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Whereas functional localization historically has been a key concept in neuroscience,
direct neuronal recordings show that input of a particular modality can be recorded
well outside its primary receiving areas in the neocortex. Here, we wanted to explore
if such spatially unbounded inputs potentially contain any information about the quality
of the input received. We utilized a recently introduced approach to study the neuronal
decoding capacity at a high resolution by delivering a set of electrical, highly reproducible
spatiotemporal tactile afferent activation patterns to the skin of the contralateral second
digit of the forepaw of the anesthetized rat. Surprisingly, we found that neurons in all
areas recorded from, across all cortical depths tested, could decode the tactile input
patterns, including neurons of the primary visual cortex. Within both somatosensory
and visual cortical areas, the combined decoding accuracy of a population of neurons
was higher than for the best performing single neuron within the respective area. Such
cooperative decoding indicates that not only did individual neurons decode the input,
they also did so by generating responses with different temporal profiles compared
to other neurons, which suggests that each neuron could have unique contributions
to the tactile information processing. These findings suggest that tactile processing in
principle could be globally distributed in the neocortex, possibly for comparison with
internal expectations and disambiguation processes relying on other modalities.

Keywords: tactile, sensory, neuron, neurophysiology, neocortex, spike responses

INTRODUCTION

Studies using global network analysis with non-invasive methods in humans indicate that
the neocortex is functionally heavily interconnected (Bullmore and Sporns, 2009), suggesting
that any information available to one area of the neocortex could also be available to many
other areas. In contrast, the idea of functional localization advocates that each area of the
neocortex has an innate specificity of function and that information of a specific modality
or a specific combination of modalities would be processed solely or predominantly in
a localized area. The latter line of thought has a long history (Broca, 1861; Penfield and
Boldrey, 1937) and has seen positive results when studied with functional magnetic resonance
imaging (fMRI; Maldjian et al., 1999), electrocorticogram (ECoG), electroencephalogram (EEG;
Baumgartner et al., 1992) and single cell recordings (Kaas et al., 1979). Of the two lines of ideas,
functional localization has perhaps the strongest and widest presence in the field of neuroscience
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and is often regarded as fundamental to brain function both
in science and in the clinic (Desmurget and Sirigu, 2015;
Marshall and Meltzoff, 2015). But even at the time of its
conception, many theorists raised concerns that the neocortex
could be a more globally integrated system where functional
localization may have limited explanatory potential (Andral,
1833; Brown-Séquard, 1877; Prince, 1910; Lashley, 1929).
Moreover, in recent years clinicians have started to question
‘‘commonly held assumptions underlying presumed correlations
between particular lesion locations and the associated behavioral
deficits’’ (Sathian and Crosson, 2015) and there are for
example clinical findings that unilateral cortical lesions cause
bilateral tactile sensory deficits (Brasil-Neto and de Lima,
2008) and that parietal stroke can affect tactile sensation
(Bassetti et al., 1993).

A number of studies have presented empirical evidence that
basal sensorimotor signals can be found in widespread areas of
the neocortex. These studies include observations of spatially
unbounded cortical distribution of inputs related to a specific
modality (Fu et al., 2003; Ferezou et al., 2007; Frostig et al., 2008;
Hihara et al., 2015; Rancz et al., 2015) or behavioral modulation,
i.e., locomotor-related signals in primary visual cortex (Keller
et al., 2012; Saleem et al., 2013). The multisensory influences
in presumptive unimodal sensory areas are so pervasive that it
has been suggested that the neocortex is essentially multisensory
(Ghazanfar and Schroeder, 2006). However, so far these studies
focused on the binary question if unbounded sensory input is
present. The question of what such unbounded neural activity
represents, in terms of input quality and information quantity,
has not been studied.

In order to be able to quantify whether the activity
of neurons carries any information regarding the ‘‘what’’
component of external input, one needs a number of diversified
inputs that each has a high degree of reproducibility. We
previously introduced a method to deliver such reproducible
and diversified spatiotemporal input patterns by electrical
activation of tactile afferents in local digit skin and showed
that cells in the primary somatosensory cortex (S1) of the
rat are capable of decoding these tactile inputs with high
accuracy (Oddo et al., 2017). Using this approach, we recently
reported that the neurons of the S1 cortex have access
to information about the ‘‘what’’ component of ipsilateral
tactile inputs, just like they have for contralateral inputs
(Genna et al., 2018). Here, we show that in non-paw
S1 regions and in non-S1 regions across the dorsal neocortical
surface, including within visual cortical areas, the responses
of individual neocortical neurons contain information about
the ‘‘what’’ component of tactile inputs to the second digit of
the forepaw.

MATERIALS AND METHODS

Surgical Procedures
Adult Sprague-Dawley rats (N = 18, male sex, weight 306–420 g)
were prepared and maintained under anesthesia with a ketamine
(100 mg/ml) and xylazine (20 mg/ml) mixture. Prior to the
induction of the anesthesia, the animals were sedated with

isoflurane (3% mixed with air for 60–120 s). Anesthesia was
induced with an intraperitoneal injection (Ketamine: xylazine
concentration ratio of 15:1, 1.5 ml/kg) and further maintained
with a continuous infusion through an intravenous catheter
inserted into the right femoral vein (concentration ratio of
20:1, approximately 5 mg/kg ketamine per hour). The absence
of withdrawal reflexes to noxious pinch to the hind paw
was used to characterize adequate anesthesia. The duration of
the experiments did not exceed 8 h, after which the animals
were sacrificed.

The use of anesthesia was motivated by that we needed
to make sure that the mechanical stability of the brain was
consistently high throughout the experiments in order to run the
long-term in vivo patch clamp recordings in loose-patch, cell-
attached, mode required to achieve a high number of repetitions
of the stimuli used (see below). Ketamine/xylazine anesthesia
has previously been shown to not affect the order of neuronal
recruitment of a sheet of layer 5 neurons in spontaneous brain
activity fluctuations and evoked responses as compared to the
awake condition, suggesting that the neocortical network may
work close to normal (Luczak and Barthó, 2012; Bermudez
Contreras et al., 2013). Exactly how the anesthetic effect on
consciousness is achieved is an open question, but may depend
on a generally lower network activity (Constantinople and
Bruno, 2011) and dissociative effects on the scale of seconds
rather than milliseconds.

The craniectomy of the right hemicranium extended from
a reference point located 1 mm rostral and 2 mm lateral
to the bregma to approximately 9 mm caudally and 5 mm
laterally relative to the same reference point (Paxinos and
Watson, 2006). Hence, the exposure included the primary motor
cortex, the primary somatosensory cortex and the rostral part
of the primary visual cortex. During the control experiments
with a reduced audiovisual background (described below) the
craniectomy extended 3 mm laterally to the reference point
described above and between 5 and 8 mm caudally to bregma.
This exposure was thus centered on the primary visual cortex.
An ECoG-electrode was placed on the surface of the cortex at the
rostral end of the craniectomy. For recording stability, a cap of
agarose (0.03 g/ml dissolved in physiological saline) was made
to cover the exposed part of the brain. The exposed part of the
brain was inspected with a microscope during both insertion
and extraction of the recording electrodes. The state of the
rat was continuously evaluated based on skin tone, respiration
rate and the ECoG signal. The ECoG signal was monitored for
occurrences of sleep spindles, which occurred irregularly, thus
indicating deep sleep (Niedermeyer and da Silva, 2005).

