-
associated ALS (Şahin et al., 2017). Through the mutation of
endogenous Drosophila SOD1 and comparing with multiple copy
number insertions, the study demonstrated a predominance of
gain of function mutations. Moreover, this new model allows
the study of SOD1 in ALS pathology at typical expression levels
by utilizing the endogenous genetic machinery. Together this
highlights the diversity of Drosophila disease models and their
importance in investigating disease-linked mutations and their
effect at the protein level.

TDP-43

TDP-43 (encoded by TARDBP) is a DNA- and RNA-binding
protein which acts as a nuclear transcription factor and is
thought to bind a large proportion of the transcriptome. It
has been implicated in the transport of mRNAs to dendritic
granules (Wang et al., 2007) and RNA metabolic processes
(Buratti and Baralle, 2010; Figure 4). Homozygous TDP-43
knock-out causes peri-implantation lethality in mouse embryos
(Wu et al., 2009), and utilizing the Cre/Lox system to induce
TDP-43 knockout later in life is also lethal (Chiang et al.,
2010). The Cre/Lox system allows for time- and/or tissue-
specific activation or repression of target genes in mouse
models and can therefore be used to study mutations in
adult animals and their developed organs and tissues. In this

Frontiers in Neuroscience | www.frontiersin.org 5 April 2019 | Volume 13 | Article 331

https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-00331 April 10, 2019 Time: 20:3 # 6

Walters et al. Dissecting Motor Neuron Disease

FIGURE 3 | Cellular features of SOD1 in a healthy and diseased neuron. Schematic presentation of a neuronal cell body with normal and disease-state SOD1 cellular
location and function. In healthy neurons, SOD1 is located in the cytoplasm. Here, it binds to Cu2+ and Zn to form a complex involved in dismutation of free radicals;
part of the mitochondrial death pathway. In diseased neurons, mutated SOD1 is also found in the cytoplasm. However, it loses its dismutation function and has an
unknown gain of function. It can also form misfolded protein aggregates in the cytoplasm.

system, tamoxifen acts as an inducer at a mutated estrogen
receptor (Cre/ERT2), triggering recombination and deletion
(Feil et al., 2009). This allows for temporal-specific inactivation
of target genes. This demonstrates that TDP-43 is essential
for development, as well as throughout adult life. In 2006,
TDP-43 was found to be the characteristic ubiquitinated
protein found in neuronal cytoplasmic inclusions, a stereotypical
neuropathological feature of ALS (Neumann et al., 2006;
Figure 4). TDP-43 pathology likely stems from the translocation
of this protein from the nucleus into the cytoplasm, where it
forms ubiquitinated aggregates (Arai et al., 2006). This has led
to two possible pathogenic mechanisms being explored; a gain-
of-function of the protein once translocated to the cytoplasm,
possibly due to fragmentation and phosphorylation (Arai et al.,
2006), and a loss-of-function mechanism in the nucleus due
to mutation of the gene (Giordana et al., 2010). However,
there is additional evidence that supports a combination
of these pathways to be responsible for the proteinopathy
(Lee et al., 2012).

TARDBP is highly conserved betweenDrosophila and humans,
and the fly homolog is called TBPH (Lukacsovich et al., 1999).
This similarity allows for in-depth study of the role TDP-43
mutations play in ALS etiology. Both loss and gain of function
TDP-43 models have been shown to negatively affect lifespan,
motor function and synaptic transmission in Drosophila (Feiguin
et al., 2009), all of which are common characteristics of ALS
pathology (Diaper et al., 2013) showing that Drosophila can
be successfully used to model this disease-associated gene.
Moreover, these models have shown that manipulation of
TDP-43 levels by either loss (mutant) or gain of function
(overexpression of wildtype TBPH) leads to toxicity. A recent
loss-of-function (TBPH null mutant) fly larval model suggests
that TBPH binds to the pre-mRNA form of the gene and regulates
its levels by preventing degradation of the transcripts (Chang
et al., 2014). Drosophila models have been successfully utilized to
suggest a mechanism by which TBPH proteins form aggregates
in the cytoplasm of the cell. Other disease mechanisms have
been discovered through the use of Drosophila disease models,
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FIGURE 4 | Cellular features of TDP-43 and Ataxin 2 in a healthy and diseased neuron. Schematic presentation of a neuronal cell body with normal and
disease-state TDP-43 and Ataxin 2 cellular location and functions. In healthy neurons, TDP-43 is located in both the cytoplasm and the nucleus, where it undergoes
autoregulation. It is an RNA-binding protein which is involved in alternative splicing, mRNA transport and cytoplasmic stability of the mRNA. In healthy neurons, Ataxin
2 is located in the nucleus and modifies TDP-43 activity by forming a complex in the presence of RNA. In the disease state, the protein loses its ability to autoregulate
as well as its function in alternative splicing, mRNA transport and mRNA stability. It forms ubiqitinated TDP-43 aggregates in the cytoplasm and is known to
associate in stress granules. In the disease state, the Ataxin 2/TDP-43 complex translocates to the cytoplasm where it forms TDP-43 and Ataxin 2 aggregates.

