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Amyotrophic lateral sclerosis (ALS) is the most common adult onset motor neuron

disease with no effective disease modifying therapies at present. Spinal cord

degeneration is a hallmark feature of ALS, highlighted in the earliest descriptions of

the disease by Lockhart Clarke and Jean-Martin Charcot. The anterior horns and

corticospinal tracts are invariably affected in ALS, but up to recently it has been

notoriously challenging to detect and characterize spinal pathology in vivo. With recent

technological advances, spinal imaging now offers unique opportunities to appraise

lower motor neuron degeneration, sensory involvement, metabolic alterations, and

interneuron pathology in ALS. Quantitative spinal imaging in ALS has now been used

in cross-sectional and longitudinal study designs, applied to presymptomatic mutation

carriers, and utilized in machine learning applications. Despite its enormous clinical

and academic potential, a number of physiological, technological, and methodological

challenges limit the routine use of computational spinal imaging in ALS. In this review,

we provide a comprehensive overview of emerging spinal cord imaging methods and

discuss their advantages, drawbacks, and biomarker potential in clinical applications,

clinical trial settings, monitoring, and prognostic roles.

Keywords: ALS (Amyotrophic lateral sclerosis), MRI—magnetic resonance imaging, MND, spinal cord,

neuroimaging

INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is a relentlessly progressive neurodegenerative disorder.
Anterior horn pathology and corticospinal tract degeneration has been identified as a core feature
of ALS since the earliest descriptions of the condition (1, 2). Despite repeated attempts to detect
and characterize spinal cord pathology in vivo (3), technological constraints have traditionally
precluded reliable quantitative spinal imaging in ALS. Due to the plethora of methodological
challenges, such as the small cross-sectional area of the human spinal cord, respiratory, and
cardiac movement effects, the overwhelming majority of imaging studies have focused on cerebral
alterations in ALS (4).
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The diagnosis of ALS is primarily clinical and requires the
careful exclusion of ALS-mimics (5). Given the heterogeneity of
clinical presentations and the prevalence of atypical phenotypes,
diagnostic delay in ALS is not uncommon, and the average
period between symptom onset and definite diagnosis is ∼12
months worldwide (6). The median survival from symptom
onset ranges from 20 to 48 months (7–9). Progression rates
in ALS show considerable variation, and prognosis depends on
age at onset, region of onset, co-morbid cognitive impairment,
nutritional status, and certain genotypes are associated with faster
progression (10–16). Given the considerable clinical, cognitive,
and genetic heterogeneity of ALS, there is an unmet need for
early diagnostic biomarkers to aid patient stratification into
specific phenotypes (17). Clinical trials of ALS continue to
rely on survival, functional scores and respiratory measures as
outcome measures despite the potential of candidate imaging
markers (18).

Magnetic resonance imaging (MRI) not only contributed to
the characterization of ALS-associated cerebral changes, it has
also contributed important pathophysiological insights, such
as the role of inflammation (19), patterns of spread (20, 21),
inhibitory dysfunction (22, 23), and network-wise propagation
(24, 25). In addition to describing unifying disease-associated
signatures, imaging studies of ALS have gradually characterized
the features of specific genotypes (26, 27), phenotypes (28, 29),
the substrate of cognitive and extra-pyramidal impairments (30),
as well as presymptomatic (31) and longitudinal changes (32).
Despite the momentous advances however, the overwhelming
majority of imaging studies in ALS remain cerebral, overlooking
a disease-defining site of ALS pathology; the spinal cord (3).

SPINAL CORD IMAGING

One of the key challenges of spinal cord imaging stems from
its elongated dimensions, small cross-sectional area in the
axial plane coupled with long sagittal and coronal expansion
(33). Furthermore, the cord is surrounded by tissues that
have very different magnetic susceptibility profiles and is it
subject to both direct (cardiac and respiratory) and fluid-
mediated [cerebrospinal fluid (CSF)] movement effects. The
main challenges of quantitative spinal cord imaging include (i)
partial volume effects, (ii) an inhomogeneous magnetic field
environment, and (iii) physiological and patient motion (34).