Recordings
All recordings were made in vivo in the right hemisphere.
In most experiments, at least one recording was made from
the forepaw region of the primary somatosensory cortex, as
estimated by the focus of local field potentials evoked by
electrical stimulation of digit 2 on the left forepaw (Figure 1A).
This was made to verify that the delivered stimuli worked.
Additional recording sites were chosen by the experimenter
to cover a wide extent of the exposed brain as possible and
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FIGURE 1 | Recording sites and responses to single pulse stimulations. (A) Illustration of the left forepaw of the rat to indicate the locations of needle electrode pairs
(colored dots) used for the delivery of the tactile afferent stimuli. (B) Illustration of the rat brain and skull. Black crosses (N = 45) indicate electrode tracks/recording
sites with at least one neuron with valid decoding of the tactile input patterns (see text) and red dots (N = 33) indicate sites without any such neurons. Blue dashed
line indicates the border of the visual cortical regions (Papathanasiou et al., 2006; Paxinos and Watson, 2006). The outline of the contour plot in panel (C) is indicated
as a lighter area with a dark border for reference. (C) Contour plot of the amplitude of the local field potentials evoked using single pulse stimulation in each of the
recording sites. The color calibration bar is shown together with example sensory-evoked local field potentials (SE-LFPs) for three different amplitudes. (D) Left, an
example of a raw spike recording during the presentation of stimulation pattern F5. Neuronal spikes are marked with red arrowhead above. The onset of the
stimulation pattern is marked with a green large arrowhead below and its termination time is marked with a small green arrowhead. Right, 60 spikes from the
example recording are shown superimposed, centered on peak amplitude. Note that the patch clamp electrode allows highly isolated recordings very close to single
neurons, which typically results in large spike amplitudes and somewhat wider spikes than with metal microelectrodes. (E) Distribution of the onset latency times for
the spike responses evoked by the stimulation patterns (S1 N = 26, non-S1 N = 13). Asterisk indicates that the differences were statistically significant (two-sided
Wilcoxon rank sum test, p = 5.5051e-04). (F) Maximal amplitudes for spike responses evoked by the stimulation patterns indicated as multiples of the standard
deviation (SD) of the baseline activity (S1 N = 26, non-S1 N = 13). Two outliers in the “somatosensory” group (at 52.8 and 148.4 SDs) were not included to facilitate
comparison between the two groups.

included also parts of the S1 that were outside its forepaw
region. A photo was taken of the exposed brain and the
location of each recording site was indicated on this photo.

Each recording site was subsequently indicated on a common
picture of a rat brain based on anatomical landmarks and
distances (Figure 1B).
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Individual neurons were recorded with patch clamp pipettes
extracellularly in the loose-patch current clamp recording
mode. Patch clamp pipettes were pulled from borosilicate glass
capillaries to 10–30MΩ using a Sutter Instruments (Novato, CA,
USA) P-97 horizontal puller, and back-filled with an electrolyte
solution. The composition of the electrolyte solution in the patch
pipettes was (in mM) potassium-gluconate (135), HEPES (10),
KCl (6.0), Mg-ATP (2), EGTA (10). The solution was titrated to
7.35–7.40 pH using 1 M KOH. During the slow advancement
of the recording electrode (approximately 0.002 mm/s) with an
electrical stepping motor, all four skin stimulation sites were
activated synchronously at a rate of one pulse per second.
Any neuron encountered was recorded and in some cases, a
number of neurons were recorded in sequence in the same
electrode track. In most experiments, the recorded signal was
output on a loudspeaker at the same time as it was displayed
on an LCD computer screen for monitoring of the signal by the
experimenter. The screens were therefore at a remote location
to the animal (>2 m away on the lateral side) in an otherwise
normally lit room with a humming background noise from fans
in the electrical equipment. To verify that these circumstances
were not a factor defining the results of the decoding analysis,
we made a set of control experiments (N = 2 animals and
N = 16 neurons in the visual cortex) where the loudspeakers
were turned off and the animals were visually shielded by screens
located approximately 150 mm lateral to the eyes.

The recording depths from the surface of the brain were
saved for all neurons recorded. All data was digitized at 100 KHz
using CED 1401 mk2 hardware and Spike2 software (Cambridge
Electronic Design, CED, Cambridge, UK). Spikes were identified
using in-house software based on template matching. All spike
detection was carefully controlled by the visual inspection of
zoomed-in raw data traces throughout the stored recording.

Stimulation
Four pairs of intracutaneous needle electrodes inserted into
predefined sites in the skin on the volar side of digit 2 of the
left forepaw (Figure 1A). The inter-needle distance was 2–3 mm
in each pair. For each skin site, the stimulation pulse was set to
an intensity of 0.5 mA with a duration of 0.14 ms (DS3 Isolated
Stimulator, Digitimer, UK), which is 2.5 times greater than
the threshold for activating tactile afferents using this approach
(Rasmusson and Northgrave, 1997; Bengtsson et al., 2013) but
well below the threshold intensity where A-delta and C-fibers
start to become recruited (peak activation requires 6–10 times
threshold intensity; Ekerot et al., 1987).

Through this electrical interface, eight predefined
spatiotemporal patterns of skin activation were delivered
(Figure 2A, the stimulation patterns are indicated as F5,
S5, F10, S10, F20, S20, F∞ and S∞). These stimulation
patterns lasted less than 350 ms and consecutive deliveries
were separated by 1.8 s. Additionally, for each skin
stimulation site, repeated single pulse stimulation trains
of five consecutive pulses separated by 333 ms were
also delivered. The spatiotemporal patterns and single
pulse stimulation trains were presented repeatedly up to
100 times in a pseudo-random order (repeated randomized

order). The patterns were exactly the same as in the article
of Oddo et al. (2017).

Generation of the Spatiotemporal
Stimulation Patterns
The process underlying the generation of the spatiotemporal
stimulation patterns delivered to the electrical interface on the
second digit of the rat has been described in detail previously
(Oddo et al., 2017). Briefly, we used an artificial fingertip
equipped with a set of neuromorphic sensors to transduce a
set of tactile events. The tactile events consisted of dynamic
indentations of the sensorized fingertip skin against a set
of predefined shapes using a sinusoidal one-dimensional
motion controlled by a cyclic motor (Figure 2A). The core
element of the sensorized fingertip was a Micro Electro
Mechanical System (MEMS) sensor with four transducing
piezoresistors implanted at the base of a cross-shaped structure.
The MEMS was packaged with polymeric compliant material
(Dragon Skin, Smooth-On, Macungie, PA, USA). MEMS
data were sampled at 380 Hz per sensor output by a 24-bit
Analog to Digital Converter (ADS1258, Texas Instruments,
Dallas, TX, USA) integrated at the fingertip, and acquired
via SPI by a Field Programmable Gate Array (Cyclone II
FPGA, Altera, USA). The FPGA acquired the information,
which would correspond to the receptor potentials of skin
sensors (Woo et al., 2015). These ‘‘receptor potentials’’ were
converted to spike trains by our neuromorphic artificial
touch system which uses a customized implementation
of Izhikevich spiking neuron model. The spiking neuron
model was originally designed to emulate two artificial
mechanoreceptor types mimicking slow (S-type) and fast
(F-type) adapting receptors. The resulting eight spatiotemporal
patterns should be regarded as eight different types of skin-object
interactions. The four needle electrode pairs of the interface
were 1-to-1 related to the four neuromorphic sensors of the
artificial fingertip.

As shown previously (Oddo et al., 2017), with the type
of dynamic indentation movement used, available evidence
indicates that there is in principle little difference in the
spike activation between slowly and rapidly adapting tactile
mechanoreceptors (Johansson et al., 1982; Jenmalm et al.,
2003). Hence, the artificial fingertip allowed us to synthesize
spatiotemporal patterns of skin sensor activation at quasi-natural
rates that follow a similar overall temporal modulation, or
‘‘envelope’’ (Middleton et al., 2006), of activation as biological
skin sensors display under dynamic indentation.

STATISTICAL ANALYSIS

Local Field Potentials
In addition to the neuronal recordings, we analyzed the
sensory evoked local field potential (SE-LFP) responses. SE-LFP
data was obtained using single pulse stimulation of the four
intracutaneous stimulation sites individually, each repeated up
to 100 times as described above. All the responses evoked from
each skin site were first superimposed. In order to minimize the
impact of evoked spikes on the SE-LFP analysis, we then removed
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FIGURE 2 | Generation of the stimulation patterns and responses of a sample V1 neuron. (A) Illustration of the sensorized artificial fingertip and the objects it was
dynamically moved against to generate the stimulation patterns. The figure also shows the location of the stimulation channels on the rat digit skin and the eight
spatiotemporal stimulation patterns used to stimulate the digit skin. (B) Raster plots, peristimulus histograms and kernel density estimation (KDE) curves for the
responses generated by the eight different stimulation patterns in a sample neuron recorded in V1 cortex. (C) The eight KDE response curves of the sample neuron
are superimposed and shown together with the neuron-specific defined time windows used in the subsequent decoding analysis.