for example, that synaptic transmission is an early event in the
onset of ALS (Diaper et al., 2013). Both loss- and gain-of-function
models have been shown to have impaired synaptic transmission
in larval and adult models at the pre-synaptic bouton and a
progressive loss of function phenotype (Chang et al., 2014).
Moreover, a loss of TBPH can also lead to reduced cacophony
protein levels. Cacophony encodes the alpha 1 subunit of the
presynaptic calcium channel responsible for the presynaptic
voltage gated Cav2 current. It is localized at the active zones of
the NMJ and other synapses (Kawasaki et al., 2004; Peng and
Wu, 2007) and is required for neurotransmitter release at the
NMJ and for synaptic growth (Rieckhof et al., 2003). Due to its
importance in NMJ function, cacophony dysregulation following
TDP-43 loss may be an important disease mechanism in ALS and
warrants further investigation. The discoveries highlighted here
show the power of using in vivo fly models to study TDP-43 and
its role in MND.

ATAXIN 2

Ataxin 2 is thought to act as a modifier of TDP-43 toxicity,
binding to TDP-43 in the presence of RNA and forming a nuclear
complex of unknown function. In ALS sufferers, the complex
is translocated into the cytoplasm where it contributes to the
formation of TDP-43 protein aggregates (Elden et al., 2010;
Figure 5). Thus, it is important to understand the interaction
between these proteins, and whether mutations in ATXN2 play
a causal role in TDP-43 toxicity in ALS.

Mutations which cause intermediate-length polyQ
expansions (30Q) in ATXN2 are significantly associated
with ALS. It has been shown that the upregulation of the
Drosophila homolog of ATXN2 increased the toxicity of
TDP-43 via increased accumulation of TDP-43 aggregates
(Elden et al., 2010; Figure 5). These effects were observed
in retinal structures and lead to decreased mobility and
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FIGURE 5 | Cellular features of FUS in a healthy and diseased neuron. Schematic presentation of a neuronal cell body with normal and disease-state FUS cellular
location and functions. In healthy neurons, FUS is located in both the nucleus and the cytoplasm and is involved in alternative splicing of pre-mRNA and mRNA
transport out of the nucleus. In the disease state, FUS translocates into the cytoplasm and loses its function in splicing and mRNA transport. It can also form FUS
aggregates due to phase transitioning.

an overall reduction in lifespan. These results showed
that the ability of ATXN2 to modulate TDP-43 toxicity
is conserved through to Drosophila, again showing the
value of this system to help understand the molecular
events leading to MND.

However, TDP-43 is not the only ALS-associated gene which
ATXN2 has been found to interact with. When ATXN2 (30Q)
intermediate expansions are co-expressed with a depletion
in C9orf72, there is an increase in ATXN2 aggregates and
subsequent cell death (Ciura et al., 2016). Further, evaluation
of ATXN2 as a disease modifier in patients carrying a
C9orf72 expansion mutation suggests that patients with both
intermediate ATXN2 repeat lengths and C9orf72 expansions
are more susceptible to ALS development (van Blitterswijk
et al., 2014). Together these studies support a complex
mechanism for the onset and development of ALS, involving
many genes and their interactions. With the power of the
fruit fly genetic toolbox, these interactions can be rapidly
characterized in vivo.

FUS

The FUS gene encodes an RNA binding protein, a component
of the hnRNP complex. This protein is involved in the splicing
of pre-mRNA and the export of processed mRNA into the
cytoplasm from the nucleus (Vance et al., 2009; Figure 6).
Mutations in the nuclear import factor signal of the FUS gene
results in neuronal cytoplasmic mislocalization of FUS protein
(Darovic et al., 2015) and these mutations have been observed in
approximately 3% of FALS cases (Kwiatkowski et al., 2009).