Abbreviations: 1H-MRS, proton spectroscopy; A-P, anterior-posterior; AD, axial

diffusivity; ALS, Amyotrophic lateral sclerosis; ALSFRS-R, revised ALS functional

scale; Cho, choline; CNR, contrast-to-noise ratio; Cr, creatine; CSA, cross-sectional

area; CSF, cerebrospinal flood; CST, corticospinal tract; DTI, diffusion tensor

imaging; FA, fractional anisotropy; fMRI, functional MRI; ihMT, Inhomogeneous

magnetization transfer; LMN, lower motor neuron; MD, mean diffusivity; MRI,

Magnetic resonance imaging; MRS, Magnetic resonance spectroscopy; MT,

Magnetization transfer; MTR, Magnetization transfer ratio; Myo, myo-Inositol;

NAA, N-Acetyl Aspartate; NODDI, neurite orientation dispersion and density

imaging; RD, radial diffusivity; RL, right-left; SNR, signal-to-noise ratio; TMS,

transracial magnetic stimulation; SOD1, superoxide dismutase 1 gene; SOD1+,

presymptomatic superoxide dismutase 1 gene.

METHODOLOGICAL CHALLENGES

Partial Volume Effects
Partial volume refers to scenarios where different tissues
contribute to the same voxel. In spinal cord imaging this occurs
when a voxel is at the CSF/white matter, white matter/gray
matter, CSF/vascular, white matter/vascular interfaces. Signals
from different tissue densities with different amounts of spins
contribute to the total MR signal in these voxels, which results
in indistinct tissue-boundaries. Partial volume effects can be
reduced by increasing the spatial resolution, but this in turn
results in lower signal-to-noise (SNR) and contrast-to-noise
ratios (CNR). Magnetic fields strengths of three or seven Tesla
compared to conventional 1.5 Tesla platforms (35–38), higher
number of phased-array coils with parallel imaging (35, 38,
39), and corrections for physiological motion improves spatial
resolution, SNR, and CNR (35, 38, 39).

Physiological and Patient Motion
Due to its proximity to the lungs and the heart, almost the entire
spinal cord undergoes repetitive displacement due to respiration,
CSF, and cardiac pulsation (40–43). The movement of the human
spinal cord linearly increases caudally with distance from the
head. The available literature suggest that physiological anterior-
posterior (A-P) cord movement (0.60 ± 0.34mm) exceeds those
observed in superior-inferior (SI) (0.4 ± 0.1mm) and right-
left (RL) direction (0.17 ± 0.09mm) (44, 45). Spinal imaging
is also susceptible to movement artifacts from swallowing and
patient movements during long MR acquisitions which can
create ghosting artifacts (42, 46). By “gating” the acquisition, i.e.,
synchronizing with the respiratory or cardiac cycles, the effect of
periodical movements can be significantly reduced (38, 39, 47).
Motion artifacts can also be reduced using “saturation bands”
that cover the esophagus, chest, and abdomen, by attenuating
signals from moving structures so that it does not corrupt
the signal from the spinal cord itself. Velocity compensating
gradient sequences and signal averaging across multiple phases
of motion can also be applied to minimize motion artifacts.
Reducing acquisition time by using fast sequences, i.e., fast-
spin-echo, parallel imaging that increases acquisition speed by
factors from 1.5 to 3, i.e., SENSitivity Encoding/GeneRalized
Autocalibration Partial Parallel Acquisition-type reconstructions,
partial Fourier imaging, reducing the size of the phase-encoded
direction, and decreasing the k-space matrix size effectively
reduce both physiological and subject motion effects (48–53).
MRI compatible cervical collars, which minimize involuntary
neck movements, may also reduce movement artifacts (46).
Co-registration of all data when dealing with multiple series
acquisition, e.g., diffusion tensor imaging (DTI) and functional
MRI (fMRI), can also be performed to limit the inconsistency in
derived maps (54, 55).