50% outliers for each sample time point. The normal distribution
of the amplitude of the remaining raw data was calculated
for a pretrigger period of 100 ms. An SE-LFP was assumed
to be evoked if the average post-trigger signal within 100 ms
after the onset of the stimulation reached below 5 standard
deviations (SDs) relative to the pretrigger baseline. The average
signal was filtered through a 10-order one-dimensional median
filter (moving average). From this filtered average signal, an
automatic detection method was used to identify the response
latency time (negative crossing of the −2 SD), duration (time
until positive recrossing of the −2 SD line) and amplitude of
all SE-LFPs. The amplitude of the SE-LFP was the minimum
value inside the defined response (as all recordings were below
0.292 mm of depth in the cortex, all local SE-LFPs were assumed
to be negative).

The largest SE-LFP amplitude at each recording site was used
to create a contour plot as a topographic visualization of the
SE-LFP distribution (Figure 1C).

As the stimulation patterns lasted up to 350 ms, there
was a chance that they evoked weaker, less frequent LFPs at
irregular latency times than what could be detected by the
single pulse stimulation above. We, therefore, evaluated also the
LFPs evoked by the individual stimulation patterns. From each

recorded neuron (N = 116) and for each stimulus presentation
(eight patterns, 50–100 presentations each), we measured the
LFP activity in two contiguous periods of recording, a 400 ms
pretrigger and a 400 ms post-trigger period, respectively. The
signal was first low-pass filtered by performing a rolling boxcar
mean of 10 ms, followed by a resampling from 100 kHz to
1 kHz and by application of a first-order butterworth bandpass
filter (50–499 Hz). The DC offset of each recorded response
was removed by subtracting the median voltage value of its
pretrigger period. From the population of responses for each
individual neuron recording, the mean and SD of the baseline
were calculated from the 400 ms pre-trigger period. An LFP
was defined as a drop in the voltage signal of at least 2 SDs
below baseline for at least 10 ms. The onset, duration and
amplitude of the LFPs were analyzed separately for pre- and
post-trigger periods. LFPs that began in the pre-trigger period
and continued into the post-trigger period was counted as a
pre-trigger event.

Differences in the distributions of the net number of
LFPs, their durations and amplitudes for pre- vs. post-trigger
periods were analyzed using Wilcoxon signed-rank test. To
capture if there was any time-dependent difference between
the pre- and post-trigger periods, the raw signal was replaced
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with a signal that solely contained the calculated onsets,
durations and amplitudes of the LFPs. Hence, in this signal,
at each LFP onset, a boxcar deviation was added with
a height that corresponded to the LFP amplitude and a
duration that equaled the calculated LFP duration. The boxcar
deviations were then used to calculate the area under the curve
(AUC) for each LFP.

Response Latencies and Response
Intensities
To obtain an estimate of the onset latency for evoked
spike activity, we generated peristimulus spike frequency time
histograms (PSTHs), with a bin size of 5 ms, both for responses
evoked by the spatiotemporal patterns and for the responses
evoked by the single pulse stimulations. We pooled the data for
the spatiotemporal patterns and the single pulse stimulations,
respectively, since we were not interested in internal differences
between different patterns or stimulation sites for this analysis.
The analysis of the responses evoked by the spatiotemporal
pattern included data from a time period of 500 ms pretrigger
and 500 ms post-trigger (the trigger was defined as the stimulus
onset). The single pulse stimulations included a time period from
100 ms pretrigger to 100 ms post-trigger. From the pretrigger
period, we calculated the mean and SD of the baseline spike
frequency. For the post-trigger period, onset latency was defined
as first encountered histogram bar in a series of at least two
consecutive bars exceeding three SDs from the baseline. A
two-sidedWilcoxon rank sum test was used to test for significant
differences between data recorded in S1 and in non-S1.

To estimate the intensity of the excitatory responses, we
calculated the maximal spike frequency change from baseline in
a period starting at the onset latency time and reaching until
the end of the post-trigger period. The response intensity was
measured as the number of SDs from the pretrigger baseline. A
two-sidedWilcoxon rank sum test was used to test for significant
differences between data recorded in S1 and non-S1.

Representation of the Average Evoked
Responses as a Continuous Function
To generate a better representation of the evoked spike
responses than provided by traditional PSTHs, we transformed
the spike times to a spike density function [i.e., a form
of kernel density estimation (KDE)]. For each neuron, the
individual spike responses were grouped by stimulation pattern
and the corresponding KDE for each group, or stimulation
pattern, was calculated using the solution of Shimazaki and
Shinomoto (2010). KDE provides a more accurate representation
of the spike time data than the PSTH since it avoids the
loss of information associated with binning. Here, we used
it also as a means to transform the spike responses into
time-continuous functions, one function for each stimulation
pattern and neuron (Figures 2B,C), which were necessary for
the decoding analysis.

Decoding Analysis
The aim of the decoding analysis was to obtain a quantitative
measure of the degree by which the responses evoked by

repeated applications of one stimulation pattern differed from
the responses evoked by the other stimulation patterns. As
individual responses contained episodes of increased spiking
activity, visible as peaks of activity in the PSTHs and the KDEs
(Figures 2B,C), we developed a method to automatically identify
such densifications of spiking activity. The KDEs for each of
the eight stimulation patterns were superimposed and the max
value at each time point (at 1 ms resolution) was used to
generate a single compound density function. In this compound
density function, each local minimum, which typically signified
a boundary between two consecutive peaks, was identified and
used as a time boundary. Thus, the full duration of the compound
density function was segmented into bins or time windows. For
each time window, the AUC was calculated for the compound
density function. For the AUC calculation, the baseline was the
lowest value that occurred within the time window. The AUCs
of each time window was subsequently normalized to the largest
AUC of all of the time windows. Any time window with an
AUC less than 2.5% of the largest AUC was excluded from
further analysis.

In a subset of the neurons, the peaks in the KDE curves were
too weak for this type of analysis to be performed. We set a
threshold criterion of at least three peaks (across the KDEs of
all eight stimulation patterns) with an amplitude exceeding 200%
of the baseline of the KDE (100%) within 50 ms of the peak’s
deviation from the baseline. Neurons that did not contain this
minimum of peak responses were excluded from further analysis
using this approach.

In the next step, all the raw spike responses of evoked by
each stimulation pattern were randomly split into a training
set and a test set (50% of the responses in each set). Each
spike response was transformed into a continuous signal by
convolving each spike with an exponential kernel with a time
constant of 5 ms. Both training and test responses were
subsequently expanded by recombination, which resulted in
the generation of a higher number of combined responses
than in the original recording data (the recombination or
‘‘bootstrapping’’ procedure is described in detail below). Each
combined response was segmented by the time windows defined
as described above. For each time window, the AUC of the
combined response was computed. The values for each time
window were normalized against the largest AUC measured
for that time window in all of the combined responses for
the respective set (training or test set). Each time window
defined was considered a unique response dimension, and the
normalized AUC of the combined response was the scalar value
for that response in the respective dimension. The position
of each combined response in high dimensional space could
hence be defined. Consequently, the Euclidean distance to
all other combined responses could be calculated. For each
combined response of the test set, their distances to the
combined responses of the training set were calculated. For this
purpose, we used a k-Nearest Neighbor (kNN) classification
algorithm for the nine nearest neighbors (the nine closest
responses in the high-dimensional space) as the basis for
the classification of the test set, where the classification was
made against the training set. If a majority of the closest
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responses were generated by the same stimulation pattern
as the one generating the test response, the classification
of that response was correct. Based on the results of the
kNN analysis across the population of analyzed responses
(i.e., the test sets for each of the eight stimulation patterns), we
constructed confusion matrices, which indicates the percentage
of the correctly classified responses as well as the percentage
of the confusing stimulation pattern in cases of incorrect
classification, and calculated the decoding accuracy (mean
decoding performance). The procedure in this paragraph was
iterated for 50 times, each time with a new random split of the
raw data into a training set and test set and a new bootstrapping
process. The confusion matrices are shown, and the mean
decoding performances reported, represent the average of these
50 iterations.