The Drosophila ortholog of FUS is Caz and the mutants
Caz P398L and Q349X are currently used as disease models for
FUS-related ALS research. For example, expression of fly Caz,
human wild-type or disease-relevant variants of FUS promote
cytotoxicity (Jäckel et al., 2015). To study the function of Caz at
the NMJ Machamer et al. (2014) used overexpression of wildtype
Caz and mutant human FUS. It was suggested that Caz/FUS
modulates the structure and function of the NMJ. Additionally,
the overexpression of human FUS resulted in a decrease in
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FIGURE 6 | Cellular features of SMN1 in a healthy and diseased neuron. Schematic presentation of a neuronal cell body with normal and disease-state SMN cellular
location and functions. In healthy neurons, SMN is located in the cytoplasm where it forms a complex involved in the assembly of snRNPs. These are essential for
pre-mRNA splicing in the nucleus. In the disease state, the levels of SMN decreases and therefore there is a decrease in its downstream cellular functions.

presynaptic active zones and impaired synaptic transmission;
possibly through a dominant-negative mechanism or by the
downregulation of endogenous Caz. However, this finding was
not repeated in wildtype Caz experiments, highlighting that
overexpression of human genes in the fly may cause toxicity
which is independent of disease-associated mutations. This
finding was supported by another study, which showed disease-
independent toxicity due to overexpression of human FUS
(Xia et al., 2012). Drosophila has also been used to assess
the role of FUS in axonal transport (Baldwin et al., 2016),
which was affected in both FUS and Caz loss and gain-of-
function models through perturbed vesicle and mitochondrial
transport. It has also been shown that Caz mutants have severe
developmental and locomotor defects which, in overexpression
models, became more prominent with age, a stereotypical ALS
phenotype. As both the loss and gain-of-function models affected
the structure and function of the axon, it can be suggested
that Caz is critical, and either loss or gain may result in a
neurodegenerative phenotype.

Recent work has highlighted the mechanism of phase-
transition in RNA-binding proteins and it is believed to play
a role in RNA-binding protein-linked neurodegeneration (for
full review see Harrison and Shorter, 2017). A Drosophila
model of FUS-linked ALS has shown that this RNA-binding
protein undergoes phase-transitioning into solid aggregates
due to its prion-like binding domain and interactions with
arginine-rich domains (Bogaert et al., 2018) and the effect
of this on MND phenotypes and possible reversal of the
transition has been further studied. Guo et al. (2018) have
shown that in ALS-linked FUS-mutation overexpression
models there is a higher level of neurodegeneration and a
decrease in lifespan. However, these disease phenotypes can
be rescued by overexpression of Kapβ2, a nuclear-import
factor which reverses the production of FUS aggregates via
phase-transitioning through prevention and disassociation of the
formed aggregates.

SPINAL MUSCULAR ATROPHY (SMA)

Spinal muscular atrophy is one of the leading genetic causes
of infant mortality in the United States (Miniño et al., 2010)
and results in the degeneration of the anterior motor neurons,
progressive atrophy of the muscles and eventually respiratory
failure and death (Lefebvre et al., 1995). It has an estimated
incidence of between 1 in 6000 and 1 in 10,000 live births (Ogino
et al., 2002) and a carrier frequency of 1/40 to 1/60 (Prior et al.,
2010). There are five main forms of SMA, SMA0 (Pre-natal
SMA), SMA1 (Werdnig-Hoffmann disease), SMA2 (Dubowitz
disease), SMA3 (Kugelberg-Welander disease), and SMA4. These
sub-types manifest themselves at different stages of life; prenatal,
0–6 months, 6–18 months, over 12 months and in adulthood,
respectively (Pearn, 1980). The most severe form of SMA is SMA0
where death usually occurs rapidly after birth (Grotto et al., 2016).
SMA1 is the next most severe, where patients cannot sit upright
unaided and often do not survive past their second year. SMA2
and SMA3 are less severe and SMA4 is the least severe of the
subgroups, with patients being able to walk unaided and only
having mild symptoms (Munsat and Davies, 1992). Although
they have different severities and ages of onset, the subgroup
of an SMA sufferer is not considered when selecting patients
for clinical trials as often endpoint and interventions-used are
a more important factor. To date, the only drug which has
been approved to treat SMA in the United States is SpinrazaTM

(Nusinersen). In clinical trials, administering SpinrazaTM every
4 months resulted in an improvement in motor function in∼60%
of infants (FDA, 2016).