Inhomogeneous Magnetic
Field Environment
The spinal canal is surrounded by bones, ligaments, disks,
arteries, and venous plexi. Its proximity to the esophagus,
mediastinum, and the lungs, each containing various amounts of

Frontiers in Neurology | www.frontiersin.org 2 April 2019 | Volume 10 | Article 350

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


El Mendili et al. Spinal Cord MRI in ALS

air, create a challenging scanning environment. Adipose tissue,
bone, and air have different magnetic susceptibility profiles, and
respiration-induced B0 field fluctuations (43) also contribute
to the inhomogeneity of the magnetic field around the spinal
cord, resulting in geometric distortions and signal intensity
loss (56). To some extent, these artifacts can be counteracted
with “shimming.” Shimming aims at compensating for field
inhomogeneities by creating an auxiliary magnetic field via shim
coils (57). While shimming improves overall field homogeneity,
it is limited to smooth variations across larger regions and
cannot fully compensate for small, and localized field variations,
such as those observed at cartilaginous discs between the
vertebral bodies. Echo planar imaging sequences, such as DTI, are
particularly sensitive to geometric distortions around vertebral
disks. In addition to shimming, parallel imaging, and careful
slices positioning may reduce magnetic field inhomogeneity,
i.e., slices centered in the middle of each vertebral body and
perpendicular to the spinal cord (38, 47, 58). The specific
geometry of the magnetic field inhomogeneities should be
considered in order to correct for its effect (59–61).

SPINAL CORD IMAGING IN ALS

The role of conventional spinal MRI in ALS is to rule of
alternative structural, inflammatory or neoplastic pathologies
which may result in a combination of upper and lower
motor neuron involvement mimicking ALS (62). Compressive
myelopathies and radiculopathies are relatively common and
early, predominantly lower limb presentations of ALS are
sometimes attributed to these radiological findings resulting
in laminectomies and other invasive procedures (63, 64).
Conventional, clinical spinal sequences are typically only
qualitatively interpreted without specific measurements. The
majority of clinical spinal scans in ALS are reported as
normal, but non-specific signs such as high signal along the
corticospinal tracts are occasionally observed on T2-weighted
imaging (65–67).

In sharp contrast with clinical sequences, advanced
quantitative spinal protocols allow for the detailed and
quantitative characterization of spinal gray and white matter
integrity (38, 47, 58, 68). These protocols provide high resolution,
high SNR, and high CNR images compared to standard clinical
sequences. Furthermore, purpose-designed spinal protocols are
based on mathematical MR signal modeling (e.g., diffusion-
based methods, quantitative magnetization transfer, and MR
spectroscopy) and the derived outputs can be quantitatively
interpreted to provide accurate, motion-corrected white, and
gray matter metrics.

Cord Morphometry
Gross axonal and gray matter loss have traditionally been
estimated by measuring spinal cord cross-sectional areas at
specific levels and interpreted as a proxy of atrophy in the context
of reference normative values (69–72). The “cross-sectional
approach” consists of estimating a mean cord cross-sectional
area over a representative number of slices at a given vertebral
level (70, 71, 73, 74), which can be relatively easily calculated

from conventional MR sequences such as T1- or T2-weighted
images. A variety of indexes, such as A-P dimension, L-R width,
and radial distance can be derived from the cross-sectional area
(CSA) approach. These measures reflect on different aspects
of pathology, such as global vs. regional, lateral vs. anterior
tissue loss, and are often interpreted as predominantly motor
or sensory involvement (70, 75). More specific gray and white
matter measures can be derived from higher resolution images
followed by tissue-type segmentation methods (72, 76, 77). Novel
quantitative approaches, such as tensor based morphometry
and surface based-morphometry permit a more fine-grained
characterization of cord topography and the definition of disease-
associated signatures (74, 78). Recent studies demonstrated that
spinal cord atrophy, especially gray matter atrophy, correlates
with disability and disease progression and may be predictive of
respiratory failure and of survival in ALS (58, 70, 72, 73, 79). The
main findings of structural spinal cord studies are summarized in
Table 1.