Shuffled Control Decoding
The theoretical chance level of the decoding performance when
performing a kNN-classification analysis depends on the number
of classes. The chance level for correct classification when there
are two classes is 50%, i.e., 100% divided by the number of classes.
In our setting where we had eight classes or spatiotemporal tactile
stimulation patterns, the theoretical chance level was hence
12.5% (100%/8). For each neuron, we also tested the effect of
shuffling the responses with respect to the stimulation pattern.
This test was done to provide an internal control for each neuron,
i.e., if there were features in the neuronal firing patterns, or in the
method, that would bias neurons to not report chance decoding
level (12.5%) when the analyzed responses were independent of
the stimulation pattern. This control decoding analysis (referred
to as ‘‘shuffled control decoding’’ in the Results) worked exactly
as the decoding analysis described previously, but prior to
each data split into a test and training set the labels for each
stimulation pattern were shuffled.

Confusion Matrices for Analysis of
Response Differences Between Neurons
In some cases, we also compared the responses generated by
different neurons to the same stimulation pattern (this was done
for four or five neurons at a time). We used the same approach
as above, but the response groups, in this case, consisted of the
raw responses generated by the different neurons to the same
stimulation pattern.

Cooperative Decoding Between Neurons
In order to analyze the additional decoding capacity that could
be provided by a population of neurons, we extended the
analysis above into a ‘‘cooperative’’ decoding analysis. This
was a similar approach as in Oddo et al. (2017) rather than
principal component analysis (PCA), here we instead used
the time window response segmentation as the basic analysis
approach. To illustrate how decoding depended on the duration
of the response and the number of neurons taken into account,
this analysis aimed at finding the best possible combination
of neurons for each response duration. For each given time
interval/duration analyzed, an iteration through the available
neurons was performed in which we calculated their decoding

within that time interval. In that time interval, each neuron
had its own set of time windows/bins, thus giving the neuron a
response dimensionality Mi (one dimension per time window).
The neuron with the best decoding [a] was kept. In the next
iteration, the remaining neurons were scanned and the kNN
decoding analysis was performed with the dimensionality Ma +
Mi. The best combination was stored [a, b], and the procedure
was repeated again until the maximum number of neurons
(arbitrarily defined as 10 in our case) had been reached. Thus,
the dimensionality increased by the number of time windows
defined for each added neuron. The procedure was repeated for
all time intervals/durations, as indicated (Figure 4B) and was
performed for S1 neurons and neurons recorded in the visual
cortex, respectively.

Bootstrapping of Time-Continuous Signals
The continuous responses from a neural recording were
recombined or ‘‘bootstrapped’’ by first grouping them by
stimulation pattern. N unique recorded response sweeps (where
N as a rule equaled 10, but in the analysis of the EEG state-
segmented responses N equaled 3) were randomly combined.
Each generated response was a unique combination of response
sweeps, and each recorded response sweep was present in at
least one generated combination. Recorded response sweeps
without any spikes were excluded from the bootstrapping
procedure and hence the decoding analysis. The sum of
each combination of time-continuous response sweeps was
stored as a new bootstrapped response. The target was to
generate 200 responses for each training or test set. If the
number of possible unique combinations for a specific set
of responses was below the target, the maximum possible
number was used instead. If the number of valid recorded
responses fell below the value of N, the bootstrapping failed
and that part of the data could not be used in the analysis.
This condition applied primarily in a few cases of the EEG
segmentation analysis.

Note that the above approach is different from methods
that rely on comparing the arithmetic means of responses
evoked by different stimulation patterns. Assume that a neuronal
response to a certain stimulus has more than one type of
stable response, as well as superimposed noise. In that case,
when comparing the arithmetic means evoked by a number
of different stimulation patterns, the arithmetic means would
indicate smaller differences between the responses than the actual
differences between the underlying distributions. Bootstrapping,
which our approach is derived from, in contrast generates
a distribution of possible, idealized individual responses. The
underlying distribution of responses will determine what kinds
of bootstrapped responses that will be generated, and thus
also represent a single neuronal response to the stimuli
in an idealized manner. When combined with the other
components of this analysis, the result will be a graded
metric of the neuronal decoding capacity, which takes into
account the possibility that the same peripheral input can
generate several different responses but that those responses
are anyway more different from the responses generated by
other inputs.
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Decoding Performance Across Different
Time Windows
In addition to the standard time window of 600 ms above,
we evaluated the dependency of the decoding on the total
time integration window considered. This part of the decoding
analysis was performed with 100 ms incremental increase from
100 ms up to 1,000 ms (Figure 6). The statistical difference
between neurons in S1 and non-S1 for each integration time
window was evaluated with the Mann-Whitney U test.

Decoding Performance Across Different Layers
A common assumption is that neuronal specificity of processing
is related to in which layer the neuron is located. To elucidate
this question relative to the decoding performance we grouped
the neurons according to which layer they were located. This
segmentation was done based on their depth from the cortical
surface and the following laminar depth boundaries: L1-L2/3:
157 µm, L2/3-L4: 575 µm, L4-L5: 900 µm, L5-L6: 1,411 µm;
L6-white matter (WM): 1,973 µm (Narayanan et al., 2017). The
neurons were further separated into their respective S1 and
non-S1 groups. For each group, the Kruskal-Wallis test was used
to test if the distributions of decoding performance in any layer
differed from the others.

Brain State Segmentation
During each neuronal recording, a parallel ECoG signal was
recorded at a sample rate of 1 kHz from the surface electrode
placed on the surface of the cortex at the rostral end of
the craniectomy (see above). For the brain state segmentation
analysis (Figure 5A), the spectral density of the ECoG was
calculated with a segment length of 1,000 ms, an overlap of
125 ms and a constant (mean) detrending. The spectral density
of Delta, Theta and Alpha bands (0–12 Hz) was summed for each
segment and the compound value was used for the remainder of
the analysis. An asynchronous segment of ECoG was assumed
to occur when the compound spectral density dropped below
the compound spectral density median for at least two segments
in sequence.

For each recording, every stimulus presentation was classified
as occurring either during an asynchronous or a synchronous
EEG state, according to the definition above. To be classified as
occurring during asynchronous ECoG, the stimulus presentation
had to start within a desynchronized segment, and the subtracted
time value between the stimulus onset and the end of the
desynchronized segment had to exceed 350 ms.

Finally, information content analysis was performed as
previously described for spike responses grouped by ECoG state.

RESULTS

The main scope was to address the question if the spike output
of neurons located outside the digit region of the S1 cortex could
be used to identify spatiotemporal tactile afferent input patterns
applied to the volar side of the left distal digit 2 (Figure 1A).
We recorded from a total of 116 neurons distributed across most
of the dorsal surface of the neocortex in the anesthetized rat
(Figure 1B). Sixty-four neurons were recorded in the parietal

and occipital parts of the cortex, including a large fraction
(N = 51) in the primary visual cortex, V1, according to stereotaxic
coordinates (Paxinos and Watson, 2006; Chubykin et al., 2013;
Xu et al., 2007). Prefrontal, frontal and lateral temporal cortices
were not included due to the more complicated anatomical
access. Furthermore, to provide a comparison for the responses
of non-S1 neurons (N = 64), we recorded many neurons within
the primary somatosensory cortex, S1 (N = 52). Note that in
contrast to our previous study of neuronal decoding of tactile
input patterns in S1 (Oddo et al., 2017), in this study only a
minority of the S1 neurons were located within the forepaw
area of S1. Each animal contributed to 4–10 recording sites. In
total, we made recordings from 78 sites. For each recording site,
1–6 neurons were recorded at depths between 292 and 1,446µm.
In addition, we made a separate set of control recordings from
16 neurons in V1 under conditions of reduced audiovisual
background (only decoding analysis, see below).