In 1995, mutations in exon 7 of the SMN1 gene and resulting
decrease in SMN protein levels was associated with SMA
(Lefebvre et al., 1995). Around 95% of SMA cases are caused
by the homozygous absence of SMN1 (Sugarman et al., 2012).
SMN1 is located near the telomere of chromosome 5, whereas
SMN2, a nearly identical copy of SMN1 is located closer to
the centromere and, due to a silent C-to-T transition (C840T),
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undergoes alternative splicing to create a truncated protein,
which is rapidly degraded in the cell (Burnett et al., 2009).
Although both SMN1 and SMN2 produce SMN protein, only
10% of SMN2 transcripts produce functional protein (Monani
et al., 1999). A decrease of SMN protein is directly correlated
with the classification of SMA and severity of the disease, with
reductions in levels of ∼70, ∼50, and ∼30% in types 1, 2, and
3, respectively (Crawford et al., 2012). The copy number of the
SMN2 gene, also increases with sub-group classification with
SMN0 patients having only one copy of the gene (Butchbach,
2016). This suggests SMN2 can play a disease-modifying role in
the severity of SMA (Crawford et al., 2012). The mechanism of
actions of SpinrazaTM is to increase the levels of SMA and it
contains an anti-sense oligonucleotide directed to SMN2, used
to increase the levels of functional SMN protein produced in the
cell (Zanetta et al., 2014). SMN is a cytoplasmic protein involved
in the assembly of snRNP, which are essential for pre-mRNA
splicing (Figure 6). It has been hypothesized that the mechanism
which leads to SMA is either a loss-of-function of SMN-mediated
snRNP assembly role, resulting in alternative splicing of target
genes (Gabanella et al., 2007) or a loss-of-function of mRNA
transport in neurons (Fan and Simard, 2002; Eggert et al., 2006).
However, other functions related to the actin-cytoskeleton, such
as neurite outgrowth, NMJ formation, and profilin binding, have
also been implicated in SMA pathology (Giesemann et al., 1999;
Chan et al., 2003; Rossoll et al., 2003).

The Drosophila genome has one ortholog of SMN1 (DmSMN)
(Miguel-Aliaga et al., 2000; Chan et al., 2003). Drosophila models
utilizing a mutated DmSMN73Ao have been used to show that
reduced levels and activity of SMN protein causes the inability
to fly or jump, morphological defects at the NMJ, and lethality
(Chan et al., 2003; Chang et al., 2008). This shows that SMA
pathology can be successfully modeled in Drosophila. Null
mutants and RNAi lines have been used to reduce SMN levels
by different degrees, mimicking the levels of SMN found in
different SMA classifications and recapitulating the disease more
thoroughly. These models have been successfully used to further
classify the role of the SMN protein (Chan et al., 2003) and
its specific binding capability to snRNPs (Garcia et al., 2016).
Recent work suggests an additional role for SMN in regulating
the actin cytoskeleton (Braun et al., 1995; Rajendra et al., 2007).
By showing that DmSMN mutants require protein rescue in both
nerves and muscle tissue to save normal motor function, these
studies suggest a muscle-specific role and a novel disease-causing
pathway in the muscle tissue. SMN may act as a sarcomeric
protein which is required for the expression of muscle-specific
actin, its organization and the subsequent formation of muscle
tissue, something which is lacking in SMA patients. However, it
has also been suggested that muscle degeneration can also occur

due to lack of innervation (Ling et al., 2012), highlighting the
important role SMN has in the nervous system. Further research
is required to discern whether incorrect muscle formation is due
to a motor neuron-specific role of SMN and a subsequent lack
of innervation, or whether a muscle-specific novel function of
SMN also contributes to SMA pathology. This highlights the
importance of the overall view of SMA pathology to establish
a timeline of the disease and the role of correct muscle cell
function in the severity of SMA. The use of Drosophila in
the study of SMA will allow for future study into tissue-
specific rescue models and the analysis of the timeline of SMA
pathology to elucidate the pathology and molecular etiology
of this disease.

CONCLUSION

With the completion of the Drosophila genome sequence in
2000 (Adams et al., 2000), and the publishing of the first draft
of the human genome in 2001 (International Human Genome
Sequencing Consortium [IHGS], 2001; Venter et al., 2001) the
high level of conservation of genes between fruit flies and humans
was established, and the benefit of systematic genetic dissection
of molecular pathways in the fruit fly was reinforced. The use
of Drosophila genetics has a long and successful history in the
study of various human genetic diseases, ranging from cancer
biology (Simon et al., 1991; Olivier et al., 1993) to cardiovascular
disease (Kim et al., 2010; Neely et al., 2010), from Parkinson’s
(Feany and Bender, 2000; Song et al., 2017) to Alzheimer’s (Kilian
et al., 2017). The studies discussed here highlight the successful
research efforts into understanding MND pathologies but also
show possible future directions of research efforts; which are
needed to increase our understanding of MND and to find novel
therapeutics. As a model organism, Drosophila provides a fast,
cheap, and powerful platform to define the genetic underpinnings
of complex human diseases and should be continually used in the
investigation into MND.
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