Diffusion Weighted Imaging
Diffusion weighted imaging (DWI) relies on the evaluation
of water diffusion in CNS tissues and is primarily used
to characterize white matter integrity (90, 91). DWI-derived
metrics, such as axial diffusivity (AD), mean diffusivity (MD),
fractional anisotropy (FA), radial diffusivity (RD) enable the
quantitative characterization of white matter integrity. Novel
high-directional approaches, such as high-angular resolution
diffusion imaging (92), q-ball imaging (93), diffusion kurtosis
imaging (94), diffusion basis spectrum imaging (DBSI) (95)
are particularly well-suited to assess the integrity of crossing-
fibers (96, 97). Emerging diffusion techniques such as neurite
orientation dispersion and density imaging (NODDI) (98) help
to estimate the microstructural attributes of dendrites and axons
(99). While in ALS NODDI has been primarily used in cerebral
studies in ALS (100, 101), it also has been also piloted in spinal
applications (90, 102). Specific DTI indices (AD, RD) have been
associated with specific pathological processes, such as axonal
(103, 104) vs. myelin-related (105, 106) degeneration, but this
interpretation is likely to be simplistic, as DTI measures are
affected by axonal density, axonal diameter, myelin thickness and
fiber orientation, fiber coherence, and acquisition parameters.
DTI has been extensively used to study cerebral changes in ALS
and describe phenotype-associated (107), genotype-specific (27),
presymptomatic (32), and longitudinal white matter changes in
the brain (81). In contrast to the plethora of cerebral DTI studies,
relatively few spinal DTI studies have been published in ALS to
date (58, 69, 73, 80–82, 85). These have consistently highlighted
both motor and sensory tract alterations (Table 1).

Magnetization Transfer Imaging
Hydrogen nuclei linked to macromolecules such as the proteins
and lipids of the myelin sheet have an extremely short T2
signal. While these macromolecules are not directly detectable by
standard MRI sequences, magnetization transfer (MT) imaging
enables the characterization of these structures. Macromolecular
spins can be saturated using an off-resonance RF pulse, then
the magnetization transfer between bound and free pools
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TABLE 1 | Quantitative spinal imaging studies in ALS, ALS, amyotrophic lateral sclerosis; ALSFRS-r, the revised ALS functional scale; FA, fractional anisotropy; CSA,

cross-sectional area; CST, corticospinal tract; FVC, force vital capacity; ihMT, inhomogeneous magnetization transfer; ihMTR, inhomogeneous magnetization transfer ratio;

MD, mean diffusivity; MT, magnetization transfer; MTR, magnetization transfer ratio; MMT, manual muscle testing; SC, spinal cord; SOD1, superoxide dismutase 1 gene.

Author

year of

publication

(references)

Patient cohort

n

Controls

n

Spinal imaging

technique

Spinal cord

region

evaluated

Main findings

Valsasina et al. (80) 28 Sporadic ALS 20 CSA/DTI Cervical

spinal cord

Decreased FA and CSA decreased in ALS. Strong

correlation between FA and the ALSFRS and

moderate correlation between spinal and brain FA

Agosta et al. (81) 17/17 at

baseline/follow-up

(9 months)

Sporadic ALS

20 CSA/DTI Cervical

spinal cord

Longitudinal FA, MD, and CSA changes detected.

Brain CST diffusivity measurements are stable over

time and do not correlate with cord measures

Nair et al. (82) 14 Sporadic ALS 15 DTI C2-C6

vertebral

levels

Reduced FA and RD in ALS. FA and RD correlate

with finger and foot tapping rates. RD correlates

with FVC and ALSFRS-R

Carew et al. (31) 23 sporadic ALS,

24

presymptomatic

SOD1carriers

29 1H-MRS C2 vertebral

level

Reduced NAA/Cr and NAA/Myo ratios in both

SOD1+ and sporadic ALS. Reduced Myo/Cr in

SOD1+ subjects but not in sporadic ALS. Reduced

NAA/Cho in sporadic ALS but not in SOD1+

subjects

Carew et al. (83) 14 Sporadic ALS 16 1H-MRS C2 vertebral

level

Reduced NAA/Cr and NAA/Myo ratios in ALS.