We used both single pulse stimulations to individual skin
sites (Figure 1A) and spatiotemporal patterns of skin stimulation
across the skin sites to evoke neural responses. All of our
recordings were made in the extracellular mode which permitted
the recording of sensory-evoked local field potentials (SE-
LFP; Figure 1C) through the same electrode that recorded the
neuronal units (Figure 1D). SE-LFP responses evoked by the
single pulse stimulation were clearly larger in the paw region
of S1 than in non-S1 regions (Figure 1C), which suggested that
our stimulation generated tactile afferent thalamocortical input
with the densest representation located in S1, as expected (Frostig
et al., 2008).

We also made a separate analysis of the LFPs evoked by
the full stimulation patterns (see below) as they had a longer
duration and thereby potentially a higher probability of evoking
LFPs in non-S1 regions. The distribution of the differences of the
mean number of LFPs in pre- vs. post-trigger periods was not
symmetric for S1 intracortical recordings (Wilcoxon signed-rank
test; H = 12, 566.5, p = 5.07e-17; N = 52), i.e., indicating a
presence of SE-LFPs in S1. But outside S1, we could not find any
difference between LFP occurrences in the pre- and post-trigger
periods (Wilcoxon signed-rank test; H = 45,933.0, p = 0.112;
N = 64). Furthermore, the distribution of the AUC for the
LFPs in the pre- and post-trigger periods was not symmetric
for S1 (Wilcoxon signed-rank test; H = 18, 651.0, p = 5.97e-08;
N = 52), but was symmetric outside S1 (Wilcoxon signed-rank
test; H = 53, 796.0, p = 0.960, N = 64). Hence, in agreement with
the single pulse stimulation results above, our tactile stimulation
patterns neither evoked an increase in LFP frequency nor in LFP
AUC in non-S1 regions, despite that the same stimulation did
evoke such increases in S1.

Simple Neuronal Response Measures
For the neuronal spikes, we first tested whether the recorded
neurons had any robust response to non-patterned, single pulse
electrical stimulation of a single skin site, i.e., the same type of
stimulation that we used to quantify the SE-LFPs in Figure 1C.
Only eight neurons passed the arbitrarily set, restrictive threshold
of requiring the post-trigger spike firing change to exceed 3 SDs
from baseline activity to be classified as having a response to
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this stimulation. All of these neurons were located in S1 (six
of eight responses occurred within 20 ms of the onset of the
stimulus), which was an expected result. However, using the
spatiotemporally patterned stimuli, a total of 39 neurons located
both inside (N = 26) and outside (N = 13) S1 had responses
that passed our threshold criterion (+3 SD change relative to
baseline) for identifying a response where the response latency
time could be calculated. The median response latency time
for the S1 neurons was 15–20 ms compared to 35–40 ms for
non-S1 neurons (Figure 1E). The difference in the response
latency times between the two groups of neurons was statistically
significant (two-sided Wilcoxon rank-sum test, p = 5.50e-04).
Note that the differences in response latencies primarily reflect
the intensity of the responses, and do not necessarily indicate
their route of mediation. In our data, it is quite possible
for a neuron to receive direct thalamocortical input without
generating a response that crosses our conservative +3 SD
threshold criterion used to identify the latency time. This is, in
part, related to the fact that we used relatively weak stimulation
of the tactile primary afferents. Using more intense stimulation
of tactile afferents, it has previously been shown that direct,
short latency thalamocortical responses occur also outside S1
(Zhang et al., 2001) although it is well known that at weaker
tactile stimulation intensities response latencies are overall the
shortest in S1 (Ferezou et al., 2007). We also explored whether
there was a relationship between the response onset latency time
and the distance from the digit 2 region of S1 of the recorded
neuron. Linear regression showed that such a relationship existed
but with a large unexplained residual (p = 0.004; r2 = 22.3%;
N = 39), where the latter for example was caused by the presence
of V1 neurons with a relatively short response latency time
(see Figures 2B,C).

Figure 1F illustrates the intensity of the responses expressed
as the number of SDs relative to the baseline. The median
value was 9.8 times SD for S1 neurons and 6.4 times SD for
non-S1 neurons, with values as high as 148 times SD being
observed in S1. Also in this case, there was a significant difference
between the S1 and the non-S1 neurons (two-sided Wilcoxon
rank sum test; p = 0.027; Figure 1F). However, perhaps the most
remarkable observation was the presence of robust responses to
the tactile afferent activation also in neurons located well outside
the S1 region.

Neuronal Response Patterns and Their
Measures
In the remainder of the ‘‘Results’’ section, we analyze the
neuronal response patterns generated by spatiotemporal patterns
of tactile afferent activation. These stimulation patterns were
previously generated by dynamically indenting an artificial
fingertip, equipped with four biomorphic sensors, against objects
of different shapes (Figure 2A). The shape of the object and
the dynamics of the spike generation in the sensors were
the bases for the labeling conventions for the stimulation
patterns (Figure 2A). These stimulation patterns, which were
the same as in the article where this approach was introduced
(Oddo et al., 2017), were delivered to the second digit of the
contralateral forepaw of the rat where each stimulation site, or

channel, corresponded to one of the four sensors of the artificial
fingertip (Figure 2A).

Figure 2B illustrates the spike responses of a sample neuron
recorded in V1. The raster plots illustrate a quite large spiking
variability across the 100 repetitions of each stimulation pattern,
which is in contrast to the more regular spiking responses
that can be found in some neurons within the paw region of
the S1 cortex (e.g., Oddo et al., 2017). Conventional PSTHs
illustrated that most of the stimulation patterns nevertheless
evoked specific responses in this V1 neuron (Figure 2B)
identifiable as differences in the number, onset latency times,
amplitudes and widths of the peaks of activation. Note that
relatively minor differences between specific stimulation patterns
could still result in quite different responses as in the case
of S∞ and F∞. In fact, the early response peak of the F∞
stimulation was much greater than for the S∞ stimulation
pattern, despite that the only difference between the two inputs
at that point in time was that the interval between the two
first pulses of the respective patterns differed by 14 ms. For
this neuron, conversely, the difference between the responses
to the F∞ and the F20 stimulation patterns was minor despite
quite large differences between the stimulation patterns. As we
have described before Oddo et al. (2017), among S1 neurons it
is not uncommon to have clearly separable responses to most
stimulation patterns, but that the responses to a specific pattern
can sometimes be harder to distinguish from those evoked by
another specific pattern. This phenomenon hence occurred also
for this V1 neuron, as well as other S1 and non-S1 neurons
(not shown). Such unique response profiles form the basis
for cooperative decoding between neurons, as we will describe
further below.

Whereas the PSTHs hence could identify some consistent
differences between responses evoked by different stimulation
patterns, PSTHs discard a lot of information in the evoked spike
responses by binning the time of occurrence of the spike into
a specific interval (i.e., a spike occurring at 11.3 ms would,
in this case, be assigned a value of anywhere between 10 and
20 ms). Using KDE, the exact time of occurrence of the spike
is given a larger impact, as each spike event is represented as
a Gaussian distribution around that time point. Hence, rather
than treating a spike response as a discrete event, it is turned
into a continuous function. The KDE curve is the sum of all the
Gaussian distributions of all the spikes evoked by the stimulation.
As shown, after normalization, the KDE curves always fit very
closely to the shape of the corresponding PSTHs but have the
advantage of amuch higher time resolution. Thus, in the example
neuron, where the responses to the F∞ and F20 stimulation
patterns were quite similar according to the PSTHs, the KDE
showed that the single peaks of each response differed in time
by more than 5 ms (Figures 2B,C).

To make it possible to quantify the consistency of these
responses across repeated presentations of each stimulation
pattern, and to compare it with responses evoked by other
stimulation patterns, we subdivided the responses into several
time windows (Figure 2C). The definition of the time windows
used was made on a neuron-by-neuron basis and was designed to
depend on the location of the response peaks in the KDE curves
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for all eight stimulation patterns superimposed (Figure 2C). For
example, the relatively small time difference between the first
peaks of the F∞ and the F20 responses was captured by this
method as the peaks fell partly into different time windows. As
different neurons could display different numbers of peaks, a
different number of time windows were defined for each neuron.
The illustrated V1 neuron had 17 peak-defined time windows
(Figure 2C). Across the population of neurons recorded, the
number of time windows defined varied from 4 to 27 (15.1± 4.4,
mean± SD).

Decoding Analysis for Individual Neurons
In the comparison of the responses, we considered each
of these defined time windows as a dimension for which
the metric of each response could be defined. To reduce
the sensitivity to spurious spikes occurring in low-intensity
responses, we combined the responses in sets of 10 (see
‘‘Materials and Methods’’ section) before analyzing their metrics.
Each combined response had a position in high-dimensional
space that was defined by its magnitude in each defined time
window. Using Euclidean distance calculation against a training
set of responses (see ‘‘Materials and Methods’’ section), the
nearest neighboring responses could be calculated for each of
the 200 combined responses generated for each stimulation
pattern. The most common stimulation pattern evoking the
responses corresponding to the nine nearest neighboring points
in the high-dimensional space was then used to determine if the
analyzed response sweep was correctly or incorrectly classified.
The accuracy of the classification of all individual response
sweeps was summarized in confusion matrices as in Figure 3A.
The mean decoding performance was calculated from these
confusion matrices using the values in the diagonal (outlined

in red in Figure 3A). These values indicated the reliability by
which the responses generated by the same stimulation pattern
could be separated from the responses generated by the other
stimulation patterns. The other boxes in the confusion matrix
indicated whether there was any specific stimulation pattern that
the tested stimulation pattern was preferentially confused with.
Thus, in the illustrated example, the responses generated by the
F5 stimulation pattern tended to be classified as being generated
by the S5 stimulation pattern, but the reverse was true only
to a more limited extent (Figure 3A). Note that the method
used here is simpler and more straight-forward than the one
we previously used (Oddo et al., 2017), which has the drawback
that the values of mean decoding performance reported are not
directly comparable.

Figure 3B summarizes the distribution of the mean decoding
accuracy across the population of recorded S1 neurons and
non-S1 neurons, respectively. For some of the neurons, the KDE
curves did not contain peaks of sufficient intensity and number
to qualify for this analysis (see ‘‘Materials and Methods’’ section;
this applied to 8 of 52 neurons in S1 cortex; 40 of 64 neurons
in non-S1 cortex). These neurons are hence not considered
in the further analysis made in this article. For the neurons
that surpassed this threshold criterion, most neurons in both
S1 and non-S1 generated responses that resulted in decoding
levels above chance (12.5% for the eight stimulation patters
used). The average mean decoding performance for S1 cells was
18.0% (SDs = 6.7%; N = 44). The mean decoding performance
of these neurons when the stimulation pattern labels for each
response was shuffled was 12.5% (mean, SDs = 1.0%), i.e., exactly
at chance. For non-S1 cells the mean decoding performance
was 15.9% (SDs = 3.54%; N = 24) whereas their shuffled
control decoding again was at chance level (mean = 12.6%,

FIGURE 3 | Decoding performance at the single neuron level. (A) A confusion matrix illustrating the degree of specificity of the spike responses to the different
stimulation patterns for the sample neuron also shown in Figure 2. (B) Mean decoding performance across the population of neurons. Chance decoding level is at
12.5% (for the comparison between eight stimulation patterns) as indicated by the red vertical line. (C) Box plot of the mean decoding performance for S1 (N = 44)
and non-S1 (N = 24) neurons, respectively.
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SDs = 0.8%). We used a two-sided Mann-Whitney U-test to
compare the distribution of the mean decoding performance
for S1 and non-S1 neurons but found no significant difference
(p = 0.237, U = 483; Figures 3B,C). Additionally, we tested
if the neurons that we found to have a robust deviation in
spike firing intensity to the patterned stimulation (Figure 1F)
also had different decoding than the weaker responders. We
found that there was a statistical difference (U = 247.0,
p = 0.0046; Mann-Whitney U-test). In contrast, we could
not find any dependence between recording depth (range
292–1,446 µm) and decoding, as quantified using Pearson’s
correlation (All cells ρ = −0.08369, p = 0.52858; S1 cells
ρ = −0.09000, p = 0.59628; Non-S1 cells ρ = 0.00493,
p = 0.98263). We also grouped the cells according to their cortical
subarea and by cortical layer and investigated if there was a
relationship to the decoding performance using the Kruskal-
Wallis test. For these comparisons between neurons in different
lamina, in none of the locations was the p-value below 0.05
(Table 1). This suggests that the layer location of the neuron
did not have a relationship to the decoding level, which is
in line with the findings of our previous investigation in S1
(Oddo et al., 2017).

We made an additional set of experiments with 16 neurons
recorded in the visual cortex in animals with a reduced
audiovisual background (depth range: 479–1,324 µm). In this
case, 9 of 16 neurons had sufficiently intense peaks of activation
in their responses to surpass the defined threshold criterion
to be included in the decoding analysis. Their average mean
decoding performance was 14.9% (SDs =2.47%; N = 9; Shuffled
control decoding mean = 12.6%, SDs = 1.0%). Differences
in the distributions of the mean decoding performance could
not be rejected between S1-, non-S1- and the neurons with
reduced audiovisual background (Kruskal-Wallis; H = 6.47534,
p = 0.0393). Post hoc analysis with Mann-Whitney U-test
revealed a difference between the distributions of S1 neurons and
the neurons with a reduced audiovisual background (U = 372.0,
p = 0.0178) but no difference between the distributions of the
other non-S1 neurons and these neurons (U = 205.0, p = 0.101).

Complementary Decoding of Tactile Inputs
in Neuron Populations Outside S1
As previously shown for S1 neurons (Oddo et al., 2017), we
often noted differences in the temporal response patterns to the
same stimulation pattern also in different non-S1 neurons. Such

complementary response profiles would suggest that the neurons
report specific aspects about the tactile input, which in turn can
allow for co-operative decoding where a small population of
neurons combined achieves an improved decoding compared to
the individual neuron (Oddo et al., 2017).

We first tested the five best-decoding V1 neurons against
each other. For each of the eight stimulation patterns, we
used the same basic approach as for the single neuron analysis
above, but now instead compared the responses of the five
different neurons to the same stimulation pattern. The confusion
matrices in Figure 4A showed that the responses generated by
the different neurons overall were quite well separable from
each other. Only a few examples of confusion of the responses
between different neurons stood out clearly (Figure 4A). This
is a remarkable finding given that the non-S1/V1 neurons
individually had relatively noisy responses (Figures 2, 3). The
inter-neuron mean decoding performance among these five
V1 neurons was 40.8± 3.3% across the eight stimulation patterns
tested (with a chance level of 20% given by that five neurons
were compared). For neurons recorded in the S1 cortex, the five
best decoding neurons generated responses with an averagemean
decoding performance across the eight stimulation patterns
of 63.6 ± 7.8% (not shown), i.e., these responses were more
systematically or distinctly different from each other than among
our V1 neurons. A similar analysis for the V1 neurons with
reduced audiovisual background resulted in a mean decoding
performance of 39.7± 3.39% (chance level was in this case 25% as
only the four best V1 neurons out of this more limited population
of neurons were included).