NAA/Myo and NAA/Cho reductions correlate with

FVC

Ikeda et al. (84) 19 Sporadic ALS 20 1H-MRS C2 vertebral

level

Reduced NAA/Cr and NAA/Myo ratios in ALS.

NAA/Cr and NAA/Myo correlate with ALSFRS and

FVC. NAA/Cr, NAA/m-Ins, and m-Ins/Cr are

markedly altered in patients with C2 denervation

and neurogenic changes

Cohen-Adad et al.

(69)

27 sporadic ALS,

2 SOD1-linked

familial ALS

21 CSA/DTI/

MT

C2-T2

vertebral

levels

Altered DTI and MT metrics in the lateral and dorsal

columns. FA correlates with ALSFRS-r. Segmental

cord atrophy is associated with disability. FA profile

of the cervical cord is suggestive of retrograde CST

degeneration i.e., “dying back”

Branco et al. (70) 25 Sporadic ALS 43 CSA C2 vertebral

level

Decreased CSA in ALS. CSA correlates with

disease duration, ALSFRS-r, and ALS severity scale

El Mendili et al.

(73)

29 at baseline,

14 at follow-up

– CSA/DTI/

MT

C2-T2

vertebral

levels

CSA correlates with MMT. At follow-up, CSA

predicts upper limb ALSFSR-R subscores, and FA

predicts lower limb disability. CSA and MTR

decrease between baseline and follow-up

Wang et al. (85) 24 Sporadic ALS 16 DTI C2-C4

vertebral

levels

CST FA and ADC changes in ALS. No difference in

FA or ADC between patients with “definite” and

“probable” ALS. No correlations between DTI

parameters and modified Norris or ALSFRS-r scores

Iglesias et al. (86) 21 Sporadic ALS 21 DTI Cervical

spinal cord

Abnormal DTI metrics indicate decreased integrity of

ascending sensory fibers. Significant correlation

between DTI metrics and the depression of the

peripheral afferent volley. The combination of SEP

and DTI reveals sub-clinical sensory deficits in 85%

ALS patients

Rasoanandrianina

et al. (58)

10 Sporadic ALS 20 CSA/DTI/MT/ihMT Cervical

spinal cord

Spinal GM and WM atrophy in ALS. GM atrophy

correlates with UMN scores. FA and MTR decrease

in the CST. Axial diffusivity and ihMT decreased in

the CST and dorsal columns. CSA correlates with

the ALSFRS-r and spinal ALSFRS-R subscores. DTI

and MT/ihMT metrics correlate with disease

duration and MRC scores

de Albuquerque et

al. (87)

27 at baseline,

27 at follow-up

8 months apart

27 CSA/DTI C2 vertebral

level

Longitudinal reduction in CSA. Cord area reduction

correlates with change in ALSFRS-r

(Continued)
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TABLE 1 | Continued

Author

year of

publication

(References)

Patient cohort n Controls

n

Spinal imaging

technique

Spinal cord

region

evaluated

Main findings

Querin et al. (79) 49 sporadic ALS – CSA/DTI/MT C2-T2

vertebral

levels

Spinal MRI parameters are more predictive of

survival than clinical variables (ALSFRS-R, MMT,

and disease duration)

Paquin et al. (72) 27 sporadic,

2 SOD1-linked

familial ALS

22 CSA C3-C6

vertebral

levels

Spinal gray matter metrics are more sensitive to

discriminate ALS patients from controls than overall

cord CSA. Gray matter and spinal cord CSA

correlates with ALSFRS-r and MMT arm scores.

ALSFRS-r prediction improves when including a

combination of gray and white matter CSA

Querin et al. (76) 60 sporadic ALS 45 CSA/DTI/MT Cervical

spinal cord

Random forest classification algorithm leads to

good diagnostic performance distinguishing

patients with ALS from controls with a sensitivity of

88% and specificity of 85%. The highest

discrimination ability was achieved by evaluating

RD, followed by FA, and CSA at the C5 spinal level

Piaggio et al. (88) 23 Sporadic ALS 18 CSA Level of the

Foramen

magnum

Spinal cord area at the foramen magnum is

significantly lower in ALS patients than in control

subjects and is significantly correlated to ALSFRS-r.