We next developed the decoding analysis so that it could
take into account the signals generated by multiple neurons,
at various response durations, and hence provide a measure
of the recorded neurons’ cooperative decoding of the eight
stimulation patterns (Figure 4B). Among the V1 population
of neurons, the maximum decoding level attained was 32%
with four neurons at 400 ms as well as with two neurons
at 200 ms. These values were higher than the maximum
decoding level of the best V1 neuron (24.8%), and hence
there was a cooperativity of the responses generated by the
different neurons to improve the decoding of the stimulation
patterns. Notably, at longer durations and for a higher number
of neurons the cooperative decoding level declined, probably
because the amount of noise grew faster than the amount of
signal provided by the specific population of V1 neurons we

TABLE 1 | Statistical comparison of the decoding performance for neurons in different areas and layer.

Location Total (N) L2/3 (N) L4 (N) L5 (N) L6 (N) Decoding (mean) Decoding (SDs) Kruskal-Wallis test

Non-fpS1 25 2 13 10 0 17% 4.8% H = 0.7, p = 0.718
fpS1 12 3 5 4 0 20% 9.0% H = 1.1, p = 0.572
M 4 0 0 4 0 16% 2.5% -
A 5 1 3 1 0 16% 2.9% H = 2.1, p = 0.344
V 13 1 5 7 0 16% 3.9% H = 3.8, p = 0.146

Distribution of recordings by cortical location and layer. S1 neurons are subdivided by non-frontpaw area (Non-fpS1) and frontpaw (fpS1) area of the S1. Non-S1 neurons are subdivided
by motor (M), associative (A) and visual (V) areas of the cortex. The segmentation of layers is according to the depths defined by Narayanan et al. (2017). Differences in decoding
performance between layers for each location were investigated using the Kruskal-Wallis test, except for neurons in the motor areas where the only sampled layer was L5 and no
comparison could be made. None of the tests reported a p-value below 0.05.
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FIGURE 4 | Complementariness of the neuronal responses. (A) Decoding analysis for the differences in response patterns for the five top decoding V1 neurons
when presented with the same stimulation patterns. One confusion matrix is shown for each stimulation pattern. (B) Cooperative decoding analysis for V1 neurons
and S1 neurons, respectively. Note that for V1 neurons, the line at 100 ms is interrupted after six neurons, as neurons 7–10 did not provide any responses for this
first time window.

recorded. For S1 neurons, in line with the finding that the
across-neuron response specificity (Figure 4A) was higher than
for V1 neurons, the maximum cooperative decoding was 56%
(compared to 46.8% max for the best individual S1 neuron),
attained at 400 ms with both two and four neurons. Unlike
the V1 population, the S1 cooperative decoding did not decline
as much when more neurons were added, possibly because the
signal to noise ratio was more favorable among this population
of neurons.

Decoding Performance in Relation to
Brain-State
There are profound differences in EEG during wakefulness,
sleep and anesthesia and the EEG state is known to affect

cortical neuronal signaling. Desynchronous EEG occurs
during active processing in the awake animal (Petersen
and Crochet, 2013), but states of desynchronous EEG also
occur episodically under general anesthesia. To elucidate
the relationship that might be present between the EEG
state (here analyzed as desynchronized vs. synchronized
ECoG, see Figure 5A) and decoding performance for
individual neurons, the responses to the tactile stimuli were
subdivided based on the concurrent ECoG state as described
in ‘‘Materials and Methods’’ section. This resulted in four
combinations of locale (S1 and non-S1) and ECoG state
(Synchronized and Desynchronized). For each permutation,
the mean decoding performance of the individual neurons
was analyzed.
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FIGURE 5 | Electroencephalogram (EEG) state segmentation and decoding
performance. (A) An example of a raw EEG recording, smoothed by a
100 ms moving Hanning window. The segment of the recording that was
classified as being desynchronized is indicated by a box in light gray.
(B) Box-plot of the mean decoding performance for S1 neurons grouped by
EEG state (Synchronized N = 43; Desynchronized N = 26) and for non-S1
neurons, also grouped by EEG state (Synchronized N = 24; Desynchronized
N = 20). Connecting lines with star between sub-groups indicate statistically
significant differences as specified in Table 2.

The mean relative amount of time spent in the
desynchronized ECoG state was 21% across animals (variance:
0.1%) and the proportion of stimulus presentations that
occurred in this state was 26.7%. The median (25th/75th
percentile) decoding performance for neurons in S1 in the
synchronized state (S1/Synchronized) was 14.6% (13.2/16.8); for
S1/Desynchronized 19.8% (15.0/25.1); for non-S1/Synchronized
13.9% (12.2/15.6); for non-S1/Desynchronized 17.6% (15.5/23.4;
Figure 5B). Differences in the distributions of themean decoding
performance for the four groups defined by localization (S1 vs.
non-S1) and recording state (synchronized or desynchronized
ECoG) were statistically significant (Kruskal-Wallis test;
H = 15.97379, p = 0.00115). For post hoc analysis of the same
cells in different states, a two-tailed Wilcoxon signed-rank test
was used. For the analysis across different cells (S1 vs. non-S1) a
two-tailed Mann-Whitney U test was used. The analysis revealed
that there was no significant difference between S1 vs. non-S1
neurons in the same ECoG states (two comparisons). However,
for all remaining combinations of location and ECoG state, there

were statistically significant differences in the decoding level
(Figure 5B and Table 2). The finding that desynchronized EEG
state was associated with a higher mean decoding performance
suggests that our findings come despite a reduction, or apparent
injection of noise, caused by the predominant synchronized EEG
state induced by the anesthesia.

Decoding Performance Across Different
Time Windows
We also compared the decoding performance of individual
S1 and non-S1 neurons across time windows of different
total durations. Figure 6 illustrates the time evolution of the
mean decoding performance for S1 and non-S1 neurons. A
main difference between S1 and non-S1 neurons appeared
to be a higher decoding performance for the earliest time
windows although it was only at the 300 ms integration time
windows that the S1 neurons performed significantly better at
p < 0.05 (U[0–0.1]s = 219.0, p[0–0.1]s = 0.06255; U[0–0.2]s = 296.0,
p[0–0.2]s = 0.46677; U[0–0.3]s = 439.0, p[0–0.3]s = 0.01810;
U[0–0.4]s = 464.0, p[0–0.4]s = 0.10242; U[0–0.5]s = 452.0,
p[0–0.5]s = 0.48547; U[0–0.6]s = 455.0, p[0–0.6]s = 0.45654;
U[0–0.7]s = 486.5, p[0–0.7]s = 0.53521; U[0–0.8]s = 537.5,
p[0–0.8]s = 0.32877; U[0–0.9]s = 586.0, p[0–0.9]s = 0.14346;
U[0–1.0]s = 536.0, p[0–1.0]s = 0.55431).

DISCUSSION

Regardless of location in the dorsal surface of the neocortex,
we could record neurons whose spike output segregated
specific spatiotemporal tactile activation patterns. Our study
hence extends previous observations of unbounded inputs in
the neocortex by showing that such neuronal activation can
contain information about the ‘‘what’’ component of the input.
Moreover, even in V1, the individual neurons were shown to
generate different responses to the same input patterns, which
led to that the combined decoding accuracy of a population of
non-S1 neurons could become substantially higher than for the
best-performing individual non-S1 neuron alone.

Potential Limitations of the Stimulation
Approach
Our approach was motivated as follows: the spatiotemporal
patterns of skin sensor activation are the primary means that the
nervous system has to identify different skin-object interactions.
The high reproducibility of the spatiotemporal patterns of the
skin tactile afferent activation of the present approach was
needed to address the issue of how well cortical neurons can

TABLE 2 | Statistical comparison of the decoding performance in different EEG states.

Comparison Method Statistic

Non-S1/Synchronous vs. Non-S1/Asynchronous Wilcoxon signed-rank test p = 1.3e-11, T = 28.0
S1/Synchronous vs. S1/Asynchronous Wilcoxon signed-rank test p = 4.7e-10, T = 5.0
Non-S1/Asynchronous vs. S1/Synchronous Mann-Whitney U p = 3.0e-10, U = 2799
Non-S1/Synchronous vs. S1/Asynchronous Mann-Whitney U p = 2.1e-10, U = 519

Results of the statistical tests for each comparison (EEG state/locale). See Figure 5 for EEG state segmentation and pooled neuronal decoding performance in different
states and locale.
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FIGURE 6 | Time evolution of mean decoding performance. Plot of the
evolution of the mean decoding performance for individual S1 and non-S1
neurons across integration time windows of increasing duration. The
integration time is indicated along the x-axis. Whiskers indicate standard error
of the mean. A star indicates a statistically significant difference for that time
window (p < 0.05, Mann Whitney U test). Note that the y-axis starts at
chance level (12.5%). Solid black horizontal bar indicates the duration of the
longest stimulation pattern, the dashed line indicates the time of its
termination.

decode such inputs at the highest possible resolution. This is
because the corresponding real-world mechanical skin stimuli
are associated with a much higher degree of variability in the
patterns of tactile afferent activation (Hayward et al., 2014;
Jörntell et al., 2014).

The eight stimulation patterns we used were previously found
to be within the same activity range and to show the same
envelope of temporal firing modulation as biological tactile
afferents under a dynamic mechanical skin indentation (Oddo
et al., 2017). As we also noted in this previous study, even though
each stimulation site can be expected to activate a low number
of tactile afferents in relative synchrony, the input we provided
can be expected to have been distributed and processed through
multiple layers of neuronal network in the cuneate nucleus,
thalamus and neocortical circuitry before it reached the neurons
we recorded from. Hence, the measured decoding is bound
to reflect at least in part the inherent processing mechanisms
of the brain. But there are certainly potential limitations with
this approach. First, assuming that the physiological structure
of the neocortical circuitry has adapted to the statistical space
of naturally occurring spatiotemporal patterns of afferent input
(Luczak et al., 2009; Berkes et al., 2011; Okun et al., 2015), it
would seem that patterns that are outside this space would be
less prone to propagate long distances through the network.
But this argument suggests that our stimulation patterns would
underestimate the effective network propagation of tactile inputs
and is not a problem for our conclusion. Alternatively, the
activation of a set of local tactile afferents in synchrony could
overrule inhibitory control mechanisms (Renart et al., 2010),
which may normally be used to prevent extraneous activation
of the circuitry. Thereby, the input could have been made
to propagate more effectively or more intensely than what
is normally the case. However, even in this scenario, our
findings illustrate that the pathways required to propagate tactile

information globally across the neocortex do exist. And indeed,
in humans, tactile input from digit 2 activates EEG signals widely
in the neocortex (Genna et al., 2017). Similarly, the anesthesia
used in the present study is expected to dampen the neocortical
responsiveness to external stimuli (Constantinople and Bruno,
2011) but would not be expected to open new network
pathways since the recruitment order of neocortical neurons to
spontaneous brain activity (UP states) and natural stimuli is
largely unaffected by anesthesia (Luczak et al., 2009; Luczak and
Barthó, 2012). Moreover, as shown in Figure 5, the neuronal
decoding increased when the ECoG became desynchronized,
which suggest that the anesthesia by inducing synchronized
ECoG states injects noise in the spike responses and thus led to
an underestimate of the potential neuronal decoding. In awake
conditions, without anesthesia, these limitations do not apply.
However, in awake conditions, it may instead be difficult to
unequivocally identify a recorded cortical response as being
generated by the sensory stimulus itself rather than an internally
generated signal (Eskandar and Assad, 1999).

The Decoding Analysis vs. the
Organization of Brain Processing
Our decoding analysis built on a quantification of the precision
by which the magnitudes of the neuronal spike responses in
different time windows could be used to segregate the eight
stimulation patterns used. The neuronal circuitry of the brain
may well analyze the incoming input in a quite different
manner and hence the present analysis can merely indicate that
information about the ‘‘what’’ aspect of tactile afferent input
patterns exists globally in the neocortical circuitry. How it is used
by the brain, and how it contributes to the shaping of behavior is
another issue, which should be the scope of future studies.

Possible Routes of Activity Propagation
Considering the known connectivity, the possibility that
tactile information could be propagated globally across the
neocortex is well supported. The neocortex contains billions of
neocortical neurons with, on average, 7,000 synaptic connections
(Pakkenberg et al., 2003). It was estimated by Arbib et al. (1998)
that any neuron in the neocortex connects to any other neuron
with synaptic linkages involving no more than five neurons on
average, a claim that is well supported from the graph theory
concept of ‘‘small world networks’’ (Watts and Strogatz, 1998;
Bullmore and Sporns, 2009). There is ample substrate for such
widespread distribution both in the cortico-cortical but also the
cortico-thalamo-cortical (Lübke and Feldmeyer, 2007; Frostig
et al., 2008; Sherman, 2016) connectivity, and some support
for the involvement of horizontal cortico-cortical connections
in propagating unbounded inputs exists (Frostig et al., 2017).
Interestingly, it has been argued that most neurons in the
neocortex, at least from layer 2 to layer 6 pyramids, are no more
than one intercalated neuron, i.e., two synapses, away from the
thalamus (Lübke and Feldmeyer, 2007; Wall et al., 2016). This
implies that regardless of which neuron is chosen for recording,
assuming a synaptic delay of 0.5ms, any other neuronwill only be
2.5 ms away, plus any potential conduction time. Note also that
whereas our data indicates that V1 and other non-S1 neurons can
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decode tactile input, a human study shows that fMRI activity in
S1 can be used to decode visual input (Smith and Goodale, 2015).
Hence, the spread of unimodal sensory information appears to
work in either direction.

Implications for the Understanding of the
Neocortical Mode of Operation
Our findings extend ‘‘growing evidence that neurons in
primary somatosensory cortex provide essential processing for
integrating sensory stimulation from across the hand’’ (Qi
et al., 2016) by suggesting that neurons across the cortex can
integrate precise knowledge of the quality of tactile events
with their information processing. This notion fits well with
the idea that neocortical processing is essentially multisensory
(Ghazanfar and Schroeder, 2006), which would form a natural
basis for cross-modality disambiguation (Gori et al., 2010). If
the brain uses a large number of neurons located outside the
S1 cortex, as well as the entire S1 cortex (Figure 1B), in the
processing of tactile inputs, it would implicate access to a very
large processing capacity. However, since a paw or a hand
contains 1000’s of sensors (Johansson and Flanagan, 2009),
each of which have a gradable spike output that varies over
time during a skin-object interaction, a very large processing
capacity may be required. Indeed, the higher the potential
processing capacity, the higher the number of interactions
that could potentially be identified, which in itself may have
evolutionary advantages.

Starting in the ’80s and ’90s, it was suggested that the
neocortex was highly plastic. The assumption behind this idea
was that there was a strict map-based organization in the
neocortex. The pivotal findings were that the cortical maps
could change (Buonomano andMerzenich, 1998) given sufficient
practice (Siuda-Krzywicka et al., 2016), in functional loss like
hand amputation or blindness (Montoya et al., 1998), or even
during reversible inactivation of peripheral nerves (Pettit and
Schwark, 1993). The implicit assumption has been that such map
changes could only be achieved by means of synaptic and/or
structural plasticity. Hence, in a strict map-based, or functional
localization, view, structural network changes are needed to bring
about functional changes.

But the explanatory power of map-based models has been
questioned (see ‘‘Introduction’’ section), also recently (Jonas
and Kording, 2017), in principle because there is no apparent
potential for them to resolve the underlyingmechanisms defining
brain function. The present findings raise the question of whether
the observations of assumed rapid cortical reorganization
described above actually only are cases of dynamical use of
neocortical circuitry. Dynamical circuitry reuse would imply that

the same circuitry components are part of different functional
networks depending on the brain state and thereby accessible for
different functions across many contexts (Carmena et al., 2003;
Elsayed et al., 2016), which would provide for a much higher
brain capacity (Spanne and Jörntell, 2015) than in the traditional
functional localization view.
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