Spinal cord CSA at the foramen magnum correlates

with disability in ALS independently of cerebral

measures

Grolez et al. (89) 40 at baseline,

40 at follow-up

3 months apart

21 SC volume Cervical

spinal cord

Longitudinal change in cervical spinal cord volume

is predictive of slow vital capacity decline and is also

associated with survival

can be measured (108). Magnetization transfer occurs by
means of cross relaxation processes, such as dipole-dipole
interactions and chemical exchange. Magnetization transfer
ratio (MTR) is calculated as the percentage difference of
MT images with macromolecules signal saturation and one
without. MTR enables inferences on myelin content, axonal
count, and density as shown by three MS histological
studies, and has been used extensively to assess demyelination,
remyelination, and degeneration in MS (109–111). Conversely,
relatively few studies have used cerebral MT imaging in
ALS, and the majority of these focused on corticospinal
tract alterations (112–115). Relatively few studies evaluated
spinal MT changes in ALS, but they have shown progressive
reduction overt time and correlation with muscle weakness
(58, 69, 73). The key findings of spinal MT imaging studies
in ALS and associated technical challenges are summarized in
Tables 1, 2.

Inhomogeneous Magnetization
Transfer Imaging
Inhomogeneous magnetization transfer (ihMT) imaging is
a novel method (116, 117), which allows the unprecedented
characterization of myelin integrity, by isolating key myelin
components from the broader macromolecular pool.
ihMT shows unparalleled potential to detect and quantify
demyelination (118) and may be adapted to spinal applications.
ihMT imaging has already been applied to ALS cohorts and

demonstrated significant correlation with muscle strength and
disability profiles (58).

MR Spectroscopy
Magnetic resonance spectroscopy (MRS) is well-established,
non-invasive imaging tool which provides neurochemical
insights based on the concentration and relaxation profile of
specific metabolites in cerebral and spinal tissues. MRS has
been extensively used in cerebral studies of ALS (119), used
to assess the therapeutic effect of Riluzole (120, 121), and also
used to study brainstem metabolic alterations (122). Cross-
sectional and longitudinal (123), single voxel and whole brain
multi-voxel studies have both contributed to our understanding
of ALS pathophysiology (124). The main targets of proton
spectroscopy (1H-MRS) include the following metabolites; N-
Acetyl Aspartate (NAA), creatine (Cr), choline (Cho), and myo-
Inositol (Myo). These metabolites are typically associated with
neuronal integrity/viability (NAA), tissue energy metabolism
(Cr), membrane integrity (Cho), and glial function (Myo).
(125). Relatively few studies have used 1H-MRS to characterize
metabolic changes at the spinal level, and the majority of these
studies focused on multiple sclerosis (126, 127) MRS however
seems particularly applicable to ALS cohorts, where it promises
the characterization of presymptomatic changes and by including
both the upper and lower motor components of the motor
system, it has led to particularly significant clinico-radiological
correlations (31, 83, 84). For the contribution of MRS studies to
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TABLE 2 | The advantages and methodological challenges associated with specific spinal imaging techniques.

Imaging technique Advantages of specific techniques in ALS Challenges and correction strategies

Diffusion-weighted imaging Evaluation of specific white matter bundles; motor; and sensory white

matter tracts integrity. Availability of multiple derived diffusivity metrics

reflecting on various histological aspects of white matter integrity; AD, MD,

RD, FA. Emerging high angular resolution diffusion techniques to assess

crossing fiber integrity. Derived metrics can be interpreted in comparative,

longitudinal, correlation, and machine learning analyses

Motion artifacts:

- Gating the acquisition (DWI, CSA, and volume

estimation, fMRI, 1H-MRS)

- Saturation bands (all modalities)

- Velocity compensating gradient sequences (DWI)

- Signal averaging acrossmultiple phases of motion (DWI,

fMRI, 1H-MRS)

- Fast sequences (DWI)

- MRI compatible cervical collar (DWI, CSA, and volume

estimation, fMRI, 1H-MRS)

- Co-registration of all data (DWI, fMRI)

- Non-linear co-registration between T1 with and without

magnetization transfer saturation pulse (MTR, ihMT)

Magnetic field inhomogeneities:

- Shimming (all modalities)

- Parallel imaging (all modalities)

- Corrections for gradients nonlinearity induced

geometric distortion (DWI, MT, ihMT, CSA, and

volume estimation, fMRI)

- Corrections for breathing induced B0 field fluctuations

(DWI, fMRI, CSA)

Partial volume effect (all modalities)

- Higher magnet field strength

- Higher number of phased-array coils with parallel

imaging

- Multi-channel image acquisition

- Limiting physiological motion

Magnetization transfer

imaging

Evaluation of both white and gray matter integrity. Sensitive detection and

measurement of demyelination. Derived metrics can be evaluated at

individual and group-level statistical analyses

Inhomogeneous

magnetization transfer

imaging

Applicability to both gray and white matter tissue components, superior

sensitivity to detect demyelination

Cross-sectional area and

volume estimation

Automated segmentation pipelines enable the estimation of overall cord

cross-sectional area and gray and white matter components separately.

Gray matter components correlate with clinical and electrophysiological

lower motor neuron (LMN) measures, therefore may be regarded an imaging

proxy of LMN integrity

1H-MR spectroscopyd MRS provides a number of metrics which reflect on focal neuronal integrity

(NAA), energy metabolism (Cr), membrane integrity (Cho), and glial function

(Myo). MRS readily captures segmental metabolic alterations in

symptomatic and presymptomatic ALS cohorts

Functional MRI As an emerging technique spinal fMRI has the potential to detect segmental

cord activation during motor tasks and at rest

ALS, amyotrophic lateral sclerosis; ALSFRS-r, revised ALS functional scale; FA, fractional anisotropy; CST, corticospinal tract; FVC, force vital capacity; MD, mean diffusivity; MMT,

manual muscle testing.

ALS research and specific methodological considerations please
see Tables 1, 2.

Functional MRI
Functional MRI (fMRI) detects local variations in blood
oxygenation level-dependent MR signal at rest and during
activation paradigms (128). FMRI has been extensively applied
to ALS cohorts to describe network changes and assess altered
activation patterns when performing motor or cognitive tasks
(129–131). Following decades of successful cerebral studies, the
first spinal fMRI studies have now been published (55, 132).
Emerging spinal cord fMRI studies in healthy controls provide
proof of feasibility and the first studies using spinal fMRI in
neurological conditions are underway (133).

THE CONTRIBUTION OF SPINAL IMAGING
TO ALS RESEARCH

Evidence for Motor Involvement in ALS
Quantitative spinal MRI studies in ALS have consistently
detected corticospinal tract and anterior horns degeneration
and changes correlated with functional disability (36, 58, 80,
82, 85). Segmental spinal cord atrophy was not only linked to
muscle weakness (58, 70, 88), but also to electrophysiological
markers such as transracial magnetic stimulation (TMS) and
motor evoked potentials (69). Two studies have demonstrated
that both white and gray matter atrophy contributes to global

cord atrophy in ALS (58, 72), but a recent study indicates that
cord atrophy in ALS may be predominantly driven by anterior
horn degeneration (72), confirming the role of spinal MRI as a
putative LMNmarker. DTI and MTR indices of the corticospinal
tract (CST) correlated with TMS facilitation motor thresholds, a
functional parameter that reflects pyramidal tract integrity.

Longitudinal Spinal Cord Changes in ALS
In contrast to the plethora of longitudinal cerebral studies in ALS
(21), relatively few longitudinal spinal studies are available to
demonstrate that spinal MRI metrics can track subtle progressive
changes over time (73, 81, 87, 89). These longitudinal studies
captured decreasing CSTMTR and progressive cord atrophy (73,
87) While some longitudinal studies also captured progressive
DTI alterations (81), other studies did not (73). Some studies
suggest that CSA estimates may be more reliable markers of
longitudinal cord pathology than MTR or DTI metrics (73, 87).
Progressive cord atrophy not only mirrors clinical progression,
but early cervical cord atrophy is thought to predict respiratory
dysfunction in ALS (89, 134). Furthermore, spinal MRI metrics
may be superior predictive indicators of survival than clinical
measures (79). Given the scarcity of longitudinal spinal imaging
studies in ALS, it remains to be establishedwhich imagingmetrics
capture early ALS-associated changes, therefore may be used in
diagnostic applications, and which metrics can track changes in
the later stages making them suitable as monitoring markers.
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Evidence for Sensory Involvement in ALS
Several spinal MRI studies (58, 69) have captured dorsal column
degeneration using DTI, MT, and ihMT imaging, and one study
demonstrated progressive sensory tract degeneration over time
(135). Dorsal column pathology can be detected relatively soon
after symptoms onset, which suggests that sensory involvement is
a core and relatively early feature of ALS. Combined spinal DTI
and neurophysiology studies have also confirmed considerable
sensory pathway degeneration in ALS patients without sensory
symptoms (86). The combined MRI-neurophysiology approach
revealed sub-clinical sensory deficits in 85% of ALS patients.
These findings suggest that sensory dysfunction may have been
underestimated by previous studies and that sensory afferent
pathways may be affected early in the course of ALS and are
important facets of ALS pathogenesis (69, 86). In contrast to
longitudinal cerebral studies (4, 32), longitudinal spinal studies
suggest that dorsal column metrics (73), and CST DTI indices
(87) may be relatively constant (135).

Evidence for Spinal Metabolic Alterations
in ALS
1H-MRS studies in ALS have shown reduced NAA/Cr and
NAA/Myo ratios at the C2 vertebral level (31, 83, 84). One spinal
MRS study captured reduced NAA/Myo and NAA/Cr ratios in
presymptomatic superoxide dismutase 1 gene (SOD1+) carriers
(31). In addition to group-level differences in symptomatic
and presymptomatic ALS cohorts, NAA/Myo and NAA/Cho
reductions correlate with force vital capacity (FVC) and revised
ALS functional scale (ALSFRS-r) and inversely correlated to the
rates of decline (31, 83, 84).

FUTURE DIRECTIONS

Existing spinal studies in ALS indicate that it is possible to
detect disease-specific imaging signatures at a group level,
and emerging machine-learning studies (76) have demonstrated
that it may be possible to classify individual scans into
“ALS” and “Healthy” groups. Despite the pioneering studies
however, it is clear that spinal imaging lags behind cerebral
imaging. Cerebral imaging has shown that phenotype and
genotype specific patterns can be detected, multi-time point
longitudinal studies have shown divergent rates of gray and
white matter degeneration, studies have been validated by post
mortem examination and robust multi-site studies have also
been published (136). It is likely that improved coil designs

with higher number of phased-array elements, new generation
scanners with higher gradients optimized for advanced diffusion-
weighted imaging, ultra-high filed platforms with superior
spatial resolution, and SNR, spinal imaging will contribute
unprecedented insights in ALS. It is conceivable that spinal
imaging will contribute to the longstanding debate about
dying back and dying forward, and ALS being a primarily
spinal vs. cerebral disease. Spinal imaging provides a unique
opportunity to appraise both lower and upper motor neuron
degeneration. It is also likely that imaging sequences currently
primarily used in cerebral imaging in ALS such as resting
state fMRI, task-based fMRI, quantitative susceptibility weighted
imaging, presymptomatic imaging, texture analyses, and post
mortem imaging will filter down to spinal applications. Data-
sharing initiatives, cross-platform harmonization, inclusion
of upper motor neuron (UMN) and lower motor neuron
(LMN) predominant ALS cohorts, correlations with advanced
neurophysiological techniques are trends of ALS imaging
which is likely to be adopted in spinal studies. One of
the key ambitions of multiparametric spinal imaging is to
overcome the methodological challenges of thoracic and
lumbar imaging.

CONCLUSIONS

The momentous advances in spinal imaging in ALS suggest
the spinal metrics may soon be used as validated diagnostic,
monitoring, and prognostic markers, contributing both to
individualized patient care and pharmacological trials.
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